
Homework 1 Solutions

Problem 1 : (Srednicki 27.1) Using the definition of a beta function we can
easily get

dα

dm
=

dα
lnµ

dm
lnµ

=
b1
c1

α

m
, (1)

which can be written as

dm

m
=
c1
d1

dα

a
. (2)

Integrating both sides we find

m1

m2
=

(
α1

α2

) c1
d1

. (3)

Problem 2 : (Srednicki 28.1) Starting with the analog of equations (28.3)-
(28.6)

φ0 =
√
Zφφ, (4)

m0 =

√
Zm
Zφ

m, (5)

λ0 = Z−2φ Zλµ
ελ, (6)

the strategy will be to repeat the same steps as in the φ3-theory. We will also
use the results from lat semester for the above Z factors

Zλ = 1 +
3λ

16π2

1

ε
, (7)

Zm = 1 +
λ

16π2

1

ε
, (8)

Zφ = 1 +O(λ2). (9)

As usual, all the bare quantities must be independent from the renormaliza-
tion scale µ since it is an auxiliary parameter. Proceeding as in the φ3 case we
define the analog of equation (28.14)

G(λ, ε) = lnZ−2φ Zλ ≈
3λ

16π2

1

ε
. (10)
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From (6) we get
lnλ0 = G+ ε lnµ+ lnλ, (11)

and requiting that λ0 is independent of µ, or in other words

d lnλ0
d lnµ

= 0, (12)

we obtain
dλ

d lnµ
= − ελ

1 + 3λ
16π2

1
ε

ε→0
= − 3λ2

16π2
, (13)

and therefore

β(λ) = − 3λ2

16π2
. (14)

Similarly for the mass renormalization we define

M = ln

√
Zm
Zφ
≈ λ

32π2

1

ε
, (15)

and requiring that d lnm0

d lnm = 0 we find

γm =
λ

32π2
, (16)

Lastly, since Zφ doesn’t have corrections at one loop order, equation (28.36)
implies that

γφ =
1

2

d lnZφ
d lnµ

= O(λ2). (17)
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Figure 1: Relevant diagrams for βλ. The single line correspond to φ1 and the
double line to φ2.

Figure 2: Relevant diagrams for βρ. The single line correspond to φ1 and the
double line to φ2.

Problem 3 :
a) The relevant Feynman diagrams for βλ are shown in figure (1). Apart

from the symmetry factors, the loop integral is the same as in the usual φ4

theory. The calculation is done in detail in the book by Peskin & Shroeder (see
p. 326-327). Using the notation of this book the above diagrams are equal to

−
(
λ2 +

1

9
ρ2
)

[iV (s) + iV (t) + iV (u)]− iδλ, (18)

where the factor in front of ρ2 comes from the symmetry factor of the diagrams
with two ρ-vertices. Following the same step as in the previous problem, the
beta function can be easily evaluated

βλ =
9λ2 + ρ2

3(4π)2
(19)

For the other beta function, the relevant diagrams are shown in figure (2 ).
They are equal to(

1

3
λρ

)
2iV (s)− 1

9
ρ2 [iV (t) + iV (u)]− iδρ. (20)

As before the coefficients 1
3 and 1

9 are coming from the symmetry factors. In
this case the beta function is

βρ =
6λρ+ 4ρ2

3(4π)2
(21)

b)Using the above beta functions it is easy to calculate the beta function for
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Figure 3: RG graph.

the ration ρ/λ as

µ
d(ρ/λ)

dµ
= µ

dρ

dµ

1

λ
− µdλ

dµ

ρ

λ2
=

ρ

3(4π2

(
−
(ρ
λ

)2
+ 4

ρ

λ
− 3

)
(22)

We see that there are two fixed point for ρ/λ = 0, 1, 3. If we start with ρ/λ < 3
then the ration will flow toward the other fixed point which satisfies ρ = λ.

c) The beta functions in d = 4− ε dimensions are

βλ = −ελ+
9λ2 + ρ2

3(4π)2
(23)

βρ = −ερ+
6λρ+ 4ρ2

3(4π)2
(24)

However, the terms contacting ε cancel out in the beta function for the ratio
and the result is the same as in part (b). The reason is that the ratio is still a
dimensionless parameter. As before, the fixed points happen for ρ/λ = 0, 1, 3
and the RG diagram is shown in figure (3).

Problem 4 :
The beta functions as given in Cardy’s book are

du

dl
= εu− bu2,

dh

dl
= h(y + b′u), (25)

where the relation of the variable l to the usual renormalization scale µ is

µ = e−l, (26)
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and in terms of µ the above set of equations take the usual form

µ
du

dµ
= −εu+ bu2, (27)

µ
dh

dµ
= −h(y + b′u). (28)

We see that there are two fixed points with

u = 0, h = 0, yh = y (29)

u =
ε

b
, h = 0, yh = y + ε

b′

b
(30)

(31)

Starting with equation (3.47) in Cardy’s book we have

G(r/b, u′, h′) = b2d
(
h′

h

)−2
G(r, u, h). (32)

This equation describes how the correlation functions transforms under scaling
transformation r → r′ = r/b, or in other words by changing the mass scale
µ→ bµ. So if we choose r = r0 and equivalently

b =
r

r0
=
µ0

µ
= e−(l−l0), (33)

equation (32) can be written as

G(r, u(l), h(l)) = e−2d(l−l0)
(
h(l)

h(l0)

)−2
G(r0, u(l0), h(l0)). (34)

Hence, we see that by solving the differential equations for u(l) and h(l) we can
plug them in the above equation and determine the correlation function. We
can easily integrate equations (25) and obtain

u(l) = e(l−l0)ε
ε

be(l−l0)ε − 1
(35)

h(l) = c e(l−l0)y(1− be(l−l0)ε)b
′/b (36)

for some constant c. Plugging the latter in the transformation for G(r, u, h) we
get

G(r, u(l), h(l)) = G0e
−2d(l−l0)

(
1− be(l−l0)ε

1− b

)−2b′/b
, (37)

and in terms of r

G(r, u(l), h(l)) ≈
(r0
r

)2(d−y) (
1− b

(r0
r

)ε)−2b′/b
. (38)
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From this expression we can read of the asymptotic behavior for small and large
r. In particular

r >> r0 G ≈
(r0
r

)2(d−y)
(39)

r << r0 G ≈
(r0
r

)2(d−y−ε b′
b )

(40)

Therefore, we see that for large r the behavior of the correlation function is the
same as in the first fixed point in (31) and for small r is same as in the second
fixed point.

Problem 5 :
a) A term that respects the O(N) symmetry can be written as dot-products

of the vector ~φ and its derivatives. The only term that cannot be written in
this form is the last one. The other terms can be written as

S =

∫
ddx

(
1

2
(∂µ~φ) · (∂µ~φ) + t0~φ · ~φ+ u0(~φ · ~φ)2

)
. (41)

b)As usual

t0 = ZtZ
−1
φ µ2t (42)

u0 = ZuZ
−2
φ µεu (43)

v0 = ZtZ
−2
φ µεv (44)

In the second problem we saw that the linear term in the beta functions comes
from the powers of µ in the above equations. More specifically, the coefficient
in front of ε is equal to d minus the dimension of the corresponding operator.
Hence

c1 = 2, c2 = c3 = ε (45)

c) A fixed point is a solution of the set of equations

βt = 0, βu = 0, βv = 0. (46)

Using the expressions for the beta functions we find the following solutions

1. t = 0, u = 0, v = 0,

2. t = 0, u = 0, v = ε
72 ,

3. t = 0, u = ε
8(N+8) , v = 0,

4. t = 0, u = ε
24N , v = (N−4)ε

72N .
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In principle there is mixing between operators with the sane scaling dimen-
sions. For this reason, the Z factor will be a matrix defined as

Oi0 = ZijOj . (47)

Let M be the matrix that diagonlize Zij . Then the interaction terms in the
Langranzian can be written as

Lint = giOi0 = giZ
ijOj = (gΛ−1)i(ΛZΛ−1)ij(ΛO)j = g′iZ ′iO′i (48)

where the primes denote the diagonalized quantities. The scaling dimensions of
the diagonalized operators minus the spacetime dimensions are then equal to
the derivative of the beta function at the fixed point (see Peskin & Schroeder
pages 428-435).

A priori we don’t know which combinations of operators appearing in the
Lagrangian diagonalize the Z matrix so instead we have to diagonalize the
matrix

Hij =
∂βi
∂gj

, (49)

whose eigenvalues hi satisfy

hi = ∆i − d (50)

The first fixed point corresponds to the free theory. There is no mixing
between the operators and their scaling dimensions are

∆m = c1 = 2, ∆u = ∆v = ε. (51)

For the other three fixed points there is mixing between the two quartic
operators and the scaling dimensions are

2)

∆m = d− 2− ε

3
, ∆1 = d− ε, ∆2 = d+

ε

3
, (52)

3)

∆m = d− 2− 2

3

N − 1

n
ε, ∆1 = d− ε, ∆2 = d− N − 4

3N
ε, (53)

4)

∆m = d− 2− N + 2

N + 8
ε, ∆1 = d− ε, ∆2 = d+

N − 4

N + 8
ε. (54)

d) A fixed point is more stable is the there are no relevant operators at the
fixed point. That is because we have to tune less bare parameters in order to
end up at the fixed point at some lower energies. However, in problem we see
that the stability of the fixed points change for N = Nc = 4. For N < 4 the
most stable fixed point (apart from the trivial one) is the third one and for
N > 4 the most stable fixed point is the fourth one.

7



Figure 4: These are the two RG-graphs depending on the value of N.
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