Homework 5 Solutions

Problem 1: Demanding that equations (65.2)-(65.4) are of the form

D*¢D,,¢
with D, = 0, — i€’ A,,, for some constant €', we must have
2
Zy = Zli,, Ly =124 (%) .
e e
Eliminating the e’s we get
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Problem 2: a) From equations (65.1)-(65.4) we can easily derive
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Hence, the classical equations of motion in Lorenz gauge is
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where we used that Z, = Z%/Z,.
As in section (65), the LSZ formula implies that

iZs / d4$d4yd4zeika:—z‘p’y+ipz(_az) <TA“($)¢(y)¢T(z)> )

(1)

(7)

is the photon-scalar-scalar vertex with the photon propagator stripped off.

Therefore, the quantity
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is equal to
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Having established these facts, it is straightforward to show (as in spinor QED
on page 413) that
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b) Since both V{'(k,p,p’) and A(p) are finite, but the Z;’s diverge we must
have
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¢) Similarly we can define the quantity
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This gets contribution from all the three- and four-point vertices
1 -
cr (k, k/7p7pl) :(27‘-)264(k +p- p/)gA(p’) [iv‘fw(kv klvp’p/) (13)
1-
iV p+ ) Ap + K)iVE (p + K, p) (14)
1 1

FiVE( p+ k)= Ap+ K )iVE(p+ k’,p)] Alp)  (15)

~
~

Proceeding as before we can show

kucﬂy(k, k/7p7p,) = Z1Z2_1€ (Cu(klvp/ - kap) - C#(k/ap/ap + k)) ) (16)
which furthermore leads to

k VI (kK p,p') = Z1Zy e (VV (p+ K ,p) — VE(p',p — k). (17)

Problem 3:
The Feynman rules for scalar electrodynamics can be easily read of from
equations (65.1)-(65.4) to be
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Figure 1

Problem 4:

The calculations of the Z factors in this case are the same as for one abelian
scalar, except from some additional factors that come from group structure of
the vertices.

For Z; we need to evaluate the diagrams in figure and the result is

Zi =1+ (BC(R) - T(A) £~ (18)

For Z; we need to evaluate the diagrams in figure and the result is
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For Z35 we need to evaluate diagrams shown in figures and
The diagrams in figure (3 contribute
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while the diagrams in figure (4)) contribute
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Combining the contributions we get
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Following the general analysis of section (52)

o) = - (o - 37(m) L. (23)

Problem 5: The general analysis of section (53) shows that when we inte-
grate out a field with Lagrangian of the form

L=¢Ko, (24)
for some operator K, we get
det{K}*", (25)

where the minus sign is for bosons and the plus for fermions. Hence, all the
possible one-loop contributions to the terms in the quantum action that do not
depend on the ghost fields are

o ¢*(D*)*c? — det D? = det Oy (1,1

_ 1/2
o WED)W — detiD) = (det(iD") " = det Oy, 115012)

° ¢a(D2)ab¢b_>(detDRCB)(Ll))fl

o ;A (Dz)‘”’cb + g(T“)”CFﬁuS&V,w) A" = det D4, (22)



