
Homework 2 Solutions

Problem 1:
a) The field strength renormalization for the composite operator φ2 can be

calculated from the divergent part of G(p1, p2, x). Using the Feynman rules is
easy write down the expression for this Green’s function〈

φ(p1)φ(p2)φ2(x)
〉

=
iλ

2

1

p2
1p

2
2

∫
d4k

(2π)4

1

k2

1

(k + p1 + p2)2
(1)

Following the standard procedure one finds that the divergent part is equal to

−λ
2

Γ
(
2− d

2

)
(4π)d/2

∫ 1

0

dx
1

(x(1− x)(p1 + p2)2)
2−d/2 . (2)

Subtracting the divergence for p2
1 = p2

2 = µ2 we get

δφ2 =
λ

2

Γ
(
2− d

2

)
(4π)d/2(µ2)2−d/2 . (3)

Hence, the anomalous dimension of φ2 is

γφ2 =
λ

16π2
(4)

The Callan-Symanzik equation at the fixed point(
µ
∂

∂µ
+ 2γφ2

)〈
φ2(x)φ2(0)

〉
= 0 (5)

has the following solution (using the method of characteristics)〈
φ2(x)φ2(0)

〉
=

1

|x|2(d−2)
C(λ(x))e

2
∫ |x|
1/µ

d log |x′|γ(λ(x′))
(6)

The theory will be driven to the WF fixed point for large |x|. In this case the
integral in the exponent will be dominated by the large values of x′. Therefore〈

φ2(x)φ2(0)
〉
∼ 1

|x|2(d−2+γφ2 )
=

1

|x|2∆φ2
(7)

b) Consider the mass term in the lagrangian as an interaction. Any Green’s
function will be a power series in m

G(n)
m (x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉m (8)

=
∑

(−im2)l

〈
φ(x1) . . . φ(xn)

(∫
1

2
φ2

)l〉
0

(9)

=
∑

(−im2)lG
(n,l)
0 (x1, . . . , xn) (10)
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The above Green’s functions obey the following Callan-Symanzik equations(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ 2γmm

2 ∂

∂m2
+ nγφ

)
G(n)
m = 0 (11)

and (
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ lγφ2 + nγφ

)
G

(n,l)
0 = 0 (12)

Now let’s act on equation (10) with the following operator

(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγφ

)
G(n)
m =

∑
(−im2)l

(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγφ

)
G

(n,l)
0

=
∑

(−im2)l
(
−lγφ2

)
G

(n,l)
0

=

(
−γφ2

∂

∂m2

)∑
(−im2)l G

(n,l)
0

=

(
−γφ2

∂

∂m2

)
G(n)
m (13)

Comparing this equation with (11) we see that

γφ2 = 2γm. (14)

c) An is part (a) one can similarly evaluate〈
φ(p1)φ(p2)φ(p3)φ(p4)φ4(x)

〉
, (15)

and find

γφ4 =
3λ2

16π2
(16)

d) In the previous homework (Problem 5) we argued that

∆φ4 = d+ β′(λ∗) (17)

e) The current associated to the global U(1) symmetry is

Jµ = i(φ∗∂µφ− φ∂µφ∗). (18)

The one loop contribution to the three-point function

〈φ(x1)φ(x2)Jµ(x)〉 (19)

is given by
λ

4

∫
d4y

〈
φ(x1)φ(x2)Jµ(x)φ4(y)

〉
. (20)

It is straightforward to show that both terms in Jµ(x) give

λ

∫
d4y D(x1 − y)D(x2 − y)D(x− y)∂µD(x− y), (21)
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and therefore the above three point function vanishes.
We can prove that γJ = 0 to all orders in perturbation theory s follows.

Consider the Ward identity for this symmetry

〈φ(x1)φ∗(x2)∂µJ
µ(x)〉 = −iδ(4)(x− x1) 〈δφ(x1)φ(x2)〉 − iδ(4)(x− x2) 〈φ(x1)δφ(x2)〉

= δ(4)(x− x1) 〈φ(x1)φ(x2)〉 − δ(4)(x− x2) 〈φ(x1)φ(x2)〉

=
1

π2
∂µ

(
(x− x1)µ

(x− x1)4
− (x− x2)µ

(x− x2)4

)
〈φ(x1)φ(x2).〉 (22)

We see that

〈φ(x1)φ∗(x2)Jµ(x)〉 =
1

π2

(
(x− x1)µ

(x− x1)4
− (x− x2)µ

(x− x2)4

)
〈φ(x1)φ(x2)〉 (23)

Note that there is no integration ”constant” since for x → ∞ the three point
function must vanish. Hence, all the divergences are coming from the propagator
and therefore can be taken care of by the the renormalization of φ.

f) From dimensional analysis any two-point function in a generic massless
theory will have the form

G(2)(p) =
i

p2
+

i

p2
(A log

Λ2

p2
+ . . . ) +

i

p2
(ip2δZ)

i

p2
(24)

=
i

p2
+

i

p2
f

(
Λ

µ

)
− iδZ

p2
(25)

for some function f . So we see that all the divergent terms (terms that diverge
for Λ→∞) are functions of Λ

µ , and therefore

µ
dδZ
dµ

= −Λ
dδZ
dΛ

. (26)

from which it follows that

γO = −Λ
dZO
dΛ

(27)

Consider now the integral in (1). After using Feynman parameters, shifting
the loop momentum (assuming Λ→∞) and Wick rotate, we have
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〈
φ(p1)φ(p2)φ2(x)

〉
=
iλ

2

1

p2
1p

2
2

∫
d4k

(2π)4

1

k2

1

(k + p1 + p2)2

= −λ
2

1

p2
1p

2
2

∫ 1

0

dx

∫ Λ

0

d4kE
(2π)4

1

(k2
E − x(1− x)(p1 + p2)2)2

= − λ

(4π)2

1

p2
1p

2
2

∫ 1

0

dx

∫ Λ

0

dkE
1

(k2
E − x(1− x)(p1 + p2)2)2

Λ→∞
= − λ

(4π)2

1

p2
1p

2
2

∫ Λ

dk
1

k

= − λ

(4π)2

1

p2
1p

2
2

log Λ

So we see that

Zφ2(Λ) = − λ

(4π)2
log Λ (28)

which gives the expected value for γφ2 . One can similarly repeat the calculation
for γφ4 and γJ .

Problem 2: Recall that the connected Green’s functions are given by

〈φ(x1) . . . φ(xn)〉conn =
δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

. (29)

The effective action Γ[φJ ] is defined as the Legendre transform of W [J ]

Γ[φJ ] = W [J ]−
∫
ddyJ(y)φJ(y). (30)

where

φJ(x) =
δW [J ]

δJ(x)
(31)

Taking the φJ functional derivative of Γ[φJ ] we get

δΓ[φJ ]

δφJ(x)
=

∫
ddy

δJ(y)

δφJ(x)

δW [J ]

δJ(y)
− J(x)−

∫
ddy

δJ(y)

δφJ(x)
φJ(y) = −J(x). (32)

From this equation we conclude that

−δ(x− y) =
δ

δJ(y)

δΓ[φJ ]

δφJ(x)
(33)

=

∫
ddz

δφJ(z)

δJ(y)

δ2Γ[φJ ]

δφJ(x)δφJ(z)
(34)

=

∫
ddz

δ2W [J ]

δJ(y)δJ(z)

δ2Γ[φJ ]

δφJ(x)δφJ(z)
(35)
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Figure 1: The black circles denote the connected graphs, while the white circle
denotes the 1PI graphs.

Treating the arguments of a function as an index of a matrix and an integral as
a sum over indices, this equation can be written as

δ2W [J ]

δJyδJz

δ2Γ[φJ ]

δφJ,zδφJ,x
= −1yx. (36)

IN this form we can see that

δ2W [J ]

δJyδJz
= −

(
δ2Γ[φJ ]

δφJ,zδφJ,x

)−1

, (37)

Using the following rule for a derivative of an inverse of a matrix

dM−1

dx
= −M−1 dM

dx
M−1, (38)

we can finally find

δ3W [J ]

δJyδJzδJx
= −δφJ,u

δJx

(
δ2Γ[φJ ]

δφJ,zδφJ,v

)−1
δ3Γ[φJ ]

δφJ,uδφJ,vδφJ,r

(
δ2Γ[φJ ]

δφJ,rδφJ,x

)−1

= −
∫
dduddvddrD(u− x)D(z − v)D(r − x)

δ2Γ[φJ ]

δφJ(u)δφJ(v)δφJ(r)
.

This shows that the third derivative of the effective action is the connected
graphs with the external propagators stripped off. Pictorially this is shown in
figure (1)

Similarly one can find

δ3W [J ]

δJwδJxδJyδJz
= −DswDxtDyuDzv

( δ4Γ[J ]

δφJ,sδφJ,tδφJ,uδφJ,v

+
δ3Γ[φJ ]

δφJ,sδφJ,tδφJ,r
Drq

δ3Γ[φJ ]

δφJ,qδφJ,uδφJ,v
+ (t↔ u) + (t↔ v)

)
Again pictorially this is shown in figure (2).
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Figure 2: Four-point function.

Problem 3: Since the gauge field is in the adjoint representation of the
gauge group, the covariant derivative acting on the field strength is equal to

DρF
a
µν = ∂ρF

a
µν − gfabcAbρF cµν . (39)

Adding three cyclically permuted covariant derivatives we get

DµF
a
νρ +DνF

a
ρµ +DρF

a
µν

=∂νF
a
νρ + ∂νF

a
ρµ + ∂ρF

a
µν − gfabcAbµF cνρ − gfabcAbνF cρµ − gfabcAbρF cµν (40)

Using the definition of the field strength

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (41)

most of the terms cancel and we end up with

DµF
a
νρ +DνF

a
ρµ +DρF

a
µν = −gAcµAdνAeρ

(
facdf bde + fadbf bce + feabf cdb

)
= 0 (42)

which is zero by the Jacobi Identity (70.4).
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