Homework 2

1. Phonons

Consider a one-dimensional "crystal", described by the Hamiltonian

~

$$H = \frac{1}{2} \sum_{-\infty}^{\infty} \left[\pi_n^2 + (\varphi_n - \varphi_{n-1})^2 + m^2 \varphi_n^2 \right] \,.$$

Here φ_n stands for the displacement of the *n*th atom, at position x = na on the lattice (where the lattice spacing *a* has been set to one) and π_n is the canonically conjugate variable. The second term in *H* describes the coupling between nearest neighbors, while the third term is a restoring potential to the equilibrium position. The usual equal time canonical commutation relations (for the Heisenberg picture operators) apply,

$$[\varphi_m(t), \pi_n(t)] = i\delta_{mn}$$

In analogy with our treatment of the continuum scalar field, let us write the Fourier expansion

$$\varphi_n = \int_{-\pi}^{\pi} \frac{dk}{(2\pi)2\omega_k} \left(a_k e^{-i\omega_k t + ikn} + a_k^{\dagger} e^{i\omega_k t - ikn} \right) \,.$$

- (a) What is ω_k as a function of k and m?
- (b) Why is the momentum taking values in the interval $[-\pi, \pi]$?
- (c) Derive the commutation relations for the a_k and a_k^{\dagger} oscillators.
- (d) Write the Hamiltonian in terms of a_k and a_k^{\dagger} . Interpret your result physically.
- (e) Finally, use dimensional analysis to restore the lattice spacing a in your formulas, and take the continuum limit $a \to 0$.
- 2. Srednicki problem 22.1
- 3. Srednicki problem 22.2
- 4. Srednicki problem 22.3
- 5. Srednicki problem 24.3
- 6. Use Noether's theorem to derive the canonical stress energy tensor $T^{\mu\nu}$ for Maxwell theory coupled to an external conserved current, described by action

$$S = \int d^4x \left[-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + J^{\mu} A_{\mu} \right].$$

Is $T^{\mu\nu}$ symmetric under exchange of the indices μ and ν ? Is it invariant under a gauge transformation $A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$?