Homework 4 Solutions

Problem 1: For QED the superficial degree of divergence is

D =dL—-P, - 2P, (1)

where L the number of loop momenta and P. and P, the number of electron
and photon propagators respectively. Moreover the number of loop momenta is
equal to

L=FP+P, -V +1, (2)

since every propagator has a momentum integral and every vertex a delta func-
tion that imposes momentum conservation. The extra plus one comes from
the delta function that imposes the overall momentum conservation. Also the
number of vertices is

1
V =2P,+ N, :Pe+§Ne, (3)

since for every internal photon we have two vertices and for every external
photon an additional one. Combining these equation we can write as

d—4 . d—2 d—2
Dopp =d+ ==V = =5 =N, = == N.. (4)

For scalar QED the superficial degree of divergence is

D =dL — 2P, — 2P, + Vi, (5)

where V3 is the number of cubic vertices p0pA. We added this term because for
each such vertex we get an additional momentum coming from the derivative
acting on ¢. Similarly with QED we have

L=Py+P,—Vs=Vy+1, (6)
and
2P+ Ny + N, = 3V3 + 4V}. (7)
Again combining these equations we get
d—4 d—2
Dyorp =d+ (d—4)Vi + 5 V- —TN. (8)

Problem 2: a)Gauge invariance implies that the ¢*¢” in the photon prop-
agator should not contribute to the scattering amplitude of two fermions and
one photon. Hence we should have

quu(p )V*u(p) =0, q=p —p. 9)



Acting with ¢* in (63.23) we get

0= qua(p)V*u(p) = e(p’ — p),@'[Ay"* + B(p' + p)* + C(p' —p)lu  (10)

= et [A(p +p) + B(? +p*) + C¢*Jlu (11)
= eC'q*u'u. (12)
To go from the second to the third line we used @'p’ = —ma' and pu = —mu

as well as p'? = p? = m2. Hence we see that gauge invariance require C' = 0.

b)Using equation (63.16) we make the replacement
Ay, + B(p' +p), — (A+2mB)y, + 2iBS*q,,. (13)
Comparing this equation with (63.23) we see that

Fi = A+2mB, F,=-2mB. (14)

Problem 3: For the purpose of this problem it’s more convenient to chose
a gauge such that

A= ?(—yw,O). (15)

In this gauge the in stead of i420; in equation (64.10), we have %z’('y?al —710s).
Using that equations (64.12) and (64.13) and then the properties uvy'u = 2p'iu
and wu = 2m the above term in the Hamiltonial will become

(p102 — p20h), (16)

e .
-
2m

which is just 55-L.. Hence the elector magnetic moment is

=t (304 m)+ %), a7)

so the new part due to the orbital angular momemtum is

emy

M= om’ (18)

Problem 4:
a) The field equation that follows from (64.3) is
(i) — m)¥ + %FQ(O)FM,,S’“’\IJ =0, (19)

where

D=9 —ieFi(0)A. (20)



Working in the Dirac representation of the gamma matrices

o (I 0 v (0 oF
Y (0 7)) 7= _o_k: 0 ) (21)

the matrices S* are

Sm:;((g_ cg) SzJ:2€wk(% aok>' (22)

In this representation the Dirac equation ((19) becomes

z-c“)g—_»eFup—qm_' zq~8+eF10~A \I/+6F2<i'Bi (iE—» w=o,
—igd-0—eF1d-A —idy+eF1p—m 2m c-F &-B
(23)

—,

where we also used A, = (—¢, A). Extracting the time dependence due to the

rest energy we can write
U = emt (i) : (24)

In the non-relativistic limit the kinetic energy of the electron as well as the
potential energy due to the electromagnetic field are much smaller than the rest
energy. In other words

X <mX, eA<m. (25)

In this limit, the above equation in components reads

00 — eFyp+ —Fpi - B)® + (iG -0+ eFyG- A+ — e - E)X =0 (26
2m 2m
(—iG -8 — eF1G- A+ %FQ(?-E)@—ZmX —0. (27)

We can solve the second equation for X

1 = - _
X:—(—w-a—eFﬁ-AJriFQa.E), (28)
2m 2m
and substituting in the above equation for ®, neglecting higher order terms, we
get

(idy — eFro + %Fga B)® — (i6 -9 + el - A)?® =0, (29)
which can be written as
0P
25 = HO, (30)
with . . o .
H=(id-0+eFd-A)? +eFip— 5,120 B. (31)



Moreover the first term can be simplified by using the properties of the Pauli
matrices

(G- (i0 + eF A)) = (i0 + eF, A)? + VA) x (id+ e A)  (32)

G- (i + eF
(i5+eF1A')2— F&-VxA (33)
B.

= (i0 + e, A)? — eFy G - (34)
Hence, the Hamiltonian is
H = (id + eFLA)? + eFrp — %(F1 + e - B. (35)
Now we can easily read the magnetic moment of the electron to be
. e e ho
= %(F1+F2)U—> —C(l—&-Fz)ha—g%? (36)

Problem 5: Replacing €] by &} and using momentum conservation the
amplitude becomes

T = 20y [52 <W> ki + K (W) 5’2] w.  (37)
Using ¥, ¥, = —k2 = 0 we have
T = ¢, [g; ( jjl - m) I (W) 5'2] ", (38)

u

Then we can commmute the momenta by using

(=p, +m)ky = KL (p, +m) +2p1 -k, (39)
and

kll(fpz +m) = (p, + m)ky — 2p - ki, (40)
and noting that (p, + m)ui = 0 and v2(p, + m) = 0 we arrive at

T = %, {52 Gﬁl ) F— K (M) s;} u;. (41)

It’s easy to see now that this vanishes since 2p;-k; = t—m? and 2p;2-k; = u—m?.



