Homework 2 Solutions

Problem 1:

a) The field strength renormalization for the composite operator ¢? can be
calculated from the divergent part of G(p1,p2,x). Using the Feynman rules is
easy write down the expression for this Green’s function
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Following the standard procedure one finds that the divergent part is equal to
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Subtracting the divergence for p? = p3 = u? we get
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Hence, the anomalous dimension of ¢? is
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The Callan-Symanzik equation at the fixed point
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has the following solution (using the method of characteristics)
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The theory will be driven to the WF fixed point for large |x|. In this case the
integral in the exponent will be dominated by the large values of z’. Therefore
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b) Consider the mass term in the lagrangian as an interaction. Any Green’s
function will be a power series in m
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The above Green’s functions obey the following Callan-Symanzik equations
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Now let’s act on equation with the following operator
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Comparing this equation with we see that

¢) An is part (a) one can similarly evaluate
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d) In the previous homework (Problem 5) we argued that
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e) The current associated to the global U(1) symmetry is
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The one loop contribution to the three-point function
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It is straightforward to show that both terms in J,(z) give
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and therefore the above three point function vanishes.
We can prove that «v; = 0 to all orders in perturbation theory s follows.
Consider the Ward identity for this symmetry
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We see that
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Note that there is no integration ”constant” since for z — oo the three point
function must vanish. Hence, all the divergences are coming from the propagator
and therefore can be taken care of by the the renormalization of ¢.

f) From dimensional analysis any two-point function in a generic massless
theory will have the form
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for some function f. So we see that all the divergent terms (terms that diverge
for A — o0) are functions of %, and therefore
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Consider now the integral in . After using Feynman parameters, shifting
the loop momentum (assuming A — oo) and Wick rotate, we have
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which gives the expected value for 42. One can similarly repeat the calculation
for 44 and ;.
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Problem 2: Recall that the connected Green’s functions are given by
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The effective action I'[¢] is defined as the Legendre transform of W1[.J]
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Figure 1: The black circles denote the connected graphs, while the white circle
denotes the 1PI graphs.

Treating the arguments of a function as an index of a matrix and an integral as
a sum over indices, this equation can be written as
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IN this form we can see that
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Using the following rule for a derivative of an inverse of a matrix
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we can finally find
FWLJ] __su PT[os] ' 8°T[es] PT(gs] \ 7
5Jy6Jz5Ja: 5J1 5¢J,z6¢J,v 5¢J,u6¢.],v(5¢.],7' 6¢J,7'5¢J,1:
= — / dudvd®rD(u — x)D(z — v)D(r — z) OT¢)] .
8¢5 (u)d(v)od,(r)

This shows that the third derivative of the effective action is the connected
graphs with the external propagators stripped off. Pictorially this is shown in
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Similarly one can find
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Again pictorially this is shown in figure .
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Figure 2: Four-point function.

Problem 3: Since the gauge field is in the adjoint representation of the
gauge group, the covariant derivative acting on the field strength is equal to
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Adding three cyclically permuted covariant derivatives we get
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most of the terms cancel and we end up with
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which is zero by the Jacobi Identity (70.4).



