
Homework 4 Solutions

Problem 1: For QED the superficial degree of divergence is

D = dL− Pe − 2Pγ , (1)

where L the number of loop momenta and Pe and Pγ the number of electron
and photon propagators respectively. Moreover the number of loop momenta is
equal to

L = Pe + Pγ − V + 1, (2)

since every propagator has a momentum integral and every vertex a delta func-
tion that imposes momentum conservation. The extra plus one comes from
the delta function that imposes the overall momentum conservation. Also the
number of vertices is

V = 2Pγ +Nγ = Pe +
1

2
Ne, (3)

since for every internal photon we have two vertices and for every external
photon an additional one. Combining these equation we can write (1) as

DQED = d+
d− 4

2
V − d− 2

2
Nγ −

d− 2

2
Ne. (4)

For scalar QED the superficial degree of divergence is

D = dL− 2Pφ − 2Pγ + V3, (5)

where V3 is the number of cubic vertices φ∂φA. We added this term because for
each such vertex we get an additional momentum coming from the derivative
acting on φ. Similarly with QED we have

L = Pφ + Pγ − V3 − V4 + 1, (6)

and
2P +Nφ +Nγ = 3V3 + 4V4. (7)

Again combining these equations we get

DsQED = d+ (d− 4)V4 +
d− 4

2
V3 −

d− 2

2
N. (8)

Problem 2: a)Gauge invariance implies that the qµqν in the photon prop-
agator should not contribute to the scattering amplitude of two fermions and
one photon. Hence we should have

qµū(p′)V µu(p) = 0, q = p′ − p. (9)
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Acting with qµ in (63.23) we get

0 = qµū(p′)V µu(p) = e(p′ − p)µū′[Aγµ +B(p′ + p)µ + C(p′ − p)]u (10)

= eū′[A(/p
′ + /p) +B(p′2 + p2) + Cq2]u (11)

= eCq2ū′u. (12)

To go from the second to the third line we used ū′/p
′ = −mū′ and /pu = −mu

as well as p′2 = p2 = m2. Hence we see that gauge invariance require C = 0.
b)Using equation (63.16) we make the replacement

Aγµ +B(p′ + p)µ → (A+ 2mB)γµ + 2iBSµνqν . (13)

Comparing this equation with (63.23) we see that

F1 = A+ 2mB, F2 = −2mB. (14)

Problem 3: For the purpose of this problem it’s more convenient to chose
a gauge such that

A =
B

2
(−y, x, 0). (15)

In this gauge the in stead of iγ2∂1 in equation (64.10), we have 1
2 i(γ

2∂1−γ1∂2).
Using that equations (64.12) and (64.13) and then the properties ūγiu = 2piūu
and ūu = 2m the above term in the Hamiltonial will become

− e

2m
i(p1∂2 − p2∂1), (16)

which is just e
2mLz. Hence the elector magnetic moment is

µ =
e

m

(
1

2

(
1 +

α

2π

)
+
ml

2

)
, (17)

so the new part due to the orbital angular momemtum is

µl =
eml

2m
. (18)

Problem 4:
a) The field equation that follows from (64.3) is

(i /D −m)Ψ +
e

2m
F2(0)FµνS

µνΨ = 0, (19)

where
/D = /∂ − ieF1(0) /A. (20)
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Working in the Dirac representation of the gamma matrices

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
, (21)

the matrices Sµν are

S0i =
i

2

(
0 σi

σi 0

)
, Sij =

1

2
εijk

(
σk 0
0 σk

)
. (22)

In this representation the Dirac equation (19) becomes

(
i∂0 − eF1ϕ−m i~σ · ~∂ + eF1~σ · ~A
−i~σ · ~∂ − eF1~σ · ~A −i∂0 + eF1ϕ−m

)
Ψ +

e

2m
F2

(
~σ · ~B ~σ · ~E
~σ · ~E ~σ · ~B

)
Ψ = 0,

(23)

where we also used Aµ = (−ϕ, ~A). Extracting the time dependence due to the
rest energy we can write

Ψ = eimt
(

Φ
X

)
. (24)

In the non-relativistic limit the kinetic energy of the electron as well as the
potential energy due to the electromagnetic field are much smaller than the rest
energy. In other words

Ẋ � mX, eA� m. (25)

In this limit, the above equation in components reads

(i∂0 − eF1ϕ+
e

2m
F2~σ · ~B)Φ + (i~σ · ~∂ + eF1~σ · ~A+

e

2m
F2~σ · ~E)X = 0 (26)

(−i~σ · ~∂ − eF1~σ · ~A+
e

2m
F2~σ · ~E)Φ− 2mX = 0. (27)

We can solve the second equation for X

X =
1

2m

(
−i~σ · ~∂ − eF1~σ · ~A+

e

2m
F2~σ · ~E

)
, (28)

and substituting in the above equation for Φ, neglecting higher order terms, we
get

(i∂0 − eF1ϕ+
e

2m
F2~σ · ~B)Φ− (i~σ · ~∂ + eF1~σ · ~A)2Φ = 0, (29)

which can be written as

i
∂Φ

∂t
= HΦ, (30)

with
H = (i~σ · ~∂ + eF1~σ · ~A)2 + eF1ϕ−

e

2m
F2~σ · ~B. (31)
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Moreover the first term can be simplified by using the properties of the Pauli
matrices

(~σ · (i~∂ + eF1
~A)) = (i~∂ + eF1

~A)2 + i~σ · (i~∂ + eF1
~A)× (i~∂ + eF1

~A) (32)

= (i~∂ + eF1
~A)2 − eF1~σ · ~∇× ~A (33)

= (i~∂ + eF1
~A)2 − eF1~σ · ~B. (34)

Hence, the Hamiltonian is

H = (i~∂ + eF1
~A)2 + eF1ϕ−

e

2m
(F1 + F2)~σ · ~B. (35)

Now we can easily read the magnetic moment of the electron to be

~µ =
e

2m
(F1 + F2)σ → e

2mc
(1 + F2)h̄σ = g

e

2mc

h̄σ

2
. (36)

Problem 5: Replacing ε′1 by k′1 and using momentum conservation the
amplitude becomes

T = e2v̄2

[
ε′2

(
−/p1 + /k

′
1 +m

m2 − t

)
/k
′
1 + /k

′
1

(
−/p2 − /k

′
1 +m

m2 − u

)
ε′2

]
u1. (37)

Using /k
′
1/k

′
1 = −k21 = 0 we have

T = e2v̄2

[
ε′2

(−/p1 +m

m2 − t

)
/k
′
1 + /k

′
1

(−/p2 +m

m2 − u

)
ε′2

]
u1. (38)

Then we can commmute the momenta by using

(−/p1 +m)/k
′
1 = /k

′
1(/p1 +m) + 2p1 · k1, (39)

and
/k
′
1(−/p2 +m) = (/p2 +m)/k

′
1 − 2p2 · k1, (40)

and noting that (/p1 +m)u1 = 0 and v̄2(/p2 +m) = 0 we arrive at

T = e2v̄2

[
ε′2

(
2p1 · k1
m2 − t

)
/k
′
1 − /k

′
1

(
2p2 · k1
m2 − u

)
ε′2

]
u1. (41)

It’s easy to see now that this vanishes since 2p1·k1 = t−m2 and 2p12·k1 = u−m2.
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