1. **Phonons**

Consider a one-dimensional “crystal”, described by the Hamiltonian

\[H = \frac{1}{2} \sum_{n=-\infty}^{\infty} \left[\pi_n^2 + (\varphi_n - \varphi_{n-1})^2 + m^2 \varphi_n^2 \right]. \]

Here \(\varphi_n \) stands for the displacement of the \(n \)th atom, at position \(x = na \) on the lattice (where the lattice spacing \(a \) has been set to one) and \(\pi_n \) is the canonically conjugate variable. The second term in \(H \) describes the coupling between nearest neighbors, while the third term is a restoring potential to the equilibrium position. The usual equal time canonical commutation relations (for the Heisenberg picture operators) apply,

\[[\varphi_m(t), \pi_n(t)] = i\delta_{mn}. \]

In analogy with our treatment of the continuum scalar field, let us write the Fourier expansion

\[\varphi_n = \int_{-\pi}^{\pi} \frac{dk}{(2\pi)2\omega_k} \left(a_k e^{-i\omega_k t + ikn} + a_k^\dagger e^{i\omega_k t - ikn} \right). \]

(a) What is \(\omega_k \) as a function of \(k \) and \(m \)?

(b) Why is the momentum taking values in the interval \([-\pi, \pi]\)?

(c) Derive the commutation relations for the \(a_k \) and \(a_k^\dagger \) oscillators.

(d) Write the Hamiltonian in terms of \(a_k \) and \(a_k^\dagger \). Interpret your result physically.

(e) Finally, use dimensional analysis to restore the lattice spacing \(a \) in your formulas, and take the continuum limit \(a \to 0 \).

2. Srednicki problem 22.1

3. Srednicki problem 22.2

4. Srednicki problem 22.3

5. Srednicki problem 24.3

6. Use Noether’s theorem to derive the canonical stress energy tensor \(T^{\mu\nu} \) for Maxwell theory coupled to an external conserved current, described by action

\[S = \int d^4x \left[-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + J^\mu A_\mu \right]. \]

Is \(T^{\mu\nu} \) symmetric under exchange of the indices \(\mu \) and \(\nu \)? Is it invariant under a gauge transformation \(A_\mu \to A_\mu + \partial_\mu \lambda \)?