
Homework 5 Solutions

Problem 1: Demanding that equations (65.2)-(65.4) are of the form

DµφDµφ (1)

with Dµ = ∂µ − ie′Aµ, for some constant e′, we must have

Z2 = Z1
e

e′
, Z2 = Z4

( e
e′

)2
. (2)

Eliminating the e’s we get

Z4 =
Z2
1

Z2
. (3)

Problem 2: a) From equations (65.1)-(65.4) we can easily derive

jµ = ieZ2(φ∂µφ† − φ†∂µφ) + 2iZ1e
2φ†φAµ, (4)

and
∂L1

∂Aµ
= −iZ1e(φ∂

µφ† − φ†∂µφ)− 2iZ4e
2φ†φAµ. (5)

Hence, the classical equations of motion in Lorenz gauge is

−Z3∂
2Aµ =

∂L1

∂Aµ
= Z1Z

−1
2 jµ, (6)

where we used that Z4 = Z2
1/Z2.

As in section (65), the LSZ formula implies that

iZ3

∫
d4xd4yd4zeikx−ip

′y+ipz(−∂2x)
〈
TAµ(x)φ(y)φ†(z)

〉
, (7)

is the photon-scalar-scalar vertex with the photon propagator stripped off.
Therefore, the quantity

Cµ(k, p, p′) = iZ1Z
−1
2

∫
d4xd4yd4zeikx−ip

′y+ipz
〈
Tjµ(x)φ(y)φ†(z)

〉
, (8)

is equal to

Cµ(k, p, p′) = (2π)2δ4(k + p− p′)
[

1

i
∆̃(p′)iV µ3 (k, p, p′)

1

i
∆̃(p)

]
. (9)
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Having established these facts, it is straightforward to show (as in spinor QED
on page 413) that

(p′ − p)µV µ3 (k, p, p′) = Z1Z
−1
2 e

[
∆̃(p′)−1 − ∆̃(p)−1

]
. (10)

b) Since both V µ3 (k, p, p′) and ∆̃(p) are finite, but the Zi’s diverge we must
have

Z1 = Z2. (11)

c) Similarly we can define the quantity

Cµν(k, k′, p, p′) = iZ2
1Z
−2
2

∫
d4xd4yd4zeikx+ik

′w−ip′y+ipz 〈Tjµ(x)jν(w)φ(y)φ†(z)
〉
.

(12)
This gets contribution from all the three- and four-point vertices

Cµν(k, k′, p, p′) =(2π)2δ4(k + p− p′)1

i
∆̃(p′)

[
iV µν4 (k, k′, p, p′) (13)

+ iV µ3 (p′, p+ k′)
1

i
∆̃(p+ k′)iV ν3 (p+ k′, p) (14)

+ iV ν3 (p′, p+ k′)
1

i
∆̃(p+ k′)iV µ3 (p+ k′, p)

]1

i
∆̃(p) (15)

Proceeding as before we can show

kµC
µν(k, k′, p, p′) = Z1Z

−1
2 e (Cν(k′, p′ − k, p)− Cµ(k′, p′, p+ k)) , (16)

which furthermore leads to

kµV
µν(k, k′, p, p′) = Z1Z

−1
2 e (V ν(p+ k′, p)− V µ(p′, p′ − k)) . (17)

Problem 3:
The Feynman rules for scalar electrodynamics can be easily read of from

equations (65.1)-(65.4) to be
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Figure 1

Figure 2

Problem 4:
The calculations of the Z factors in this case are the same as for one abelian

scalar, except from some additional factors that come from group structure of
the vertices.

For Z1 we need to evaluate the diagrams in figure (1) and the result is

Z1 = 1 + (3C(R)− T (A))
g2

8π2

1

ε
(18)

For Z2 we need to evaluate the diagrams in figure (2) and the result is

Z2 = 1 + C(R)
3g2

8π2

1

ε
(19)

For Z3 we need to evaluate diagrams shown in figures (3) and (4)
The diagrams in figure (3) contribute

−1

3
T (R)

g2

8π2
, (20)

while the diagrams in figure (4) contribute

5

3
T (A)

g2

8π2
. (21)

Combining the contributions we get

Z3 = 1 +

(
5

3
T (A)− 1

3
T (R)

)
g2

8π2

1

ε
. (22)
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Figure 3

Figure 4

Following the general analysis of section (52)

β(g) = −
(

11

3
C(R)− 1

3
T (R)

)
g3

(4π)2
. (23)

Problem 5: The general analysis of section (53) shows that when we inte-
grate out a field with Lagrangian of the form

L = φKφ, (24)

for some operator K, we get

det{K}±1, (25)

where the minus sign is for bosons and the plus for fermions. Hence, all the
possible one-loop contributions to the terms in the quantum action that do not
depend on the ghost fields are

• ca(D̄2)abcb → det D̄2 = det2A,(1,1)

• Ψ(iD̄)Ψ→ det i /̄D = (det
(
i /̄D

2
)1/2

= det2RDF ,(2,1)⊕(1,2)

• φa(D̄2)abφb → (det2RCB ,(1,1))
−1

• 1
2A

a
(
D̄2)abcb + g(T a)bcF̄ aµνS

µν
(a,b)

)
Ab → det2A,(2,2)
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