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There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the 
scaling of effective lagrangians. We show that this can be made the basis for a proof of 
perturbative renormalization. We first study rcnormalizabilit,.: in the language of renormalization 
group flows for a toy renormalization group equation. We then derive an exact renormalization 
group equation for a four-dimensional X4, 4 theorv with a momentum cutoff. Wc organize the cutoff 
dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear 
equation for the irrelevant part. A length} but straightforward argument establishes that the piece 
identified as irrelevant actually is so in perturbation theory. This implies renormalizabilitv The 
method extends immediately to an}' system in which a momentum-space cutoff can bc used. but 
the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem 
nor arguments based on the topology of graphs are needed. 

I. Introduction 

The understanding of renormalization has advanced greatly in the past two 
decades. Originally it was just a means of removing infinities from perturbative 
calculations. The question of why nature should be described by a renormalizable 
theory was not addressed. These were simply the only theories in which calculations 
could be done. 

A great improvement comes when one takes seriously the idea of a physical cutoff 
at a very large energy scale A. The theory at energies above A could be another field 
theory, a lattice, spacetime foam, or anything else. The theory just below A should 
be represented by a very general lagrangian in which the various terms have 
coefficients of the order of A to the appropriate power to make the dimensions 
correct. Consider the physics at an energy E far below A. The non-renormalizable 
terms, those with coefficients of  A to negative powers, typically give contributions 
that are suppressed by powers of A. This is true unless the non-renormalizable term 
is embedded in a Feynman graph sufficiently divergent to make up for the small 
coefficient. Power counting shows that the only n-point functions sufficiently 
divergent are those which would be divergent even if they contained only renormal- 
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izable interactions. We know, however, that the latter divergences can be reabsorbed 
in redefinitions of the renormalizable couplings. Thus, to accuracy E / A  the entire 
effect of the non-renormalizable terms can be absorbed in the initial values of the 
renormalizable ones, and all quantities can be calculated in the resulting effective 
field theory with renormalizable interactions only. 

This idea is very nice, but still perturbative and graphical in nature. Also. it does 
not at tempt to address the question of why arguments  based on naive power 
count ing are correct, that is, why renormalization actually works. A further improve- 
ment comes with the idea of smoothly lowering the cutoff. As this is done. the 
effective lagrangian changes. The effective lagrangian at lower scales is given in 
tcrms of its form at a given scale, and its change with scale is governed by a scaling 
or renormalization group equation. Typically, as we scale down to smaller momcnta ,  
the lagrangian converges toward a finite-dimensional submanifold in the space of 
possible lagrangians. That is, the scaling transformation has only a finitc number  of 
non-negative eigenvalues, with deviations in the orthogonal  directions damped as wc 
travel to low momenta.  These orthogonal  directions are therefore termed "irrelevant".  
In the zero-coupling limit, the negative, irrelevant, eigenvalues correspond to pre- 
cisely the non-renormalizable interactions. Since there is nothing discontinuous 
about  the scaling transformation as the couplings are changed, those eigenvalues 
which were negative at zero coupling should rcmain negative at sufficiently small 
coupling. This is equivalent to renormalizability, a connect ion which will be devel- 
oped further in sect. 2. This understanding of renormalization is due primarily to 
Wilson [l ]. Ref. [2] lists an assortment of discussions from related points of view. 

The classic proofs of renormalization in perturbation theory [3-5] are based on 
the old idea of removing infinities. They involve detailed graphical arguments  and 
convergence theorems [6] that are rather far removed from the present intuitive 
picture*. The understanding in terms of renormalization group flows is so com- 
pelling that one must wonder whether it can be justified only by appealing to the 
existing proofs. In fact, we will find that this is not so. Once we learn to discuss 
renormalization in the language of renormalization group flows, a proof  follows in a 
straightforward way. We are concerned here only with perturbat ion theory, but the 
proof  follows the outline we would expect for a non-perturbative argument.  

In sect. 2 we study a toy renormalization group equation, showing how to divide 
the effective action into relevant** and irrelevant parts. We show that the toy 
equation describes a renormalizable theory. In sect. 3 we make concrete the idea of a 

" We should mention in particular the proof of Callan and of Blaer and Young [51. which uses the 
renormalization group to simplify greatly the graphical arguments. This is still essentially a graphical 
proof, as it is based on a skeleton expansion, and is global rather than local in momenta, as it uses 
Weinberg's theorem [6]. 

*" In standard usage what we call "relevant" is usually divided further into "relevant" and "marginal". 
Throughout this paper, "relevant" should be understoc,,d to mean '" relevant or marginal". 
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differential scaling of a cutoff, obtaining an exact rcnormalization group equation 
for a ),04 theory with a momentum-space cutoff. Guided by the results of sect. 2 we 
organize the action into relevant and irrelevant parts. Very simple bounds on 
momentum integrals are sufficient to prove that in perturbation theory, the terms 
identified as irrelevant really are. The detailed order-by-order argument is given in 
sect. 4. It is then a short step to show that correlation functions depend on the cutoff 
only through inverse powers. 

The method extends automatically to any theory in which a momentum cutoff can 
be used, and to composite opcrator renormalization. The idea is far more general, 
however, and should apply for any physical cutoff. In the conclusions, we discuss the 
extension to gauge theories and beyond perturbation theory. 

The exact renormalization group equation for ?~04, as well as the understanding of 
renormalization in terms of relevant and irrelevant operators, can all be found in the 
work of Wilson [1]. Our contribution here is to note that these ideas can be used to 
give a self-contained proof of renormalization in perturbation theory. 

It might cause some confusion that the 2~0 '~ theory which we will be studying does 
not actually have a continuum limit [7], in the sense that the bare coupling ~,°(A.) 
diverges when the cutoff A o is still finite. The point is that ~.°(A~) considered as a 
formal power series in the renormalized coupling )~r is perfectly well defined for all 
finite 3. o , as are all other quantities, and our results are concerned strictly with this 
expansion. It should be emphasized that two distinct properties of the renormaliza- 
tion group flow are involved here. One is purely local: is the flow converging in all 
but a finite number of directions? This is the crux of our present work. The second 
concerns global properties of the flow: is there a starting point, for a given A.,  
which gives the desired value of )~r at some fixed lower scale? The second question is 
an interesting one, but the answer is always "yes"  in perturbation theory. 

2. Renormalizat ion group f lows 

In this section we study a toy renormalization group equation which describes one 
relevant and one irrelevant coupling. This section is not needed for the proof in sect. 
3, but is intended to illustrate the ideas in a simpler setting. The two couplings arc 
g4, which is dimensionless, and g6, which has dimensions of (mass) 2. These have 
been chosen to correspond dimensionally to a 4-point and a 6-point function in the 
effective action of a 4-dimensional scalar field theory. These couplings depend on 
the scale A according to 

dg4 
A - ~  =/34 ( ,I.~4, ,"~296 ), ( 1 a) 

• dg6 A ~ -  = A 2136 ( g , ,  A-g 6),  (1 b) 
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where factors of A have been inserted by dimensional analysis. Define the dimen- 
sionless variables ~.4 = g4, )k6 = AZg6, so that 

d)k 4 
A ~ -  = B4(~.4, ~'6), (2a) 

d~. 6 
A ~ -  - 2~.~ = ,86 (X 4, ~.6). (2b) 

Take a particular solution of (2), (X 4, X6), and consider small deviations e, = X i - ~,. 
Then, to order e, 

d E 4 OqB4 O / ~  4 
A dA 03~ 4 E4 "{" ~ - 6  g6'  (3a) 

d/~ 6 a/~ 6 Oq/~6 
A~-~- - 2 t  6 = - ~ 4 e 4  + ~ - 6  t6 ,  ( 3 8 )  

where the bar means the quanti ty is evaluated at (~.4, X6). The term - 2 e 6  in (3b) 
suggests that deviations in ~.6 are strongly damped  (by O(A2/A2)) as we evolve from 
a scale At) to a much lower scale A. However, before a deviation in X6 is damped 
away, it will, through (3a), cause X 4 to run a little faster or slower than it otherwise 
would have done. (Compare the discussion in the second paragraph of the introduc- 
tion of the low-energy effects of  non-renormalizable terms: ~.~, enters only through 
the effective value of  ~4). Fig. 1 shows the situation in the ~4 - ~,6 plane. A l and A, ,  
initially separated by a small amount  in the ~.6 direction, have evolved to B 1 and B 2. 
The point B 2 is ahead and remains so as we move along the trajectories. However, 
there are other points on the B 2 trajectory, such as B;, which are much closer to B~. 
To expose this we write, again to order e, 

d~4 £ "d~4 (4a) 

(48 )  

e 2 8~ 
_ A A z  

_ AI 

Fig. 1. Neighboring trajectories in the X 4 -- X,~ plane. 



J. Poh'hinskt / Effectme lagrangians 273 

so that (~4,'~6) is the vector from B~ to the point  vertically above on the B 2 
trajectory. (This is a convenient  definit ion as long as/34 ¢ 0, so that the trajectories 
do not turn vertical in the )~4 - ~,~ plane.) Thus we find 

d~6 { a& 
A - ~ - 2 ~ 6 =  ~ 6  + - - -  Ok4 A In/34 ~¢6, (5) 

which integrates to 

A 2 

As long as we remain at couplings sufficiently small that the integrand in (6) remains 
small and that the ratio of/~4's runs sufficiently slowly*, the behavior  of ~e, at small 
A is dominated  by A2/A~. Thus one would say that ,~ is an irrelevant parameter .  
Two  nearby traJectories approach  each other strongly in the infrared, the separat ion 
going as a power  of  A/A¢~. 

Fig. 2 shows the trajectories in the ~.4 - ~6 plane. As the initial condit ions vary in 
a two-dimensional  space, the theory in the infrared lies very near a one-dimensional  
subspace:  as soon as we know k4. we know ~ .  to accuracy A2/A~. Actually, even 
this one relevant paramete r  just marks  where we are along a single trajectory: it is 
t ransmuted  into a scale. 

Now let us relate this to the usual language of renormalizat ion,  lmagine  start ing 
with a bare theory at a scale Ao, with k4 set to a part icular  valuc and ~ ,  to zero; this 
is the point C~ in fig. 2. At a much lower scale A R, we are at D 1. at which k,~ is 
defined to have the value k~. Now consider a larger cutoff  A'¢~. We can find another  

X e 

Fig. 2. ('onvergence of traJectories in tile k 4 k~ plane. 

* This is juM the requirement that the anomalous dimensions do not ovcrv,helm the canonical ones. 
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point  C z, lying on a longer trajectory, which at A R arrives at D z where again ~4 = 
,~r~ , .  We can proceed in this way, thus defining the bare coupling A.t] as a function of 
~.~, A r ,  and A 0. Now take A 0 ~ ~ holding A R and ~ fixed. We know that ~.6 
depends  on A 0 only as A~/A2o, so it approaches  a limit. But this is just  what  we 
mean by renormalizabil i ty:  as we take the cutoff  to infinity, holding the renormal-  
ized couplings fixed, all other quanti t ies in theory (in this case A. 6 is all there is) 
approach  limits as inverse powers of  the cutoff.  Thus, renormalizabil i ty follows in a 
very general way when dimensional  analysis is applied to the renormalizat ion group 
equat ion for an effective lagrangian. 

Two points should be made clear. First, it is not being said that ~.6 goes to zero in 
the infrared -- merely that  its value is determined in terms of A. 4. Second, there is 
nothing special about  the ~ . :axis  in fig. 2, it s imply corresponds  to the way that 
calculat ions are usually done, with only the relevant bare couplings non-zero. We 
could use another  curve in place of the X : a x i s  to define our bare theory, correspond-  
ing to bare non-renormal izable  terms with coefficients characterized by A 0 to 
negative powers, and the result would be the same. The one thing we cannot do is to 
take A o to infinity while keeping bare non-renormal izable  terms with coefficients of 
inverse powers of some smaller scale. 

Let us outline, in the context of eq. (2), the strategy to be followed in sect. 3 for 
scalar field theory. Starting from initial condit ions ~.4 = ~.°4, ~ ,  = 0 at A o, eq. (2) 
defines the functions ~,(A,  A o, ~ ) .  The vector 

. , ~ , , ~  ~,, ( A ,  .~,,. X°~). (7) 

satisfies the linearized eq. (3), because AoO/aA o commutes  with A O/OA. Thus. as 
with e, before, it should be nearly parallel in the infrared to the relevant trajectory. 
We want  to subtract  off the relevant part.  the part  parallel to the trajectory, but will 
do this differently from before. Rather  than subtract  off  a multiple of the tangent 
vector  to the trajectory, we will subtract  off an appropr ia te  (A-dependent )  amount  
o f  

a Is) 
axe, 

The vector (8) also satisfies the linear eq. (3), so it too should be nearly parallel to 
the trajectory in the infrared. Define, then, 

a~.t ( ,~ )  a~kt (i,~ ' ) [ O ~ 4 ( A )  , ] 1 0~4( ] ,  ~ ) UI(A )= - -  1 ] A o - -  ( 9 )  o 0Ao OX C] OX~ , 0Ao 

" In fact, it is not a lways possible to do this, somet imes  ~ ]  diverges for finite Ao. However.  in 0 per turba t ion  theo~' ,  our  eventual  interest ,  3~ a a lways exists as a power  series in ~a a (see the end of sect. 
1). 
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so that v4(A)= 0. o,(A) satisfies a linear equation similar to (5). and we can again 
conclude that it is driven small in the infrared• The point of the definition (9) is that 

v,(A) = AOd~o)~,(a, ,4_,,, h°4(A, 2~4, A0) ) . (lo) 

That is, it is the total derivative of ~.,(A) holding )~4(A) fixed. For A = A R it is the 
derivative of the point D in fig. 2 as the bare cutoff is changed. Once we conclude 
that t:,(A R) is of order A~/A2o times slowly varying functions, eq. (10) may be 
integrated to conclude that ~.,(A R, "4-o, X'](AR, ~4, A0)) has a limit as the cutoff is 
taken to infinity. This is the usual statement of renormalizability. The quantity to be 
studied in the next two sections is the analog of v,(A ). 

There are many more useful exercises with these toy equations. Eq. (1) may be 
solved order by order in gO. Divergences appear, just as in field theory, which canccl 
magically in renormalized quantities (those expressed in terms of g4, not g]~). Of 
course, from the point of view of fig. 2, this is not mysterious at all. One may prove 
this to all orders, starting from the linearized equation for t',(A), and one is led to 
the same steps as will be taken in sect. 4. Finally, additional relevant and irrelevant 
couplings may be added, with similar conclusions. 

Let us summarize the relation between the flow of the effective lagrangian and 
renormalizability. Suppose it is known that the effective lagrangian at low scales is 
strongly attracted towards an n-dimensional submanifold, where n is the number of 
renormalizable couplings. Consider the n + 1 parameter theory defined by the values 
of the n bare couplings and the bare cutoff ."t °. Then in general each point on the 
n-dimensional submanifold is the image of a one-dimensional curve in the set of bare 
theories• It is then possible (modulo the global questions discussed at the end of sect. 
1) to take A ° to infinity along such a curve, with the physics at a given scale thus 
remaining fixed to accuracy of inverse powers of A °. 

3. Scalar field theo~ 

We will consider a scalar field theory in four euclidean dimensions, with a 
momentum space cutoff. The propagator is 

( p'- + ,,,: ) - ~ K ( p ~ / A L ) .  (11) 

Here K(p2/A2) is a general cutoff function which we will take to have the value 1 
for p2 < A 2 and to vanish rapidly at infinity• We define the theory by the propagator 
(11) and vertices given by the interaction lagrangian 

Lm, f d 4 x ( _ ~  , ,2  , o ~ 1 ) = ~p,,~ { x ) -  ~p , (a , , , ~ ( . , • ) )  - -  o ° , ~ ( x )  . (12) 
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The bare couplings, which we label p° a, are usually called 

pl~ = ~ m  2 " Oil = Z - 1 o Xo _ , 0 3  = • ( 1 3 )  

The system may be represented by a functional integral 

[ 

[ d4P [_~_,(p),(_p)(p: +m2)~ -,(p2//~],) = f d , t ,  exp s (2,,)4 L Z(J) 

+J(p)eo(-p)] + Li,,t (q~)) , (14) 

where J ( p )  is the external source used to obtain the n-point  functions. 
W e  w i s h  to  integrate out the h igh-momentum componen t s  of 4~, so tha t  we reduce 

the cutoff  in (11) to a much lower scale A R. We will take 

]m21 < A R , (15a) 

J ( p )  = 0, forp z > A~.  (15b) 

Tha t  is, A R is kept above the scale at which we are probing the physics. When we 
integrate modes  out, new effective interactions are generated. To  see this, write the 
functional integral with a general interaction lagrangian L(~, A): 

f d4P 1 p2 m2)K ( p 2 / . ] 2 )  Z(J.L,A)=fdrpexp ~ [ - 5 q ~ ( p ) q > ( - p ) (  + l 

\ 

+J(p)q~(-p)] + L( , ,A  )I 
? 

s o  t ha t  

=- f deoexp S( , ,  A ) . 

dZ ( [  d4P [_ p2 A-d-~=fdep .t ~ - ) - g [  ½q~(p)ep(-p)( +m2)A 

+A o~L(~,A))expS(~,A).  

o~ '(P2/A2)]OA 

(16) 

(17) 
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l 1 

(o) (b) 

Fig. 3. (a) Replacement of propagator with (Ol./O~) 2 vertex. (b) Replacement of propagator wilh 
( 3'2l./a~ 2 ) vertex. 

If we choose 

;¢L ' fd4p(2~r)a(pe+m 2) 'A OK(P2/A2 
;~  a A  = - a; .~ 

f aL OL #2L 
x,~ a4,(_p) 04,(p) + a4,(p)a4,(-p)/" 

then eq. (17) becomes 

(18) 

dZ aK(p2/A 2) o A =f d p'x aa f d4, O4,(p) 

×{(4,(p)K, l ( p 2 / A 2 ) + ~ ( 2 ~ ) a ( p 2 + m 2 )  -I  34, (c9 ' ) -p) ,  

×expS(4 , ,  A ) l  = 0. (19) 

(Recall that, due to (15b), J(p)  has no overlap with c~K/c)A.) This naive manipula- 
tion is justified because there is a cutoff. We have neglected field-independent terms 
which just change Z(J, L, A) by an overall factor. 

Eq. (19) says that if the cutoff A is reduced and simultaneously the lagrangian 
changed according to (I 8), Z ( J  ) and its functional derivatives, the n-point functions, 
are left unchanged. Eq. (18) has a simple graphical interpretation. As modes are 
removed from the propagator, compensating terms must be added in the interaction 
lagrangian. Graphs where the differentiated propagator connects two different 
vertices, as in fig. 3a, produce the first term in the bracket in (18), while graphs 
where both ends of the propagator connect to a single vertex, as in fig. 3b, produce 
the second term. 

Although the lagrangian might start with a simple form such as (12), at lower 
scales it becomes quite complicated. However, at scales A far below A0, we expect 
that a great simplification will occur. That is, no matter what initial lagrangian we 
start with (within limits) the lagrangian will be strongly attracted toward a three- 
dimensional submanifold in the infinite-dimensional space of possible lagrangians. 
Three, of course, is the number of relevant or renormalizable operators, namely 4,2 
4,024,, and 4, 4 *. A convenient set of coordinates for the submanifold is obtained by 

* For simplicity we keep the symmet W q~ ---, -4 ' .  
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expanding L( ~, A ): 

L ( q } , A ) =  ~2 1 ]" d"p~£..d_4p~m L 2tn ( tOl P2,,, A ) 
, n = l  (2m)!  a (2~r)*m 4 

As always, we ignore the m = 0 field-independent piece. Then define 

o , { A  ) = - t . , ( o ,  o.  ~,~ ), ( 2 1 a )  

1 02 
P2(A) 8 Op~ L2(pI'-p1"A)Ir'~°" (21b) 

o3( A ) = - 1 .4(o .o .o .o ,  A ).  (21c) 

Note that in the approach we are taking, massless particles are no complication: (21) 
will be suitable even if m = 0. We emphasize that on the submanifold, the lagrangian 
is not expected to have any simple form such as (12), but that once the three 
"coordinates" (21a-21c) are given, the rest of the action is fixed. 

We need to divide the flow of the lagrangian into relevant and irrelevant parts. 
Consider the vector (in the space of lagrangians) 

A ,, ~ J~ { , ,  a ,  A,,. o" ). ( 22 ) 

where the dependence on the initial condition (12) is written explicitly. This vector 
satisfies the lincarized equation 

A O_~,~ ( A ( ) ~  ) i f _~(pOK, 2 + m2 ) 1 

{ o l,o  t x .  2 o e o ( - p )  o , (  p} ~" {, o~,,  + 
0 2 

(23) 

which we will abbreviate: 

{24a) 
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and in particular for the parameters (21), 

- o O A .  

At small A, the vector (22) is expected to be very nearly parallel to the three-dimen- 
sional relevant submanifold. So are the three vectors 

0 - - L (  ,~. A. A,,, p" ). (25) ap~ 

which also satisfy eq. (24). Thus, if we form the linear combination of A,,aL/OAo 
and " " " OL/Op. which vanishes in the three directions (21). it should be driven very 
small in the infrared: 

OL(A ) OL(A ) Op' 3 (A 
V ( A ) = ' a °  aAo ~,  , , ,  aph(A)AO Op' (26) ,. / Op,, OA o 

Here Opl~/Op,,(A) is the matrix inverse to Oph(A, A 0, p°)/Opl~. This inverse always 
exists in perturbation theory, as the zeroth order term is just 6,h" V(A ) satisfies the 
linear equation 

A aV(A) 
aA ( ) ( aL(A) Oo. OOh(A ) aL(A) _ E M  a" a0,,(A~A° aA,, M A.  OAo ..h . P. 

OL(A) OP° Mh( C3L ) OPt" Ao OIOd(A) 
Z a-" ap~(a) I ap? ap,,(A) aA,, 

+ 

a, h, ¢, d Pa 

_ y, OL(A) OO2 ( ,  0 L ( A ) )  
°,,, ao,'~ apb(A ) g,, ,'~ o -~S-S,, 

= M ( V ( A ) ) -  Y~ OL(A) oOp~M,,(V(A)) ' (27) 
..h ap~ aph( A ) 

using the linearity of M. Eq. (27) is our key. It is an equation linear in the quantity 
we wish to prove irrelevant, analogous to eq. (5). When (27) is written out explicitly, 
it will contain complicated non-linear terms involving products of V with L. The 
exact form of these terms no longer matters, however, for these terms are the ones 
which vanish fastest when the coupling is made small. Thus, at sufficiently small 
coupling, the infrared behaviour of (27) will be dominated by the purely linear 
terms. These terms drive V to zero according to its canonical dimensions, since we 
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have  c o n s t r u c t e d  V so that  all p ieces  wi th  d i m e n s i o n s  o f  mass  to n o n - n e g a t i v e  
p o w e r s  are  absent .  W e  will p r o v e  that  this is t rue  in p e r t u r b a t i o n  theory .  T h e  p o i n t  is 
to show tha t  the  a n o m a l o u s  d i m e n s i o n s  are  coup l ings  t imes  power s  of  loga r i thms ,  so 
the  in teger  c a n o n i c a l  d i m e n s i o n s  d o m i n a t e .  

In o rde r  to pu t  b o u n d s  on  V, we will  need  b o u n d s  on the r u n n i n g  l ag rang ian  (20) 
and  its first f o u r - m o m e n t u m  der iva t ives ,  on  the  q u a n t i t y  

OL(A) _ ~ OL(A) Op~ (28) 
O0~(a) 002 Op,,(a) " 

which  appea r s  in (27), and  its first f o u r - m o m e n t u m  der iva t ives ,  and  f inal ly  on V and  
its first f o u r - m o m e n t u m  der iva t ives .  W e  will o b t a i n  s o m e  fur ther  resul ts  a b o u t  these  
quan t i t i e s ,  and  then  p roceed  in sect. 4 wi th  the o r d e r - b y - o r d e r  proof .  T h e  c u t o f f  
f unc t i on  K(pZ/AZ) will be  taken  to have  the fo rm such as 

K ( p e / A 2 ) = { e x p { ( l  - 

1, p2 ~ ,,i2 
p~/A 2) ' e x p ( ( 4 - p 2 / A  2) t ) ] .  ,4 2 < p ~ < 4 A  2 

0, p2 > 4A 2 " 

(29)  

wh ich  has been  chosen  because  it is inf in i te ly  d i f fe ren t i ab le ,  bu t  its de r iva t i ve  
van i shes  excep t  for  A 2 < p2 < 4A 2 , .  De f ine  

1 A,o~K(p2/A:). Q(P'A'm2) (p2+m2) (30) 

O n e  may  easi ly ver i fy  that  there  are  cons t an t s  C and  D,, such that  for Im2l ~ A R ~ A,  

f d~P [Q(p,A,m2)I<CA4. 
(2'n')" 

(31) 

0" ) 
-O-p; Q( p" A ,  m 2 < D, ,A  " (32)  

" I t  might cause some concern that eqs. (16), (17) and (19) refer to K i(p), yet K(p) is taken to 
,.anish for p2 > 4A2. In fact the n-point functions arc still invariant under eq (1 g). as ma'. be seen by 
considering K(p) as the limit of a K(p) which no~.here vanishes. Since the propagator (11) and the 
effective lagrangian (18) involve only K(p) and not K 11 p). tl'fi:, limit is smooth and tile invariance 
of the n-point functions under eq (18) for K( p ) implie.,, the same for K( p ). h is also possible to carp, 
through the whole proof with K( pJ, but then a different norm from (33L with a non-zero weight 
function falling, off as p ~ at. must be used. 
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The notation [I I[ will be used often. It is defined 
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I I f (p ,  . . . . .  p. , .  A ) I I =  max I f (P ,  . . . . .  P ..... 4)1. (33) 
f'," < ,.1.12 

for a function of one or more momenta. This is a useful definition because the values 
of the effective vertices for p ) >  4A 2 are meaningless, the propagator vanishing in 
this range. 

Now write the renormalization group equation (18) in terms of the dimensionless 
functions A 2 .  , = A 2"'- 4L2m, where L2,,, are the component functions in (20): 

( A  ~,I + 4 -  2 m ) A 2 . , ( p l  . . . . .  p , , , , . A  ) 

Q ( P . A . m 2 ) A 2 1 ( p l  . . . . .  P21 i. 
/ = 1  

×A_ .... , ~. 21( P21 . . . . .  P2,,,, - P.  A ) + 2l-2ml  - 1  permutatums/, 

- (2rrAd4p) aA2 . . . . .  - ( p '  . . . . .  P2 .... p .  - p .  A ) Q ( p .  A ,  m2).  (34) 

y ' 2 / -  1 _ where P- -  ,=l P,. Referring to (31) and (32) gives 

( A ~ + 4 - 2 n l } A 2 , , , ( p  1 . . . . .  P2,,,- " ) 

'" 1 ( 2 m  ' 
~ ,._.~, { 2 \ 2 1 - 1  ) D ° I ' A z ' ( A  )[I ' J 'A2 .... 2 

I 2,(A)ll ,  + _,CIIA2 .... 2(3.)11- 

35) 

Eq. (35) shows the simplicity of the present approach. Because the momentum 
integrals encountered are always restricted in range, they may be cstimated naively. 
r e p l a c i n g / 1 2 , , , - 2 ( P , )  with its maximum valuc. Thus. the detailed momentum depen- 
dence no longer enters and eq. (35) is nearly as simple as the eqt, ation.s in sect. 2. 
From (35) one can see the strategy that will be followed in the inductive proof. At 
any ordcr in perturbation theory, the non-linear terms on the right-hand side of (35) 
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will already be known. At each order it is then necessary to proceed inductively 
downward  from large m, so the linear term on the right will be controlled (at any 
given order A 2., vanishes for large enough m). 

Now consider 

( ) 0 O A 2 . , ( p  1 . . . . .  P2m, A)=_O~,lA~.,. Op2 Op¢ '" - (36) 

Only such a difference of derivatives makes sense, as A 2,,,( Pl . . . . .  P2.,. A ) is defined 
only for 52, p, = 0. Acting on eq. (34) with 0 ~' and proceeding as in (35), it folk)ws t ,I  
that 

"1 1 
/=~l {2(  2~/~F/1 )( DI z/~ I['A2/(A )[' " ""~2m t- 2 2/(/~ )1' 

+ 2 D o  [OQ,A2t(A)II'IIA2.,, 2- 2t(A)l[)} + ~Cll3~,A2 .... 2(-"~)11 - 

(37) 

Again this will involve only lower orders or larger m. Similar results hold for any 
number  of derivatives acting on A 2.,- 

Turning now to the quanti ty OL(A)/Opt,(A). eq. (28). one finds, using the fact 
that M is a linear operator,  

4 0_0_( OL(A))=M(OL(A)) OL(A) (OL(A)) 
• O,,~ aO~(A), Op~(A) -,~, O 0 . ( A ) M "  O 0 ~ ( a )  " 

(38) 

Define an expansion in terms of  dimensionless functions Bh,2m: 

O L ( A ) _  ~. A 4-2" 28~, 
Oo6(A ) (2rn)! f d4Pl ' "  "daP2m 

.,=1 (2¢r) s"  " '  

×64( ~ P i ) ¢ (  Pl)'.'q~( P2m) • 

Bh,2m( Pl . . . . .  P2,,,' A ) 

(39) 
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Eq. (38) becomes 

(o  ) 
A - ~ - + 4 - 2 m - 2 8  m Bh,2m (p l  . . . . .  P2 .... A)  

= -- / '--~1:= { Q ( P ' A ' m 2 ) A 2 I ( P '  . . . . .  P2I" 1 " P ' A  ) 

so that 

283 

×Bin2 .... 2 _w( P21 . . . . .  P2m, - P ,  A ) + (\ 21_12m ) - l p e r m u t a t i o n s }  

_ i f  d4P "- ~ B h . 2  .... 2 ( P ,  . . . . .  P : . , . P . - P . A ) Q ( P . A .  n'2) 

+ B, .... (~,, . . . . .  p2,,, .  :~)~  f d'~q l?',, 4( 0 .0 ,  q, --q, ~'~ ) e ( q ,  A, m 2 ) 
'- (2~rA)4 - 

/k 2 
+/32.2,,,( [1 . . . . .  P2 ..... '~" ) 16 

×f d4q 02 B, 4 ( q l . - q t . q , - q . A ) [ , , ,  . Q ( q , A  m : )  
(2zrA)4 aq (  - " 

+ B3.2,,,( P~ . . . . .  P2,,,. A } 

G q 4 Hb 6 { 0 ' 0 " 0 ' 0 "  q" -- q" A ) Q (  q. A .  D'I2), {40) ×f d4 
(2~rA) " 

. . . . .  

m 

+ ~ CIIB,,.2 . . . .  2(A)II + ! C!jB,.2,,,(.~* )[I-IIB,, ~(A )!1 

4- ,',. ('AX]I B2.2.,( A )]l' 113~.2 31'.x B,,.4 (A)l[ 

+ 5 CllBs.>,,( A )1{-11B,,.,,(A )1[. (41l 

Similar results, parallel to (37). hold for any number  of derivatives acting on B/,.:,,,. 
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Finally, expand V(A) in dimensionless functions V2.,: 

A 4 - 2., d4Pt ... dap2,,, 

,42) 

Eq. (27) becomes 

0 2m) V2. , . A ( a  ~ 3 X + 4 -  (P,  . . . . .  P2., ) 

= -  ~ (Q(P,A,m2)A2t(P, ..... p2 t - I ,P ,A )  
/=1 

×V2"'z-2t(P2/ . . . . .  Pz" ' -P 'A)+(21-2ml  ) - l pe rm u ta t i ons}  

- ~ f  d4----C- p (27rA)4 V2-,* 2( P~ . . . . .  P2m' P '  -- P,  A ) Q (  p ,  A ,  m 2 ) 

+B,.2.,(p~ ..... p2.,,a)~ f d4--A--q (27rA)4 V4(0'0' q" - q" A )Q( q. A, m 2) 

42 
+B~.~,.(p~ ..... p~.,,a)~6 f d4q (2~ra)4 

0 z × ~ V4(q l , -q l , q , -q ,A ) l v ,=oQ(q ,A ,  m2) 
Oq? 

+ B ~ ( p ,  ..... p2. , .a)!f  d4q ' (2~rA)4 

From this 

X I:6(0,0,0,0, q, - q ,  A)Q(q,  A, m2). 

( A o-~ + 4 - 2 m ) V 2 . , ( p l  . . . . .  p2.,,. A ) 

~ {( 2m )DoIIA2/(A)I[.I[V2 m 2:( A)II} t=l 2 1 - 1  *2- 

+ ½ CIIV2,,,, 2(m)ll + ~CIIB~,2.,(A)II [IV4(A )11 

+ ~t~CA211Bz.2,.(A)II.IIO~.20~,2Va(A)[I 

+ tflln3.2.,(A)[]. IIV6(A)II, 

(43) 

(44) 
and so on for any number of derivatives. 
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4. Perturbative renormalization 

In this section we will prove, in perturbation theory, that V(A ) is driven to zero in 
the infrared. At the end of the section we give the steps needed to convert this into a 
statement of the cutoff-independence of n-point functions• 

Theorem• Consider the field theory defined by the propagator (I1) and vertices 
(12). Define the effective lagrangian L(O, A,  A o, po) and the relevant parameters 
0h(A ' 3.o. po) as before. Define p~(A R. ~ a  Ao ) implicitly by 

o , ( A R ,  Ao, O") = O, (45a) 

p: (Ar t ,  A o, po) = 0,  (45b) 

o~(A R, A,), po) = ~.R. (45c) 

Then order by order in perturbation theory in /~R the limit 

l im L ( ¢ ,  A R, ~R, Ao ) = L(~,  A R,)x R, oc), (46) 
• *1 I I  "~  9C  

exists, where L(¢, A R, )~R Ao ) _= L(q~, Art, A o, p°(A R, )xrt, Ao) ), and at r th  order in 
h g • 

II L~',).( AR, A,,) - L~r2,( AR. ~o)11 

~<A~ 2"( AR ) 2 , ~ o  p2r . , ( I n ( A , , / A R ) )  " r + l - m > ~ 0  

= 0 ,  r + l - m < 0 ,  

(47) 

where p2r ,,, is a polynomial of degree 2 r - m  whose coefficients, taken to be 
non-negative, are pure numbers*• The degree of the polynomial is not essential to 
the proof and the reader is free to ignore the superscript on P throughout. We retain 
the degree only because it is easy to do so; in fact it can be reduced to r + I - m, but 
this requires distracting additional steps. 

Note that eqs. (45) actually do define p0 implicitly in perturbation theory, for at 
order r in AR the left-hand side of (45) is pl~ (r) plus terms which are already known. 

Lemma (i). At order r in ~.R, 

11¢91*t'Zt . . 0 ~ f  a < r ) ¢  . '- + • . , / ' 2 , , , P t  . . . . .  P2 - ,  3 - ) I I ~ A  p e 2 r  ,,,(InCAo/AR) ) r +  1 - m > ~ 0 ,  

= 0 ,  r + l - - m < 0 .  (48) 

* P" is defined to be zero for n < 0. 
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Proofoflemma (i). N o t e  that  the ini t ial  va lue  of  A2,,,, at A 0, is de f ined  by eq. 
(12), so the L H S  of  (48) vanishes  at A 0 for m/>  3, for m = 2, p > 1, and  for m = 0, 
p > 3. T h e  l e m m a  is t r ivial ly t rue for r = 0, as (45) impl ies  "2,,a(°) = 0. S u p p o s e  it to be 
t rue  for r = s -  1, for  s o m e  s > 1. We  now p roceed  d o w n w a r d  in m. T h e  l e m m a  is 
t rue  for m >/s  + 2, that  is Ac,) then  vanishes ,  for the o p e r a t i o n s  shown in fig. 3 cou ld  "2,,,  
have  l inked toge the r  at mos t  s ver t ices ,  l eav ing  2s + 2 ex te rna l  f ields*.  S u p p o s e  it is 
t rue  for m >i n + 1. T h e  r i gh t -hand  side of  (35) at o rde r  s is 

,1 . s -  1 

-~-I ~ l Y" ! 2 - 1 )  D°llA(Sz)(A)[I" A~;'"z) 2z(A)l l  + - ; C l l A ~ ' ; ) ' 2 ( A ) I I "  (49) 
/ =  t = l  

All quan t i t i e s  in (49) are  b o u n d e d  by the i n d u c t i o n  hypothes i s ,  so (49) is less than  or  

equa l  to 

n ~ 1 1 ( 
~ p 2 ,  , ( i n ( A o / X R ) ) P 2 ,  2 . . . .  : , ( In (A( ) /AR))+p2 . . . . .  I n ( A ( ) / A R )  ) 

/ - 1  t = l  

= p2 . . . . .  I ( I n ( A ) , / A R  )) " 

(50) 

In a s imi la r  way, all quan t i t i e s  on  the r i gh t -hand  side o f  (37) and the c o r r e s p o n d i n g  
e q u a t i o n s  for h igher  de r iva t ives  are  b o u n d e d  by the i n d u c t i o n  hypothes i s ,  so 

O )0 u' .3~":A~;](pl . . . . .  p2,, ,A) <~A PP2' A ~ + 4 - 2 n  , , , / , ' "  :, " ' ( l n ( . ~ , , / a , ) ) .  

(51) 

In t eg ra t e  (51). F o r  n >/3 

,u-i . . :,1,%. ,4(-~ ) [ n Ila,,.,,. %, . , / .2 ,~, -1  . . . . .  P2,. ,'1)1i 

.. : . ' . d , "  (' :~_, )'-"':' 
< A ,,p2, .- , ( I n ( A , ) / A R ) ) j A  ~7{7 ,.~. 

<A  pp2 . . . .  , ( I n ( A o / A R )  ) 

<~ A pp2 . . . .  ( i n ( A , ) / 3 .  R ) ) .  (52) 

* It is curious that this one simple fact cannot be determined from eq. t34). To see the problem, 
consider the simpler system dr:( x ) / dx  =f, ~ 1( x ). i = 1 . . . . .  oo,/i(0) = 0. This has many ,,,olution.',, 
such asf,(x) = 0, orf l (x)  = exp( l/xZ),f,(x) = 2exp( l / x  2 ) /x 3 . . . . .  Eq. (34) becomes complete 
with additional information, such as the vanishing of A t,'~], for large m. 
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This establishes the induction step down to n = 3. In thc same way it carries to n = 2, 
p >/ 1, but for n = 2, p = 0 there is an extra term from the initial value of  ,4 4 ,  and we 
proceed differently. By (51), 

A A~4"(O,O,O,O,A)[<~P 2' 3 (ln(A,,/, '~ r~ )) .  (53) 
I 

Integrate (53) up from the initial value A ] '~= - - 8  '1 at A = A~, eq. (45c). to obtain 

IA~4"(O,O,O,O,A)I <~6 't + P2' Z(In(A,,/ARj)=p2, : ( I n ( A , , / A R ) )  ' (54) 

Now reconstruct A] '~ via Taylor 's  theorem: 

.I 

A~a'l( PI" P2, P3" P4" ,4_ ) = A ~ " ( 0 , 0 , 0 , 0 ,  A ) + E P,~P;'~I d),(1 - k )  
t,]=l 

× ( 0 "  a , ,  , ' , . ( 5 s )  ~..~,.,.4..,~ P ;  P z - P ;  p4,  A)) l , , ' -~ , r ,  - 

Both terms in (55) are bounded by p 2 , -  2( In(Ao/AR)) .  the first from eq. (54) and 
the second from eq. (52) for n = 2, p = 2, so the induction step follows for all of A] '~. 
For  n = 1, p/> 3, eqs. (51) and (52) follow immediately, while from (51), 

O )A~]~ ) p2., , A ~ - X + 2  (O,O,A ~ -(In(Ao/AR)), 

/ ..~ \ 
~ OA } / A  v + 2 / a ~ '  av n , ) t . . .  ) e~=ps=0 - - vl .zv , ,z , ,  z , y l , p~ ,A  <~A Zp2, = ( I n ( A , , / A ~ ) ) .  (56) 

Again integrating up from the initial condit ions (45a, 45b) one obtains 

IA~,,(0,0 ' ,4_) I ~< p2 ,  -2(In(Ao/AR)), 

10~.2 ~" a , , " ( p ; , p ~  A)p;=p~_0l <~a 2pZ, l(ln(Ao/A R)) ( Y l , 2 " ' 2  , (57) 
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Now use Taylor 's  theorem to reconstruct A~2'*: 

A(')t a ) = A C ' ) ( O , O , A ) +  ~p,p,(O~.2a~.zA~2O(pl,pz,  A))p;=v,.=o 2 ~ P l , - P l ,  . ~' . . . .  

1 ~t v o w f)  I + ~ . P l P x P l P l  dX(1 - X )  3 

×(O~.20'l'2O'~.2O,'.2A(2~)(p~,p~,,A))p;__p. xp .  (58) 

Eq. (52) for n = 1, p = 4 and eq. (57) establish the induction step for n = 1, and the 
lemma is proven. 

It is somewhat  contrary to the spirit of  our proof  that we have had to integrate up 
from A R and not just down from A o, and this deserves some comment .  In the case 
of  A4(0) and 02,42(0), this was just a convenience. The initial conditions for these at 
A o involve 0 ° and 0 °, so proceeding as we have, we avoid carrying po and 0 ° around. 
(This is also why In A R appears so early: it comes entirely from the dependence of p0 
and p~ on l n (Ao /AR) . )  In the case of A2(0), however, integrating from A R was 
essential. The point  is that our theory is not actually on a typical trajectory. On a 
typical trajectory, A 2 ( 0 ) -  A{j /A 2, that is, the scalar mass is of order A o, and this is 
all we would have learned integrating down from A o. By imposing (45a) we have 
forced the initial values of 0 ° to be finely adjusted so as to produce a scalar with 
m << A0. We must therefore integrate up from (45a) to produce the needed bound 
on A 2. This is of course the famous naturalness problem for light scalars [8]. 

Lemma (ii). At order r in X a, 

[}~', ..~'p R{') l A )  A I, p2," - , . , , ' ' ' v , , , . , p U h . 2 , , , ' P l  . . . . .  P2,,," [[~ " ' - l + a " ' ( l n ( A o / " ~ n ) )  . 

r + 2 - m > 0, 

= 0 .  r + 2 - m < 0 .  ( 5 9 )  

Proof of lemma (ii). From the definition (28), the initial condit ion is 

P; 
B t , , e m ( P l  . . . . .  P2, , , ,A( , )  = -~/,1~,,,1 - ~t,2~,,,1 Z -  ~,3~m2 . (6o) 

This also gives the full zeroth-order term, 

(61) 

as may be verified by inserting (61) into (40). Thus the lemma is established for 
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r = 0. Note  that  the def ini t ion (28) gives cer tain par ts  of B h exactly:  

B ~  r )  ( 0 ,  0 ,  A ) = - (~ rO(~/,  1 , 

Ou " R(") [ 1,2 81,2 ~h,2 ', P l '  P2'  A ) m - v ~ - 0  = - 28~08u"81,2 • 

B~'7,(0,0,0.0, ,'1 ) = - 8~°8,,,. 
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(62a) 

(62b) 

(62c) 

Suppose  now that  the lemma is true for r = s - 1, for some s >I 1. Again  proceed 
downward  in m. The  vanishing of  B~~~,~ for m >/s + 3 follows from the def in i t ion  
(28) and the vanishing of ~(") for m >~s+ 2. Suppose  the lemma is true for ,.2m 
m = n + 1. Eq. (41) becomes 

( A ~ + 4-2,1-28m)B~,">z,,(pl . . . . .  p2,,. A ) 

k (( / ) o" " <~ Y] 2 -n 1 D°I]AV)(A)II'¢ [['-t,.2 . . . .  2 
= t " 1 

+_, • ,,) 2(A)iI+'C C liB,, 2,, Y'. ' ~ ' "  (.1)ll ' lJOh('4 " ( A ) [ I  
_ , ) - ~ l , 2 n  

t = [ )  

• , l 

R ( t }  /" .,,~ ht ,u ( ~  - t )  + ,',,C -12 ~ 11--2.2,,,-)11' la~ 2a~ 28,, 4 (A)I I  
t - O  

' C ~  II m"  ~A)II ' I B~,'o ')(.~)11 (63) + ,  ~3,2n~  . 
/ = 0  

Because of the zero th-order  term (61), there are some terms on the right side of  (63) 
which involve B ~'~ and not jus t  B ~ l )  and so are potent ia l ly  not bounded  by the 
induct ion  hypothesis .  These are the last three terms when t = 0 and the third to last 
term when t = s. The lat ter  p rob lem involves only h -- 3 and the unknown bound  is 
on BI~),,. so there is no p rob lem if at cach value of s and n we bound  B[~,),, before 

( • )  B3,,,. The former p rob lem is not present  if n > 3, because of the form of (61), so for 
n > 3  

A(~-A + 4 - 2 n - 2 8 m  B('I  ( P i  --./)2,, -1 , t~. 2 ~I " " " 

Z ~, {e-"' ' (1n( . i , ) / ,1 .~) )  P2' 2, ,,.,-~,.,(in(Ao/.lR)) } 
/ . 1 1  1 

+p2, ,,-a,,,(In(A,)/AR)) 

+ L pZ, , , . l ( ln (Ao/ .1R))pe , . ' - ,  l . ~ , . , ( l n ( .~ , ) /AR) )  
t=O 

+ like terms ~ p : ,  ,,. s,.,(ln( . 1o /  ,~R ) ) .  (64) 
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In a similar way, 

( A o ~ + 4 - 2 n - 2 3 h 1 ) O ~ '  0 ~  B c ~ ) ( P ,  . . . . .  P2,, t l ,  I 1" " " i p . j p  h . 2 n  

<~ A -  " e  2 . . . . . .  '"' ( l n ( A 0 / A  R ) ) . 

, A ) 

(65) 

Integrat ing 

I]O,~',j,... ~'~ B~S)2 (p~ . . . . .  P2n A)II O t p ,  Jp  , gl * 

~< •4_- pp2 , -  . . . .  , +8~, (In( A o / A  R )) (66) 

which establishes the induction step down to n = 3. Once (66) is known for n<.~ the ~ h . 6 '  
r ight-hand side of (63) is bounded  for n = 2 and (64) and (66) then follow for n = 2. 
Then with (66) for n<s~ (63) is bounded  for n = 1 and (64) follows; eq. (66) now u h , 4 ,  
follows for n = 1, p >/2 and with (62a) the rest of R{,~ ~t,.2 can be reconstructed using 
Taylor ' s  theorem, complet ing the lemma.  

L e m m a  (iii). At order r in )~ 

II0~, '. ,, - • - O~,~ ,~v~r ' (P~ .  . . ,  . . . . .  P2 . , "  A ) I I  ~ A ,.T~,, e 2 " ' ( l n ( A " / A " ) ) '  

r + l  - m > _ - O ,  

r + l  - m < 0 .  (67) = 0 ,  

Proof  o f l e m m a  (iii). To obtain the initial condit ion on V, given the definit ion 
(26), use 

4- -L-a L ( A . A  o°)l, ,~,,+Aa-~-sC(a 4-0.p°)l _, .  
• o 0 A  o o ,  , ..'~ 

(68) = A o ~ L ( A o ,  Ao, pO) = 0. 

so that with eq. (51) of i emma (i), the initial condit ion satisfies 

-,, . , ,  . . . .  , , . j ~ . 2 , . , p ,  . . . . .  P 2 , . , A 0 ) l l ~ A 0 " e  ~- . . . .  ~(ln(Ao/aR)),  
r + l  - m > _ - O ,  

= 0 ,  r +  l - m < 0 .  (69) 
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Also from the definition (26). it follows that ,t"m~2,, = 0. Suppose the lemma to be true 
for r = s - 1, some s >/ 1. Again we argue inductively downward  in m. The vanishing 
of  V,~;~, ~ for m > s + 2 follows by the same argument  as for a~.~ Suppose the lemma 

_ J l 2 / q  I "  

to be true for m >/n + 1. Then from (44): 

( A ~  + . -  2.)<,:,(~, ..... ~:.,. A) 

. v - - , I  2z(A)l I +~CIIV~i[~z(A)II y ,  n DoIIA~9(A)II " 2 n ' 2  
/=1 t=l 2 - 1  

D(t) + ~c ~ {11,,, -,,,(A)II.IIV2' " (A) l i  
t = 0 

+ ~A 2 "~,1 t~2.2,,( A )ll" 0~ 20'~ 2V4 ~' 

+ m,, (A)I I ' I IV, , ' " -" (A)I I }  ~3,2m 

"(,4,)11 

(70) 

As in lemma (ii), the induction hypothesis bounds the right-hand side of (70) if the 
t = 0 terms vanish. In particular, for n >/3, 

~" 8A + 4 - 2 n  V~;;'( Pl . . . . .  P2"" A ) ,T.  , 

and with derivatives 

(A ~.81 + 4 - 2n)  8"',,. , , . . .  O*','j, V2~;"(p 1 , .  . . . . . .  p2,, . .~_ ) 

( ')2 
~<A p 7~"o p2,  ,, l ( ln(A, , / ,~ R)) .  (72) 

Integrating (72) gives 

, ? 

01'.' , . " "  ,,,. j,,V2,, ( P l  . . . . .  P 2 . .  "X )11 ~< A P , ~ p 2 ,  ,, l ( ]n (  ,io/.~. R )) 

Ja A'  ~ A '  

' A 2 m .  1' 4 

+.., ,{, ~ )  p:, ,, l(,n(.,,,/,,, II 
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(the last term is from the initial value (69)) 

A )2 <~A ~[ S~,, p2, "(ln(,~,,/,,~,~)), (73) 

establishing the induction step down to n = 3. As in lemma (ii), eq. (73) for n = 3 
gives us eq. (71) and (72) for n = 2 .  Eq. (73) then follows for n = 2 .  p > / 2  but 
I/4(0, 0, 0, 0, A ) is known (it is zero by construction) and Taylor 's  theorem establishes 
the induction step for all of n = 2. Eq. (71) and (72) now follow for n = 1, eq. (73) 
follows for n = 1, p >/4. Again, n = 1, p = 0 and p = 2, vanish by construct ion at zero 
momentum and we use Taylor 's  theorem to establish (73) for all of n = 1 and thc 
iemma is proven. 

Proof  o f  theorem. By definition of V, 

V( (# .  A R , )~R, AO ) = ,1_,, d.~, 1. (¢" "4-R, Ao" P°( '1-R" )~R. ,4,,)). (74) 

so that integrating (74) and using lemma Off), 

IIL~'2,(AR, ao) - ~2n,l{r)/ A R , ,  ,%)11 

(75) 

x{ pZr mt'n, Ao,AR,' } _ _ _  p 2 , - m ( l n ( , V o / A  R) )  , 
A'o, 

r + l - m > ~ 0 ,  

r + l - m < 0 .  

The existence of  a limit (46) with the property (47) follows from elementary 
properties of  limits (Cauchy's  criterion), completing the theorem. 

Ultimately we are interested not in the effective lagrangian but in the n-point 
functions. A general n-point function G ( A  o, A R, ~R) is defined initially with the 
propagator  (11) cut off at A 0 and the bare vertices (12), with po defined as a function 
of ~R by the renormalization conditions (45). The point of integrating out modes was 
that we get the identical answer if we use P ( p ,  A R) cut off at A R, and the vertices of  
the effective lagrangian at A R. Thus at order r, G¢'~(Ao, A R, AR) is given by a finite 
number  of terms of the form 

f d4,pL~%~(AR,Ao)...L~%~(AR, Ao)p(p1,AR)...p(p,,,Ak), (76) 
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where Y,r, = r. Thus, at order r in ~3. 

IG'r'(Ao)-G'"(oc)' ~ ( f  d4'pP( pL,AR)...P(p,,,AR )) 

/ - ( r t I ( A R ,  A o ) .  / { r ~ I ( A R , . ' ~ o  ) X II-2.,, • . * , 2 t~ l  t 

_ f ( , , , t a  ~)...L%',,'(A at)l] (77) ~ 2 - h  ~ ~ "R ' ^ R" • 

The separate integral over the propagators has no A ° dependence and is obviously 
convergent for m 2 >  0, converges at rn = 0 if we avoid the IR divergent point 
p~,~,,,j = 0. and converges for m 2 < 0 if we shift to the correct minimum. The shift in 
the last case is no problem, as the theorem for L(~.  A~. ~R. A0 ) implies the same 
result for [ .(~ + v. A R. ),u. Ao). The difference in lagrangians in (77) is bounded bv 
the theorem, so 

[G~, (Ao)  _ G~r~(oc)l ~< Ao 2 × polynomial in I n ( A J A r < )  

x finite, A o-independcnt quantities (78) 

and so the n-point functions have limits as A o --, zc. which they approach as 1/.l{j. 

5. Discussion and conclusions 

The argument leading from the linear equation for V(A ), eq. (27). to renormaliza- 
bility, eq. (78). is lengthy. We claim, however, that the result was a foregone 
conclusion, for the reasons discussed following (27). ()nce loop integrals can be 
treated naively, as in going from eq. (34) to eq. (35), the difference between the field 
theory and the toy equations such as in sect. 2 all but disappears. Since the toy 
equations can be understood even for small finite coupling, we always had a map 
through the perturbative woods. 

Two things that we have come to expect are missing from this proof. The first is 
Weinberg's theorem, which justifies naive power counting for multiloop Feynman 
graphs with many potential subdivergences. The second is a discussion of such ideas 
from graph topology as skeleton expansions and overlapping divergences. The point 
we have tried to make is that renormalizability is a general property which does not 
hinge on these particular technical points. In our case, naive power counting for 
integrals was justified because they were always over the limited range A e < p2 < 4.~e. 
The renormalization group equation automatically disentangles the overlapping 
divergences, for in building an arbitrary Feynman graph with the operations shown 
in fig. 3, it always constructs the subgraphs with the largest momentum first. 
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The method here can be applied to composite operator renormalization as well, by 
including ~,O, (O, = composite operator) and identifying the terms of order e in the 
effective lagrangian. Operators of any dimension can be studied, since by including 
in the bare L all operators (of given symmetry) up to dimension d, we may separate 
from V not just the relevant parts, but the subleading parts up to A4~ ,/. 

The proof here extends immediately to any system whose symmetries are pre- 
served by a momentum-space cutoff. The principle is very general, however, and 
should apply to any physical cutoff, such as Pauli-Villars for abelian gauge theories 
and the lattice (probably with discrete rescaling) or higher covariant derivatives for 
non-abelian theories. The main problem is to obtain the renormalization group 
equation appropriate to the cutoff. It is unclear whether dimensional regularization 
can be adapted to this purpose, as in that case it is d - 4 and not the scale p, which 
plays the role of cutoff. It may actually be possible to treat gauge theories with a 
momentum-space cutoff".  The point is that a momentum cutoff need not change the 
physics, as the missing modes can be replaced by effective terms in the action. In 
terms of the new action, the gauge invariance should still be present in some 
disguised form. 

Our key equation (53) and its component form (60) were derived without using 
perturbation theory in an essential way. It may be possible to make some progress 
understanding these at finite coupling, starting perhaps with truncated versions. Of 
course, for a ~.~4 theory at finite coupling the continuum limit cannot actually be 
taken, as discussed at the end of sect. 1, but it may be possible to cstablish more 
limited results. 

I am indebted to C. Arabica, D. Friedan, and J. Preskill for inspiration. I would 
like to thank S. Coleman, S. della Pietra and N. Sakai for suggestions on the 
manuscript. 

References 

11] K.(J. Wilson. Phys. Rev. IM (1971) 3174, 3184: 
KG.  Wilson and J.G. Kogut, Phys. Reports 12 (1974) 75 

[21 L.P. Kadanoff, Physics 2 (1966) 263: 
J. Glimm and A. Jaffc, Fort. Phys. 21 11973) 327; 
E. Brczin. J.C Le Guillou and J. Zinn-Justin in Phase transitions and critical phenomena, eds. C. 
Domb and M.S. Green (Academic Press, London, New York) 1975: 
T. Appelquist and J. Carazzone, Phys. Rev. D l l  (1975) 2856: 
S. Weinberg, Physica 96A (1979) 327 

[3] F.J. Dyson, Phys. Rev. 75 (1949) 486, 1736; 
A. Salam, Phys. Rev. 82 (1951) 217; 84 (1951) 426 

[4] N.N Bogoliubov and O.S. Parasiuk, Acta Math. 97 (1957) 227; 
K. ttepp, Comm. Math. Phys. 2 (1966) 301, 
W. Zimmermann, Comm. Math. Phys. 15 (1969) 208 

" I v,'ould like to thank D. Friedan and S. Shenker for discussions of this point. 



J. P~,hhm~'kt / l:~([e¢tn'e ktgrangtan.~ 295 

[5] C.(i. Callan, Jr., Phys. Rev. I)2 (1970) 1541: 
A. Blaer and K. Young, Nucl. Phys. B83 (1974) 493: 
C.G. ( 'allan, Jr., in Methods in field theot3, ed~. R. Balian and J. Zinn-Justin (North-t lolland,  1976) 

I6] S. Weinberg, Phys. Rcv. 118 (1960) 838: 
Y. Hahn and W. Zimmermann,  Comm. Math. Phy,,,. 10 (196~) 330 

[7] J. Fr6hlich, Nucl. Phys. B2OO[FS4] (1982) 281 
[8] S. Weinberg, Phys. Rev. D13 (1975) 9 7 4 : D I 9  (1979) 1277: 

I.. Su,,,skind. Phys Rcv. I)20 (1979) 2619: 
K Wilson, Phy~,. Rev. I)3 (1971) 1818 


