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1 Lecture 1 (January 29)

The subject of Field Theory is the dynamical systems (classical or quantum) with
continuously many degrees of freedom. Typically, there is some number of degrees
of freedom associated with each point of space x € R?. Examples are:

i) Electromagnetic Theory

Degrees of Freedom : E(x,t), H(x,t).

ii) Gravitation (general Relativity)
Degrees of Freedom = Spacetime metric g, (x,1).
iii) More exotic example: Dirac (electron-positron) field

Degrees of Freedom = Four — component (complex) Lorentz spinor 1,(x,1).

Main subject of this course is Quantum Theory of Fields. The states of quan-
tum fields with local interaction admit interpretation in terms of propagating and
interacting particles. Thus the theory of quantum fields is the basis of particle
theory.

Classical Field Theory

We start with a brief review of basic aspects of classical field theory. Fundamental
object in classical mechanics is the action,

= / L(g(t). d(t)) dt

the equations of motion are derived from the extremal action principle 4S5 = 0. In
field theory the coordinates are replaced by the field degrees of freedom,

q(t) — @(x,1),

and the action is written as a space-time integral
5— / £(D(x, 1), d(x, 1), VB(x, 1)) d*x dt
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Here & = ®(x,t) stands for a collection of fields (functions of x,t, representing
local degrees of freedom), which may include scalar fields, components of vectors,
tensors, spinors, etc. It is conventionally assumed that ® has finitely many individual
components. The function L is called the Lagrangian density, it depends on
®(x,t) and its derivatives over x and t, taken at the same space-time point (X, t).
Two remarks are in order.

1. The above expression is suitable for imposing conditions of the special rela-
tivity. The integration is over the 4-dimensional Minkowskian space-time,

dxdt = d*z .

Recall that in relativistic theory one deals with the 4-dimensional space-time with
the coordinates
ot = (2% 2t 2% 2°) = (t,%),

equipped with the “pseudo-metric”
dr? = 2 dt* — (da')? — (dz*)* — (da®)?.

The Lorentz transformations are those linear transformations of the coordinates z#
which preserve dr2. In what follows I will use the units in which®

Then
dr* = dz" dx,, where o' = (t,x), and =z, =(t,—x).

To ensure the relativistic invariance of the classical field theory it suffices to choose
L to be a Lorentz scalar.

2. In writing the above action I already accepted severe restrictions, namely,

S:/dtL, with

!These conditions are simply the convention to measure spatial distances and energy in the
units
[unit of length] = ¢ x [unit of time], [unit of energy] = h/ [unit of time] .



L:/d3x£(<1>(x,t),¢>(X;t)7V®(th))=

i.e. L is a dx integral of a spatial density £, which depends on @, ®, and VO,
all taken at the same point x. This means that the field degrees of freedom ®(x)
at some point x do not have a direct interaction with ®(x’) located at some other
point X', with |x — x'| greater then zero. Allowing such interactions would lead to
possible terms in L like

Lnonlocal = / F(@(X, t), q)(X/, t)) d3X d3X/

(“nonlocal interactions”). Nomnlocal interactions do not go well along with the rel-
ativistic invariance. For if S includes, say, double integrals over x (as above), rel-
ativistic invariance of S forces one to include the terms which are nonlocal in time
as well, like

/ F(®(t), &(t")) dt dt |

which evidently violate causality: The state in the future affects the dynamics now.
Locality and causality are deeply connected.

The above local form, L = [ L(®(x,t), (x,t), VI(x,t)) d®x, describes the dy-
namics in which the interaction occurs only between the degrees of freedom associ-
ated with “infinitely close” spatial points (through the V® in L).

Also, I did not include higher spatial derivatives of ® as the arguments in £. Al-
though such dependence would not violate locality (on a superficial level), including
such dependencies in a relativistic theory would require to add higher time deriva-
tives, like @, as well. Such dependence is not allowed in conventional Lagrangian
dynamics, which requires that the time evolution ¢(x,t) is completely determined
by the initial values of ®(x) and ®(x) at t = t,.

Anyhow, we start with the above local form of the action. In classical field theory
the field equations of motion follow from the action principle

05 =0.

Let us combine the spatial and time variable into the 4-coordinate x = (a*) =
(2%, %), with 2° = ¢, and write ®(x) instead of ®(x,); the Lagrangian density then
1s written as

C(@(a:),@,ﬂ)(x)) ,
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where

0 0
O %Z(%V)'

A simple exercise in functional analysis (look up the textbook, page 15 in PS)
yields the classical field equations of motion

o <8(af<§<x>)) - aifx)

Remark: Essential step in deriving (1.1) is integrating by parts. The total

derivative term 3 ar
dir — [ 6®(2) —————
[ g (o) a(@ﬂ(as)))

can be reduced to the integral over the boundary (Gauss theorem), which depends
only on the variations d®(x) at the boundary; this term does not affect the ”bulk”
equations of motion (1.1), which hold at each point x of the space-time. But if
the field dynamics is considered in a space-time domain D, with the boundary 0D,

the above term contributes to the variation of S via the variations of the boundary
values 09 (x) |eop of the fields,

/Dd‘*xau(...):/w 5q>(x)%dzu(x)

where d%,(x) is the normal® element of the boundary hypersurface dD. In this
situation the total derivative term contributes to the boundary conditions (see the
homework Problem 1). The default setup is D = full infinite space-time, with
the condition that ®(x) decays sufficiently fast at both space and time infinities
("scattering asymptotic conditions”); in this setup the above derivative term can be
ignored.

The task of the classical field theory is to find solutions of these equations with
such and such initial or boundary conditions.

~0. (1.1)

One of the most important general results about classical field theory is the
relation between symmetries and conservation laws known as the

2”Normal” means that d¥,(z)T"(z) = 0 for any T"(z) tangent to the boundary 9D, at any
point x € 9D.



Noether’s theorem (pp 17-18 of PS)

What is a symmetry? Suppose we have a family of continuous transformations of
the field variables
®(z) = ¢'(z) = F(z, ®(z))

such that the action S does not change
S[®] = S[P'].

The term continuous transformations means here that they depend on some contin-
uous parameter(s), F' = Fj, in such a way that

Fo(z,®(x)) = O(x) — no transformation .

(discrete symmetries is a separate story). Then we can take an infinitesimal trans-
formation

P(z) = P'(z) = ®(z) + € E(z, ®(x)) ,

where p
EF=—F
ds }320’
with an infinitesimal e. Substituting in the Lagrangian density, one finds
oL oL
' 0,9) = L(P,0, — E(z,® E(x,® 2).
£(,0,0) = £(08.0,8) + €| 55 P, 8) 4 5555 0,5 9) | + 0@

The invariance (i.e. the requirement that the action S = [ Ld*z does not
change) implies

[] = 8uj“(@,8u<1>,x),

with some J* which depend on our field variables in a local way (it may also have
separate dependence on z if F does). Transforming the left-hand side by parts one
finds

oL oL oL

A (WE(x,q>)) + {% — 0 (Wﬂ E(z,®) = 0,J".

Now, suppose that & = ®., a solution of the classical field equations of motion.
Then the second term vanishes, and we obtain the continuity equation

9, J" =0,
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where

JH(®,00,x) = % E(z,®) — J*(®,00, ),
1]

which holds as long as ® solves the classical field equations.

The continuity equation then implies a conservation law. Indeed, by the Gauss

theorem
}’{ Jhdy, = / O, J'd*r =0.
P D

Here ¥ = 0D is any closed 3-dimensional hypersurface in the 4-dimensional space-
time, and d¥, is the normal element of e,,,dz"dz*dz” of this hypersurface. Taking
the hypersurface to be a big slab between two equal-time hyperplanes and bringing
the spatial boundary to to the spatial infinity,

At

and also assuming that all fields decay at x — oo, one finds

Qt1 = Qt2 9

where
Qi = / 7 dx,

that is @) is an integral of motion for the classical field equations. Let me stress
again that both the continuity equation 9,J* = 0 and the conservation law % =0
are satisfied only if we take ® = @, (in terminology of QFT they are said to hold
“on shell”).



Energy-Momentum

The most common symmetry we encounter in field theory is the translational sym-
metry. Assume that the Lagrangian density £(®,0®) has no = dependence except
for that coming through the field variable ¢(x). It means that the dynamics looks
the same if we shift the space-time coordinates

r—r=x+a

by a constant 4-vector a. This can be viewed as the symmetry with respect to the
following transformation of the field variables

() > ¥'(x) = e + a),

which leaves the action invariant. This field transformation has the infinitesimal
form

P'(z) = ®(x) + da" 0,9(x) ,

i.e. in this example E(®,0®) = d,P. When we do this transformation the action is
going to stay invariant, but the Lagrangian density changes by the total derivative

£ =L+da’ d,L,

where the derivative in the last term can be written as 9, (6 £), and has the same

meaning as aﬂju in the general argument above.
Note that there are four independent symmetries associated with four compo-
nents of a*. Correspondingly, there are four Noether’s currents

oL
T = ——— 0,9 — o
y a(@ﬂq})ay oL,

which therefore satisfies the continuity equations
0, Ih =0 on shell .

This object is known as the energy-momentum tensor. It leads to four conserved

charges
E:/ﬁf&

and

P:—/ﬂ%& with =1,2,3.
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Of these, E is interpreted as the energy of the field configuration ®(x,t), and P is
interpreted as its momentum. Therefore one may take

T°Y = T) = & for the energy density,

and ‘ A
T°" = —T? =P" for the momentum density .

The spatial components 7%/ constitute the (spatial) stress tensor. It is interpreted
as usual: Consider any domain D = D? in the 3-dimensional space (at a given time).
The momentum of the field inside this domain is

Psz/ Pl(x) d*x
D

According to the pulse-momentum theorem,

d . .
7 P, = F},, the net force applied to the field inside D.

Since the interaction is local, this force must come from the surface forces,

%:—/’W x) do; = /arf
oD

Thus, dF" = T (x)do; is the force exerted by the field on the surface element do;.

Klein-Gordon Field

Let us consider a simple field theory known as the Klein-Gordon theory (it will
be our main example for some time). It involves a single-component scalar field
®(z) = ¢(x,t), and the action is

1 m?
— 4. | = b, 0 2 =
S /d:vb@ugoatp 29@}_
2

/ﬁf B¢——W@-f%ﬁ}

This form of the action shows that the theory is Lorentz-invariant, and the field ¢
is a scalar (i.e. ¢(x) has definite value at each space-time point z, independent of
the choice of the inertial frame). Variation yields the Klein-Gordon field equation

0, 0Mp +m*p=0%2p—Vio+m?p=0.
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Applying the above equations one finds for the energy-momentum tensor

1
T/uz - ;ﬁPauS@ - §guu (a)\@a)\(p - m2 902> )

where
guv = diag(1, -1, -1, —1)

is the usual Minkowski metric. Thus,

1
€= (¢2+ (W)2+m2¢2) :

and

P=oVp.

We see in this example that the energy-momentum tensor 7),, is symmetric,

Tw=1T,,.

Exercise

Show that in any Lorentz-invariant theory involving only a scalar field ¢(z) the
energy-momentum tensor always comes out symmetric, 7, = T, ,. Check that in
such theory all components of the antisymmetric tensor

M*Y :/ (2" T — 27 T"°] d’x

are conserved on-shell.

The equations of motion of the Klein-Gordon theory
0,00 +m*p =0 —Vio+m?p=0.

are linear. That is, any linear combination of solutions are again the solutions. (In
general, this property defines the free field theory). Therefore, general solution is a
superposition of ”"elementary solutions”. In the infinite space-time, one can take the

plane waves
—ip0 014 .
= TP with  p? = wy, 1= /p2 + m?

efipz



as well as the complex-conjugate waves?

gp(x) :/ d3—p (A e*ipz_i_A* eipit) _ (1.2)
2wy, (2m)3 VP P

This form represents general solution of the Klein-Gordon equation, which is bounded
at the spatial infinity.

3As usual
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2 Lecture 2 (January 31)

Before going to quantum theory, let us recall the Hamiltonian formalism of classical
mechanics and see how it looks for fields.

Hamiltonian Formalism

In Lagrangian dynamics with the generalized coordinates ¢' one passes to the Hamil-
tonian formalism through introducing the conjugate momenta

OL(q, g
pi:M,
q

and then excluding ¢ in favor of p, by solving these equations. The Hamiltonian
function H appears as the Legendre transform

:Zpiqi—L

The equations of motion then take the canonical form

OH

.i: H7 i = ’
pi = {H,pi} o
i gy gy 98

in terms of the Poisson brackets
of dg  9Of Og
{f.9} = Z 90 9 04 O,

In a field theory we have continuously many generalized coordinates ¢(x) (I assume
here a scalar field, for simplicity), labeled by the spatial coordinates x. In this case
the conjugated momenta are defined as

with the basic Poisson brackets
{r(x),¢(x)} =0(x—x).
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In the Klein-Gordon theory

and the Hamiltonian is

2

H= / d*x B 7 (x) + % (V@)Q(x) + m7 ©*(x)| . (2.1)

Of course, it coincides with the above expression for the energy, £ = [ T% d*x,
expressed through 7 rather then ¢.

Quantum Klein-Gordon field

We can try now to develop quantum theory of the Klein-Gordon field, following the
usual rules of canonical quantization. One starts with the correspondence

Classical Theory Quantum Theory
Phase space Hilbert space H
Pi» G Hermitian operators p;, " : H — H
H(p,q) H(pq): H—H

where the Hermitian operators ¢, p must obey the canonical commutation rela-
tions

@'05] =15},

Remark: In QM with finitely many degrees of freedom, in the Schroedinger’s quantization
one can take the space of square-integrable functions ¥(q) for H, and define the corresponding
representation

q"U(q) =q"V(q),

A D
pi¥(q) = L oq Y(q),

and H = H (P, 4). The time evolution of the state ¥(q) is governed by the Schroedinger equation

D) = ().

In principle, one can follow this prescription and introduce the operators

p(x),  7(x)

and demand that they satisfy the canonical commutators in the form

[6(x),7(x)] =id(x—x).
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Furthermore, one can take the space of functionals ¥[p(x)] as the Hilbert space H; it provides a
formal representation of the above canonical commutation relations through the identifications

The Hamiltonian then is
. 1 62 1 2 m?
H=| &Px|-=—— += — 2.
[ x| 3+ 3 (7 e

and it remains to find all solutions of the stationary Schroedinger equation

H¥[p] = EV[g].
Exercise: Show that this Schroedinger equation admits formal solution of the form

Uy[p] = Const exp {/ P(x)G(x — x')p(x) d®x d’x'}

Find the kernel G(x — x’). (At this point, do not worry when you discover divergent integrals).
Try to look for further solutions in the form

U, o] ~ / F(X1, ..., Xpn) p(X1)...0(xy,) exp { / 0(x)G(x — x)p(x") d3x d3x’} .

Although this straightforward approach, with certain refinements, would work in the Klein-
Gordon theory, it has a number of unpleasant features. One is that the scalar product in H has
to be defined through the functional integral

(%ﬂgg/ﬂM%MDm,

and certain care must be taken to give it a satisfactory definition (We are going to use functional
integrals, in somewhat different context, though). This and other features of the above represen-
tation in terms of the variational derivatives makes this approach somewhat cumbersome. Much
shorter route is based on explicit separation of variables, as we discuss below.

One observes that the Hamiltonian functional H[y] of the Klein-Gordon theory is
quadratic in the field variables ¢(x) and their conjugate momenta 7(x); this means
that the theory can be understood as the collection of harmonic oscillators (this
observation actually suggests the Gaussian form of Wy[y] in the above Exercise).
It is then straightforward to make linear transformation of the canonical variables
©(x), 7(x) which separates the variables into a system of non-interacting harmonic
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oscillators, and then quantize the individual oscillators. This transformations are
described in details in PS, and I refer to Sect 2.3 there for the detailed calculation.

Instead, here I will follow equivalent routine based on special symmetries of the
KG theory. Recall that the Lagrangian density is

1 m?
L=— Mo — — ?
5 upPo- P 290,

and observe that the transformation of the field
o) = ¢'(x) = p(x) + f(z),
where f(x) is an arbitrary solution of the KG equation
0,0" f(x) +m® f(z) =0
changes the Lagrangian density changes by a total derivative term
L(¢.0¢) = L(p,0p) +8,J7F ,

where .
J(x) = o) f(2)

(In writing this equation I have assumed that f is infinitesimal and neglected the
terms ~ f?). The situation meets the conditions of the Noether’s theorem. It follows
that every solution f of the KG equation generates a conserved current J%, such
that

OuJy =0  on shell
Explicitly

oL

Ji = — T =00 f—p0"f.

The corresponding Integrals of Motion are (at a time t)

A =[x (20050 = ¢ £ ) = [ P () 100 = 00 F) ) (20

where 7(x) = ¢(x) is the canonical momentum conjugate to ¢(x). The integrals A
are Lorentz scalars. This becomes explicit if one rewrites their definition in covariant
form

Afz/zdzu(ﬁ”wf—soa“f),
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where ¥ is any space-like 3-surface; because of the continuity equation the currents
J]‘f obey, the above integrals do not depend on specific choice of .

r t

In classical theory one straightforwardly evaluates the Poisson brackets

() = [ ex( 760960 - 11300

(This expression also can be written in the covariant form, in terms of the integral
over arbitrary X).

In quantum theory we should replace, as usual,
{A, B} —i[A B],
so that
g =i [ x (0009 - 70309 )

It is convenient to use standard plane-wave solutions of the Klein-Gordon equa-
tion

_ dwpt—ipXx ¥ _ _—ijwpt+ipx
fp =e P P 9 fp =ec v P 9
where
Wy = VP + m?
b .
Denoting

Ap:Afp, AL:AJ:;,
we find the commutation relations

[AP7AL/] = (27‘(‘)3 2wp 5(3)(1) _ p/) ;
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[Ap, Ay] =0 ; [AL AT ] =0.

These are the creation and annihilation operators. The above operators flp and AL
differ in normalization from ap and af, used in PS (see Sect.2.3)

flp =/ 2wp ayp ;
AI) = \/2wpaL i

Advantage of A, AT is their Lorentz invariance.

The Hamiltonian can be expressed through the creation and annihilation oper-
ators as

N dgp 1 PN Ao
— oy - T T
H —/ @n) 1 (Ap Ap +Ap Ap) , (2.2)
which indeed is the Hamiltonian of a collection of harmonic oscillators, one oscillator
per each wave-vector p, the associated frequency being wp. It is straightforward to
check that AL rises (and Ap lowers) the energy by the amount wy, namely
T At — At
[H,Ap] = prp ,

[H,Ap] = —wp Ap -

Similarly, for the momentum

P [ dxit Vi)

we have -
p:/@$Z%Q@%+4&)
Hence o R
[P7 A ] & AI) )

ie. AL adds p to the total momentum.

To find a physically acceptable solution of quantum KG theory it remains to find
appropriate representation of the above commutation relations in a Hilbert space
H. Classically, the Hamiltonian (2.1) is non-negative defined. Correspondingly,
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under physically meaningful quantization the quantum Hamiltonian (2.2) must be
bounded from below. Recall from the theory of harmonic oscillator that in order to
satisfy this property one has to assume that A contains the ground state |0) such
that

Ay |0)=0 for all p.

Just as in the harmonic oscillator, by applying the operators AL to | 0) one generates
the complete space of normalizable states. In QFT this is referred as the Fock space,

Hke = Fock space = Span {ALl ALQ e ALN | O)} .

The state | 0) is called vacuum state, or Fock vacuum. Note that the above basis
already solves the diagonalization problem for H: these vectors are the eigenstates
of both H and P, with the eigenvalues

E=wp +wp, +...+wpy + Ep,

P=p +p2+... +pn+ Py,
where Ej and P are the eigenvalues associated with the vacuum state | 0),
H[0)=Ey[0), PJ0)=Py]|0).

The basic vectors ALI ALQ e ALN | 0) are interpreted as the states of N identical
(Bose) free particles, with the momenta py, ..., pN-

The above expressions for the Hamiltonian can be rewritten as

~ dp 1 .. .
H:Eo+/ 5 b Ap

dp 1. . .
— —r = T
Eo /(271')3 4 [ApaAp]7

which of course is the sum of the zero-point energies of all the constituent oscillators.

with

There are two evident problems with the last expression:

(i) It is not zero, and moreover it contains seemingly meaningless factor §3)(0)
(recall that [Ap, AL,] = 2wy, (27)% 68 (p — P')).

(ii) The remaining integral over p diverges at large p.
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Note that these problem don’t seem to be as bad for Py, where we have

’p P i
P, = —[A, Al1=0
0 /(2w)34wp[p’ ol =0,

since the contributions of p and —p cancel pairwise. This is good, as we do not want
the vacuum to have any net momentum. But this seems to create another problem,
if one thinks that the energy and momentum should be the components of 4-vector
(Eo, Po). If Po =0 and Ey # 0, it seems the Lorentz invariance is broken.

To sort this part of the problem out, let us recall that we are dealing with a
system in which the degrees of freedom ¢(x) are attached to all points of the space.
For such system one expects that its vacuum energy Fj,, whatever it is, must be
proportional to the volume of the space,

EO = EV(S),

where ¢ is the vacuum energy density. This answers the question how to interpret
the (3 (0) factor: Recall that

(2m)° 6P (p —p') = / d’x ¢! PP,
and so the above nonsense factor in fact is
(27)% 6@ (0) = / Px — VO,

This also solves the problem of Lorentz invariance. The energy density ¢ transforms
as 00 component of 4-tensor (the energy-momentum tensor),

e={0|T"]0).
The Lorentz-invariance of the vacuum state | 0) only requires that
<O | ™ | 0> :507]#1/7 TIHV :dlag<+la_17_]-7_l)7

and we soon will have techniques to check that this equation indeed holds in the
KG theory. It is OK for a Lorentz-invariant state to have nonzero energy density.

Still, something has to be done about the badly divergent integral for this energy

density,
1 d?
Eo — < / —p wp .
2 ) (2m)3
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The integral diverges at large momenta, i.e. the divergent contribution comes from
small length scales. This is not too surprising, since our idea of the field theory was
to associate a degree of freedom with every point of the space, and there are contin-
uously many points in each finite part of it. One could assume that perhaps some
microscopic physics takes care of the problem, replacing the above mathematically
meaningless expression by the “cutoff” integral

1 d’p @ p?
=3/ 2m) P (A_)
where the “cutoff” factor ®(&) is close to 1 when & << 1 and decays fast at large &,
and A represents the energy scale beyond which the unknown microscopic physics
becomes essential.

Whereas introducing the cutoff rids us of mathematically meaningless expression,
needless to say it does not solve the problem of vacuum energy density, which now is
finite but completely undetermined. In many practical cases one can simply ignore
the problem. Large class of physical quantities are only sensitive to differences of
energies, and in such problems the vacuum energy is invisible. But in fact the
vacuum energy is measurable, in principle. Generally, if we want to be able to apply
QFT to physics, we need to know what happens when we couple it to gravity, and
gravity is very sensitive to the energy density. Even without gravity, suppose we
can confine our system to finite part of the space, say inside a box. Then we want
to know what forces it exerts upon the wall of that box. The last situation can
actually be realized in laboratory, and it leads to a measurable effect - the so called
Casimir effect. We are going to discuss it next, but let me make one more remark,
in order to clarify the nature of the problem.

When a divergent integral appears in otherwise sensible calculations, it usually
signals some ambiguity in the theory. Indeed, there is an ambiguity in the definition
of the KG theory. One can add a constant term to the Lagrangian density,

L — L+ Const.

This extra term is fully consistent with both relativistic symmetry and locality. Of
course this modification is completely irrelevant in the classical theory, since it does
not affect the equations of motion. But the Lagrangian density will pass this term
to the energy-momentum tensor, and finally to the Hamiltonian,

H — H — Const / d>x .
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One can now “absorb” the vacuum energy divergence into this constant. We write
Const = g9 — ¢,

where ¢y is the above ugly integral, and € is a finite constant (of the dimension
[Mass]?). The result is that the divergent integral disappears, but at the same time
we learn that the quantum KG theory in fact has not one but two parameters, m?
and e. This extra term we added to the action is the simplest example of what we
will call the counterterms.
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3 Lecture 3

Casimir Effect

To understand possible manifestations of the vacuum energy, let us now briefly
discuss the Casimir Effect. Originally, the Casimir effect refers to the situation
where we have two parallel conducting plates, of large size L x L, separated by a
distance a.

a

>

2

Due to the quantum nature of the electromagnetic field in between the plates, more
precisely, due to the effect of the plates on the zero-point energy of quantum elec-
tromagnetic field, the plates are attracted with the force

Force 2

— _hie—
12 €240 44

where it is assumed that

L >> a >> atomic distances.

Casimir effect in KG theory

Let us study the nature of this effect using our scalar field theory, the KG the-
ory, instead of the electrodynamics; the result is not going to be very different.
Since the real photons are massless (and to make calculations simpler), we will
assume that m? = 0. In macroscopic electromagnetic theory (valid at the scales
>> atomic distances) the presence of the conducting plates is taken into account by
imposing the boundary conditions E; = 0, B = 0 at the surface of the conductor.
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To mimic this situation we consider instead the KG field in the presence of two
plates with the boundary condition

e(x)=0 at the surface.

Let us concentrate attention on the field between the plates. In order to take into
account the boundary conditions, in this case we must use, instead of the functions
fo(x) and f;(z) above, the following complete set of solutions

2 . . m™n
iw t—ip; x :
Joyn(x,t) = \/j e@rntPIT sin | — x|,
a a

and the corresponding complex-conjugated functions f;” -

components of x parallel and perpendicular to the plates, x = (x, 2, ), and

Here x| and x, are the

, . T2n?
Wopn = \[PI+ 2
with positive integer and n,

n=123, ...

These functions solve the KG equation with m? = 0 as well as the boundary condi-
tions

fP|\7n| =0, and fPuv"’ =0

x| =0 x| =a

Exactly as we did in the infinite-volume case, we now introduce the operators

APH’" - /0 s / d2X|I [7% fpuv” - @fp”,n} ’

with [

and similarly for Al p|.n

that

Py replacing fp ». It is not difficult then to show

~

[Ap\lvn’ ALT‘ ,n’] = 2WPWL 57171’ (27T)2 5(p|| - p/H) )

and to compute the Hamiltonian of the part of the system residing between the
plates,

dPn 1
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where the last term comes from vacuum energy counterterm
a
(e — €o) / dx / d*x =al? (e —¢p).
0

We still have to demand that all the operators /AlpH,n nullify the ground state, since

otherwise H is unbounded from below. Therefore the vacuum eigenvalue of this
Hamiltonian is

L2 > d2p|| 9 7T2 7’L2 pﬁ + 77-277/2/0’2 2 2
Evaczgz/ (27’(’)2 p”+ 22 (I)< A2 >—CLL got+al €,
n=1

where I have introduced again the cutoff factor ® - without it this expression is as
divergent as it was in the absence of the boundaries.
Now, the term —a L? g is the divergent part of the vacuum energy counterterm.

It is ) )
L? dp, dp| P +pi
—alle, = - i 2 2 P
alie =" a/ (27) / (22 VPITPL A2 )

where I have separated the dp, and d*p| parts of the integral over d*p. After the
change of variables

pL=7T/a

it takes the form

L2 [ d? 272 2+ 7272/’
__/ dT/ Pl [ T (P / .
2 Jo (2m)? I a? A?

We see that the interesting part of the ground-state energy (rather, of the energy
per unit area of the plates) can be written as

g_@gz/(d;pr {iFm(”)_/OOO Fp|(7-)d7—:|7

n=1

1 p? + 72 72/
FpH(T):i\/PﬁWLWQTQ/az (D( ” A2 )

The Y F(n) — [ F(7) expression above can be handled with the help of the
Euler-McLaurin summation formula (see Appendix)

iF(m—/m F(T)dT:—%F(O)Jrz'/OO Pt +0) = F(=it £0) ) (54

where

627rt —1
n=1
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which is valid provides F(7) is analytic in the right half-plane of complex 7. The
first term

1 1 d’p
_§FPH(O):_ZL / ﬁ pﬁ (D(pﬁ/AQ)
does not depend on the separation a; it is interpreted as the surface energy. It
diverges, again signaling ambiguity. When there is a surface, a constant surface
term can be added to the action. We ignore this term since, being independent of a
it does not contribute to the force.
The interesting contribution is extracted from the second term, which involves

Z/ F(@t+0)—F(—zt+O)dt
0

627rt —1

The the shift ”+07” in the arguments in (EM) is important since the function Fy, (7)
has square-root brunching points at the imaginary axis. Note that if it was regular,
the integral would vanish in view of the obvious 7 — —7 symmetry of Fy, (7). In
fact, one can take advantage of this symmetry to write the integrand as

o [ Pt © P
2/ (it +0) (it — 0) dt:—2/ Sm F(it + 0) it
0 |

627rt —1 627rt -1

p|la/m

where the last form reflects the fact that the function Fy, (7) has the branch cut

from i|p|a/7 to ico (and from —i|p|a/7 to —ico). We have, at |t| > a|p|/7

, 1 [xe2 pj — mt?/a’ 1
%m F})H (Zt + 0) = 5 ? - pﬁ P (T = 5 GPH (t) .

Note that the factor (2™ — 1)~! makes this integral fast convergent at large ¢, even
without the cutoff factor ®. At large A >> a~! this factor has no effect, and can

be dropped,
[m2t?
Gp\l (t) — ? — pﬁ .

The interesting contribution to the vacuum energy then is

B / dt / d’py w22 e
627rt —1 |p‘||§7rt/a (27T)2 CL2 I

where I have interchanged the order in which the integrals are taken. The integral
over pj is evaluated in closed form

71'2752 3
/ 2 dp? w2 , L [mt
0 am Ve TV T \a )
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The contribution to the energy is

w2 [ Bdt 72 T(4)¢(4)

6a3 J, e —1  6a3 (2m)*

o] xs—l dx
/0 . dr =T(s)((s).

er —

where I have used

(¢(4) = 7©1/90). Thus we find

FE 1 w2
ﬁ:ae—éF(O)

The contribution a € is not too interesting - there is the same term in the vacuum
energy density outside the space between the plates, and hence this term does not
lead to any force. The interesting term —7?/1440 a® shows that the plates attract;
the force (per unit plate area) is

Force 72 he

L2 480a*°

Let me stress that this result is completely independent of the form of auxiliary
cutoff factor ® - this is exactly what we want from quantum field theory. Another
useful observation is that in order to obtain this result we don’t really need to send
A to Planck’s energies or something, it suffices to have a* >> 1/A%.

In the real case of electromagnetic field the calculations can be done in very
similar way. The resulting force is twice as large, due to the fact that photon field
has two degrees of freedom for each p, as the photon has two polarization states.

Few words about the a-independent term

o0
FO) = [ deVER(E/N).
T Jo

It does not contribute to the force, but still needs some interpretation. It is divergent,
and it is easy to design special counter-term to absorb this divergence. But it is
instructive to think about real case of electromagnetic field and real conducting
pates made of atoms, conducting electrons, and all that. In this case the cutoff
represents the limit of validity of the macroscopic electrodynamics, and the cutoff
energy A in this expression should be taken around atomic energy scale. Having
sufficient knowledge about the microscopic structure of the conductor we could in
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principle calculate the cutoff factor and hence this contribution in terms of the
atomic parameters. The nice feature of the above result is in that it predicts some
attractive force between the plates which is completely independent of all these
microscopic details. This points to another area where quantum field theory applies,
when it is not that we can’t know the short-distance physics, rather we don’t want
to know. In this area the quantum field theory describes universal, i.e. not too
sensitive to microscopic details, properties of matter.

Appendix: Euler-Maclaurin formula

Let F(7) be a function analytic in the right half-plane, and decaying at Re 7 — 400
sufficiently fast, so that the integral fooo f(7) dr converges.

Start with the integral
/ F(r)dr
I = _—
Co 627rz7' _ 1

where the integration is over the contour C' which encloses all positive integer points
T =1,2,3,..., as shown in the left figure.

ImT ImT

1 2 3 4 5 ReT Ret
— 4 —»}—o—o—o—o—o—o—>

The integrand has poles at the integer points 7 = n, with the residues F'(n)/2mi.

Therefore -
I=> F(n).

n=1

On the other hand, the integral can be split into two parts

L Lo
Co o _
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where C is the part of the contour Cy that lays above the real axis, and C_ is the
part below the real axis. Note that the factor

1
eQﬂ'iT -1

decays fast into the lower half-plane, hence the contour € can be rotated into the
lower half-plane to go along the contour C'"_,

[:/ M:_i/“’ F(—z’t+0)dt+/ F(r)dr

- 627ri7' -1 e27rt -1 627m'7' -1 ’
where for the straight part of C_ I have changed
T = —it,

and C”_is the small quarter-circle below the real axis, seen in the right part of the
figure. It is easy to check that in the limit ¢ — 0 this part of the integral yields
—F(0)/4.

On the other hand the factor (e*™™ — 1)~! does not decay into the upper half
plane, but one can write

L 1
6271'1'7' -1 o e—27ri7' -1 ’

where the second term do decay into the upper half-plane, so that

F(r)d & ~ P(it +0) dt
I —— / F(r)dr + / Flr)dr / F(r)dr +i / Pty 0)dt / ,
Cy ¢, € -1 € € € -1 cl

where the second term in the last form represents the contribution of the straight
part of C. (with 7 = it + 0), and the last term is the contribution of the small
quarter-circle above the real axis; again, it is easy to check that this last contribution
is —F(0)/4 in the limit ¢ — 0. Adding I, to I_, and taking the limit ¢ = 0, yields
(3.1).
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4 Lecture 4

Quantum Klein-Gordon theory (Continued)

The space of states ‘H of the quantum KG theory is the Fock space, defined as the
linear envelope of the basic states

|P1, -, PN) = ALI ...ALN | 0),

where the vacuum |0) satisfies
A, |0)=0  forall p.

Here I have returned to the default case of the infinite Minkowski space-time, so
that the 3-momenta p; may take continuous unrestricted values.

The states |p1, ..., pny) are interpreted as N-particle states. Their scalar prod-
ucts follow from the commutation relations [Ap, AL,] = 2w, (27)36®(p — p). In
particular, for the one-particle states

(p|p)=2w, (27)° 6P (p-p).

Since the operators AL are Lorentz invariant (only the momentum p transforms
under the Lorentz transformations), the particle have zero spin. Since the creation
operators AL commute, the N-particle states are symmetric with respect to permu-
tations of the momenta p; - the particles are bosons.

The spectrum of the energy-momentum operator (ﬁ — Fy, f’) is the composition
of spectra of the N-particle states. In the space of vectors (E — Ey, P) the vacuum
resides at the origin of coordinates, the one particle states form the mass-shell hyper-
boloid (E — Ey)? —P? = m?, the two-particle states fill the inside of the hyperboloid
(E — Fy)? — P? = 4m?, etc.

E-By
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Correspondingly, the spectrum of the operator M2 = (H — E)2—P? has two discrete
components, 0 and m?, and continuous part from 4m? to infinity.

Klein-Gordon propagator

By their definition, the creation and annihilation operators AL, flp are the Fourier
components of the local field operators ¢(x) and 7(x),

B(x) = / dyu(p) [Ap + AT, P,

7(x) = / dp(p) iwp [ — Ay + AT_p} e

where I have introduced special notation for the Lorentz-invariant measure on the
mass shell,

1 d®p
d = — .

Exercise: Check that the measure du(p) is Lorentz-invariant. An instructive way to
do that is to check the identity

)= [ a5 n, ),
p9>0
i.e. we have

4
[ o) Fop) = [ Es 2w s, — ) o).

The operators ¢(x) and 7(x) are the ”Schroedinger”, or the “equal time” field
operators. As defined, they obey the canonical commutation relations

[(x), p(x)] = =i 8% (x - x).

As is common in quantum mechanics, it is often useful to trade the time evolution of
the states for the time evolution of the operators. This is known as the Heisenberg
picture. In our case, introduce the Heisenberg field operator

~ iHt A( ) —iHt

o) = p(x,t) =" p(x)e : r = (x,t).
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In terms of the creation and annihilation operators it is
o) = [ due) [Ap fy(a) + Ay fo(2)].

where as before f,(z) = e™P'"P*_ TLet us compute the commutator [¢(z), p(z')].
Then

@(X) = @<X7t = O) ) ﬁ(X) = 8t@(xvt) |t:0 .

Commutators

It is interesting and instructive to see how the canonical commutators of the ” Schroedinger”
operators extend to the Heisenberg field operators ¢(x). For this calculation, it is
useful to write

where

b () = / au(p) Ap £2(2),  pole) = / dp(p) AL fole).

The operator ¢, () contains only the creation operators AL; it can be interpreted as
an operator creating particle at the space-time point z; likewise, ¢_(z) absorbs the
particle at the space-time point x. Since ¢_(z) obviously commutes with ¢_(z’),
and the same is true for the ¢, component, we have

[p(x), ¢()] = D_(z — 2') = Dy(z — 2'),

where

Explicitly
D_ (X, t) — / d,u(p) e—iwp t+ip x ’

Do(x.t) = [ dup)eietwx,
Some properties of these integrals are worth mentioning.

i) The integrals for D_(z) and D, (x) are Lorentz-invariant, i.e. if two 4-vectors
x and 2 are related by a Lorentz transformation, 2/ = Az, then D(z) = D(z').
Indeed, the integrals can be written in explicitly covariant form, say
d*p

D_(x :/ — 2 6(ptp, — m?) e P
( ) p0>0 (271_)4 ( H )
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Then the change of the integration variables p = A~!p’ verifies that D_(z) =
D_(Az). Similar representation exists for D (z).

ii) The integrals are not absolutely convergent. It is usually convenient to com-
pute such integrals as some limiting values of absolutely convergent integrals. In
our case it can be done by considering the integrals at complex values of the time
variable t. For instance, the above integral defining D_(x,t) converges absolutely
if ¢+ has negative imaginary part (remember that wy, is positive), therefore this
integral defines the function D_(x,t) of complex variable ¢ which is analytic in the
lower half-plane of the complex t-plane. Then, for real ¢ we need to take the limit
lim., o D_(x,t+ie€) (this is usually written as D_(x,t—1i0)). Likewise, the integral
for D, defines the function D, (x,t) of complex ¢, analytic in the upper half-plane,
and for real t we take D, (x,t + i0).

Let us consider the case of real ¢ such that the 4-vector x* = (t,x) is space-like,
:E“:L‘M:tQ—XQ <0

(in this consideration we assume that x is real). In the complex ¢-plane we are
looking at the segment
—|x| <t < |x|

of the real axis. It is easy to show that at this segment the we have
D,(x,t) = D_(x,t) for — x| <t < x|

It suffices to verify this identity at t = 0, since one can always transform to the
frame where t = 0, as long as z* is space-like. For ¢ = 0 we have

D_(x,0) = lim e P TPX ) (p) and D, (x,0) = lim e P PX 4y (p),
e——+0 e—+40

and the identity is established by the change of the integration variables p — —p.

Note that this argument also shows that Dy (x,t) return real values when ¢ takes

values within the above segment of the real axis.

It follows that the function D_(x,t), which was originally defined (by out inte-
gral) in the lower half-plane of ¢, in fact can be analytically continued, through the
above segment of the real axis, to the upper half-plane, and there it coincides with
D, (x,t) (defined, again, through its integral representation written above).
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Imt

D, (x,t)
,”1 + \
+X| Re t

X

\ . J

In other words, in fact there is a single function of complex t (I will denote it
as D(x,t)), analytic in both the upper and lower half-planes, including the segment
—|x| < t < |x]| of the real axis, and D (x,t) (D_(x,t)) is is given by its values in
the upper (lower) half-plane. In particular, for real ¢

D+(Xat) :D(X7t+10)7

D_(x,t) = D(x,t —10).

As we have seen, these two limits coincide when —|x| < ¢ < |x|, but outside this
segment they don’t. That means the function D(x,t) has two branch cuts in the
complex t-plane, from —oo to —|x/|, and from |x| to +oc.

It is not difficult to identify the geometric meaning of the branching points
t = %|x|. They represent points on the future and past components of the light
cone associated with the space-time point 0, that is the geometric place of all points
which can be connected to 0 by light rays. At fixed x the real ¢ line intersects
the light cone at two points £|x|. When t regarded as the complex variable, the
intersection points become exactly the branching points in the complex ¢ plane. At
real ¢, when crossing the light cone one needs to choose the branch of the analytic
function (similar to choosing a branch of /z at negative z). The functions D
and D_ the two branches corresponding to two ways of going around the branching
points in the complex t-plane.

Figure
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Let us come back to the commutator [@(x), »(0)] = D_(z) — Dy (z). Here I have
set ' = 0; in general case x has to be replaced by the difference z — z’. We see that
the commutator is equal to the discontinuity

[p(x,1),$(0,0)] = D(x,t —1i0) — D(x,t + i0).

When the separation = = (¢,x) is space-like the discontinuity vanishes, and we
conclude that

[p(x), ()] =0  for all space —like separations — x —z'.

This is important conclusion. Recall that in quantum mechanics commutator
of two operators allows one to determine how, in a given state, the measurement
of one observable can affects results of the measurements of another observable.
Our calculation shows that the measurement at some space-time point x can not
affect measurements at the point 2’ as long as the separation x — 2’ is space-like. It
expresses the causality of the quantum field theory. This is general requirement of
quantum field theory called the local commutativity. It states that for any local
fields Oy (x), O2(2") we must have

A~ A~

[O1(2), Oz(2")] =0 for all space — like separations r—a.

The discontinuities across the brunch cuts |t| > |x| do not vanish, so when
the separation is time-like the commutator takes non-zero values. We see that the
commutator has its support inside the light cone.

Consider now the expectation value (0 | ¢(x)@(z') | 0) of the product of two
field operators. In the KG theory this expectation value can be expressed through
the same analytic function D(x,t). Indeed, since ¢_(x) | 0) =0 and (0 | ¢, (z) =0,
we have

(0] o(x) (') [ 0) = (0] ¢_(z) ¢4 (2') | 0) = D_(z — 2') = D(x — x',t — ' —0).
If we interchange the positions of the operators, by similar calculation
(0] ¢(2") p(x) | 0) = Dy(z —a') = D(x — X', t — ' +i0)

Thus, these expectation values are described by the function D(x,t) taken at the
upper or lower edges of the light-cone branch cuts
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Important role in our future studies will belong to the time ordered expectation
values
Dr(z —1') = Dp(x —x',t = ') = (0| T(p(x, 1) ¢(x',1)) | 0)

where the symbol T signifies the time ordered product of the operators,
. . o(x,t) p(x', t) for t>+t
T(SO(X7 t) (p(xl7t/>) = ~ / / ~ /
S(x ) p(x, ) for t<t

This expectation value is also called the Feynman propagator. One can visualize
it in the above drawing by first considering complex values of ¢ along the contour
Cr, and then taking the limit when this contour is brought to the real axis; Dg
corresponds to the values of D along Cr.

The Feynman propagator can be written as

D_(x,t) = [ du(p) e~ “pttPx for t>0
Di(x,t) = [ du(p)eiwet=iPx  for t<0’

DF<X7 t) = {
but the most convenient representation is given by the 4-dimensional integral
d dd P o—twttHipx
DF(th):/ - / p3 226 2 27
&p 2T (27m)3 w2 —p?—m

The integrand has two poles, at w = *wp, and the integration contour Cy for w
goes around these poles like this

34



If t > 0 the integrand decays exponentially into the lower half-plane of the
variable w, and one can perform the integration over this variable by closing the
contour around w = wp. The integral reduces to the residue at this pole, which
yields D_(x,t). Similarly, when ¢ < 0 the integration contour can be closed around
the pole w = —wp, and the residue calculation yields D, (x, ).

This integration prescription is usually expressed as

D ( ) / dw d3p ie—z’wt+ipx / d4p ie—z‘pu zH
xT) = —_— = .
! 21 (21)3 w? — p2 — m?2 + i0 (27)2 pup* — m2 + 0

This form of the Feynman propagator is explicitly covariant. It also shows that
Dy (x) is the Green’s function of the KG equation,

(0,0 + m?) Dp(z) = —i 6 (x).
Note that the functions D4 (z) satisfy homogeneous KG equation
(0,0" +m*) Dy(z) =0,
since in the KG theory the Heisenberg operator ¢(x) itself satisfies homogeneous

KG equation.

Exercise. The Feynman propagator is defined as
Dr(x,t) = 0(t) (0] ¢(x,1) ¢(0,0) | 0) +6(=1) (0| $(0,0) ¢(x,1) | 0).
Applying the differential operator 9,0" + m? and using the equal-time commutation relations
[F(x, 1), p(x' 1)) = =i 6@ (x —x') |

confirm that
(8,0" +m?) Dy (x) = —i 6W(x).

35



Finally, let us consider the “euclidean”, or “imaginary time” correlation function.
It is defined in terms of the function D(x,t) taken at pure imaginary values of the
time variable. Namely, let
t=—1i Ty ,

with real x4. Then
Dg(x,x4) = D(x, —ixy),

i.e. Dg is the function D with ¢ taken along the contour Cfg in the complex t-plane.

A CE

\/

+1 e +x|

Note that this contour can be obtained from Cg by 90° rotation.

As is well known, by taking pure imaginary values of ¢ one converts the Minkowski
space-time into 4-dimensional Fuclidean space, since

—dr? — ds® = da? + dx?,

and the Lorentz symmetry becomes the orthogonal group O(4) of rotations of the
the Euclidean 4-vectors
Tg = (X7 .T4)

The function Dg(xg) is called the Euclidean correlation function of the KG
theory. We will discuss its significance later. For now, let us observe that since Dg
is related to Dg simply by rotating the time contour, it satisfies the Euclidean-space
version of the inhomogeneous KG equation

92

(m* — a_xz — V?) Dg(x, z4) = 6(z4) 68 (x),

or in symmetric form

(m2 — AE) DE(]:E) = 5(4) (IE) R
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where Ag stands for the 4-dimensional Laplacian. This equation is easily solved by

Fourier transformation
d4pE e!PETE
Dg(7g) = /

2m)4 p2 4+ m?2’
B

where the integration is over the 4-dimensional Euclidean momentum space, pg =
(p,ps), and p% = p?>+p3. Note that now the integrand does not have singularities in
the integration domain. Also, unlike the Minkowski space version of this equation,
the solution is unique if we demand that Dg(zg) decays at the Euclidean infinity
rg — o0. By introducing auxiliary integration, one can write this function as

0 4
Dg(g) = / dT/ S e e, (4.1)
0 (2m)*

This form is known as the Schwinger’s proper-time representation.

Clearly, the above Euclidean momentum space integral for Dg(zg) is related to
the covariant 4-momentum integral for the Feynman propagator. The correlation
function Dg(x,z4) is the analytic continuation of Dg(x,t) obtained by rotating the
time contour Cf to Cg. Correspondingly, the integration contour Cr in the complex
w-plane is rotated by 90° to the contour Cg.

A

This example suggests that some analytic characteristics of the KG theory, and
perhaps more general QFT, may take simpler and more symmetric form when con-
tinued to pure imaginary time. This idea can be refined with the help of the path
integral formulation of quantum mechanics, which we consider next.
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5 Lecture 5

Let me briefly review the method of path integral in ordinary quantum mechanics.
Here 1 will combine it with the idea of analytic continuation in the time variable.
We will start with the ”time evolution” in pure imaginary values of the time pa-
rameter. (Besides technical advantage of improving convergence of the integral, the
imaginary-time path integral makes evident remarkable relation to classical statisti-
cal mechanics.) The real-time transition amplitudes can be recovered by analyticity.
For derivation directly in real time see Sect.9.1 of PS.

Path integral in Quantum Mechanics

Given a quantum mechanical system, with the space of states H and the time-
independent Hamiltonian H, most problems can be reduced to the calculations of
appropriate matrix elements of its time-evolution operator,

(f et ).

In terms of the stationary states | n) this can be written as

Doy (nliyenir,

n

In a typical problem, the energy spectrum FE,, is bounded from below, E, > Ej, and
E,, grow to infinity with n. The above expression is a sum of oscillating terms, and
we would like to have an efficient mathematical tool to sort them out. It is useful
to consider this sum at complex values of t. If the number of states does not grow
exponentially with £ (and in ordinary quantum system it never does), this sum
converges absolutely if ¢ has negative imaginary part; thus it defines an analytic
function of ¢ in the lower half-plane. The real-time matrix element is the limiting
value of this analytic function. One can start with pure imaginary t,

t=—iT1,

and try to evaluate the matrix elements of the corresponding bounded Hermitian
operator

(f e n T |4y,

anticipating that the real-time answer will be then obtained by analytic continuation.
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Consider a system with one degree of freedom ¢, and assume that the Hamilto-
nian operator is “local” in the basis which diagonalizes ¢; this means that the matrix
elements

(a1 H|d)
have a support restricted to ¢ = ¢’. Most typical Hamiltonian belong to this class,
for instance for H =  p*> + V(q) the above matrix element is (% = 1 from now on)

—% (g —q)+V(g)o(qg—q').

In such cases it is possible to develop a path-integral representation for the matrix
element

(ar | e [ qi) -

The composition property

(g | e 1 4m) | g,y =/<qf e ™ 1 g) (g | e ™ | ¢:)dg

can be applied repeatedly to reduce the above matrix element to the composition
of the matrix elements with arbitrarily small “time” intervals AT,

n—1 n
{ar | ™7 L as) =/ 1T dax T (a1 27 [ ara)
k=1 k=1

where ¢y = ¢i, ¢n = ¢, and A7 = 7/n. In the limit of small A7, as the consequence
of the “locality” of H in the g-space, only the matrix elements (¢’ | exp(—HAT) | ¢)
with ¢’ close to ¢ will bring significant contributions to the integral.

To see this, consider again the Hamiltonian of the form

1 K
H:§p2+V(Q)-

It is straightforward to show that in this case the matrix element

Glg,q17) = (q | e | )

satisfy the differential equation of the diffusion type

0 / o 1 /
Gl i) = (=5 5+ V@) Glad ),

39



with the initial condition
G(g,4'10) = (g —q).
For V(¢q) = 0 the problem is easily solved,
1 _(a=d)?
2T

e
2T

This function indeed decays fast at |¢ — ¢'| >> /7. In the case of nonzero potential
V' the problem still can be examined in the limit of small 7. We write

G(q.q'|T) =

Glg.q|r) = e 7@
and look for ¢ of the form of the following small-7 expansion

o0(q,q")
T

o(q,q|t) = +alogT+b+T101(q,q)+ ...
Substituting this ansatz into the above diffusion equation one finds (I suggest doing
it as an Exercise)

(¢—d)

O-O(Q7q/):—7 CL:]./Q,

2
1 q
al(q,q’)z—,/ V(y)dy,  etc.
q—q q

The leading terms do not depend on V', and are the same as for the free case, and
o1 is the potential V' averaged over the interval [¢/, q]. The constant b = % log 27 is
determined by the initial condition at 7 = 0.

Because of the factor exp(—oo(q,q¢’)/7) the function G(g,q¢'|T) at small 7 is
sharply peaked around |¢ — ¢/| = 0 with the width /7. This is typical for the
Brownian motion, where R ~ /t (our equation 4s the diffusion equation). If the
potential V' is differentiable (which we assume), we have

7(a.d) = 3 Via) + 5 V(@) +O(7)

(I have used the fact that (¢ — ¢/)? ~ 7). Therefore, for finite 7 but large n (i.e.
small AT = 7/n) we can write

n/2 n—1
. 1
_Hr N T *-A{Qk}
(ar [ €777 [ qi) = Tim (27TAT> / (g qu> e :
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where

k1) Vige) + V(gr—
A{qk} Z{ QAQT —i—AT (Q)+2 (qr—1) ’

and A7 = 7/n, and it is understood that
G =¢i, and ¢, =qy.

Before the limit n — oo is taken, the integration in this formula can be un-
derstood as going over the piecewise linear “trajectories” ¢(7) running from g¢; to

qs-

When n — oo, A7 — 0, the function A{qk} in the exponential has formal limit

Alg) = [ dr | (dg(r)an) + v (a(r))
. 2

It coincides with the “imaginary time action”, i.e. the action associated with our
system, with ¢ replaced by —i T,

e Sla®l . _ (t— —it) — e Al

It is conventional to write the n — oo limit of the above n-fold integral as

QZ> :/ [DQ(T)} a(73)=4; eiA[q(T)]a

a(T¢)=qf

(qp | e H ™)

and to call it the (imaginary time) path integral, since the r.h.s involves the contin-
uous path ¢(7) from ¢; to gs.

Few remarks.
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1. The path integral method makes the most explicit use of the superposition
principle of quantum theory. The latter states that if some process can go several
distinct ways, the full transition amplitude is the sum of the amplitudes associ-
ated with each possible way. Here (when returning back to real time) we sum the
amplitudes associated with all distinct paths from g; to gy.

2. What kind of paths enter the path integral in the limit n — oo? Although it is
correct to think of the limiting paths as continuous functions ¢(7), absolute majority
of the paths entering the integral are not smooth curves. This can be observed
directly from the fact that for 7 — 7 — 0 we have |[¢(71) — q(72)| ~ /|11 — T2/,
not ~ |m — 7| as should be true for a continuously differentiable function. From
this point of view the two terms in the action play significantly different role. The
”kinetic” term 1/2 [ (dq/d7)? dr selects the class of the paths entering the integral,
i.e. those paths for which (¢(7 + A7) —¢(7))?/A7 remains finite as A7 — 0; in this
sense the factor exp ( — 1/2 [ (dg/dr)*dr) should be considered as a part of the
functional measure. The factor exp ( — [ V(g(7)) dT) weights the paths according
to their average potential energy.

3. Note that the symbol

1 n/2 n—1
[Dg()] = lim. (% AT) g dgy

contains divergent (in the limit) factor

2
1 n/ 7log(Z7rAT) L
= € T
21 AT ’

¢

where L = (7y — 7;) = n A7 is the “volume” of the imaginary time interval. This
factor is reminiscent of the irritating infinity we had for the vacuum energy in the
KG theory, and absorbing it into [Dgq(7)] is analogous to subtracting Ey from H.

4. We have derived the above path integral representation of the evolution
operator in the imaginary time 7. But one can repeat the above calculation step by
step, considering the paths in the real time ¢ instead of 7 (this is the form in which
the path integral is usually introduced in quantum mechanics, see for instance §9.1
of the textbook). In this way one arrives at the expression

i

(ar | 117 | q) = [ [Dae))eh 501,
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with the phase e replacing e~#., This of course is equivalent approach, although,
unlike the imaginary time scheme, the integrals involved are not absolutely conver-
gent. Usually, the most efficient way to handle such integrals is through analytic
continuation (in variables or parameters) which makes the integral absolutely con-
vergent, with subsequent taking the limiting values. The imaginary-time approach
simply makes this procedure explicit.

5. Generalization of the above construction to the systems with many degrees
of freedom ¢, is straightforward, if the Hamiltonian is of the form

1
H=) 5tV

one obtains

/ [Dgy] e=Alse()]

for the evolution operator. In more complicated cases the path integral in the phase
space can be useful; this is briefly discussed in Sect.9.1 of PS.

Relation to Classical Statistical Mechanics

At this point, let me deviate to discuss remarkable relation which exists between the
Path Integral in Quantum Mechanics (in its imaginary time version) and the Clas-
sical Statistical Mechanics. Let us recall some generalities of the classical statistical
mechanics.

Suppose we have a classical dynamical system with the phase-space coordinates
{P;,Q;} (I will use capitals here because the relation between these @; and ¢, ap-
pearing in the path integral is not going to be straightforward), and the Hamiltonian
H(P;, @;). In a thermal equilibrium state at a temperature 7" the probability distri-
bution of microscopic states is given by the Gibbs formula

1
PP, Qi) [ dPdQs = 274 77090 [T dPdQ; .

where § = 1/kT, and Z is the partition function

_ 1L dRdQi sy p0,)
Z _— / T e .
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Calculating the partition function is one of the main problems in statistical me-
chanics because the thermodynamic quantities are expressed through Z, say the
free energy is 8 F' = —log Z. Again, a typical form of the Hamiltonian is

H(PLQ) =Y S PR +UUQD)

In this case the integration over P, is easy to perform,

N

1 /27 2
Z=—|—= Zcon ;
N!(ﬁ) f

where N is the number of the degrees of freedom, ¢ = 1,2,--- , N, and Z¢ is the
configuration-space integral

Zconf = / H sz e_BU({Qi})

which contains most of interesting physics.

As a special example of such system, consider an elastic string whose configura-
tion is described by a function ¢(7), 7 € [0, L]; the values ¢(7) for all 7 within this
interval play the role of the configuration-space coordinates,

{Qi} — q(7) .

We also assume that the string lays in a potential well V' (¢), so that the potential
energy of the string is

vl = [ [viaey + (42,
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where the last term accounts for the elastic energy; to simplify the equations I have
assumed that the elastic string tension equals 1.

To evaluate the configuration part of the partition function, we must integrate
over the functions ¢(7) satisfying given boundary conditions at the ends of the
interval [0, L], say

q(0) =aq, q(L)=gqs,

with the statistical weights exp(—8 U[q(7)]). Thus

Zeont = / [Dq(T)] e BUla()]

With the above form of Ulg(7)] = A[q(7)], this expression is identical to the path
integral for the imaginary time transition amplitude,

1

Zcont ~ <Qf | et | i),

provided we also identify
g=1/h.

We see that quantum mechanics with a single degree of freedom ¢, and the Hamil-
tonian operator
~ 1 R

is related in this way to classical statistical theory of a system with continuously
many degrees of freedom ¢(7).

Correlation functions

In statistical mechanics one may also be interested in correlation functions. In our
example one may ask how the string positions ¢(7) at different points, say at 7y, 7,
..., Tn, are correlated in the thermal equilibrium state. In the drawing below I made
a trivial shift of the variable 7, so that from now on 7 € [—L/2, L/2].
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The correlations are described by the averaged products ¢(71)q(72)...q(7n), which
in turn are given by the integrals

(a(n) a(r2) . q(rn)) = 27 / q(11)q(72) ... q(rx) e [Dy(r)]

because Z ! e~AlMI [Dq(7)] is the statistical weight of the microstate ¢(7). It is
instructive to find out how these correlation functions are interpreted in associated
quantum mechanical problem.

Without loss of generality we can assume that
—L2<n<n<.<tnw<L/2.

The integration over all microstates ¢(7) can be performed in two steps: First, we
fix the values of ¢(7) at the points 71, 73, ..., Ty to be

Q<7_1)ZQI7 Q(TQ):CD, Q(TN>:QN7

and integrate over all ¢(7) subject to these constraints. After that, the integration
over ¢i,qi,...,qn is performed to complete the integral. Comparing this with the
path integral representation for the evolution operator, say

<QI ’ e_H(TQ—Tl) ‘ C]2> :/[DQ(T)] a(r1)=a1 6—A[q(7‘)]

a(r2)=aq2

we find
N

(atr)a(r)atr)) =27 [ | ] da| x g

k=1
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TR gy gn [ e T gy ) g [ e

(ar [ e H L2 ) g;)

Recall that in the coordinate representation the operator ¢ acts by multiplication

q¥(q) = q¥(q),

so that in this expression we can replace

/dq |dalel= q.

Then the above expression can be written as

<qf ‘ e_H(L/2_TN) qu_[:I(TN_TN—l) q\ . q/\e_]f[(Tl"l'L/Q) ’ q2>
which is best expressed in terms of the (imaginary time version of) Heisenberg
operators A A
qAE‘(T) — eH‘rqufH‘r

(1 = it), allowing one to write the above formula as

_gL . N ~ _gL
<Qf| e 1z Ge(™~) @e(Tn-1) ... ¢e(T1)e 3 | 4)

To simplify things further, let’s take the limit . — oo, thus turning to the correlation
functions of the infinite string. In this limit the exact boundary conditions, e.g. the
values ¢; and ¢y, become unimportant. Indeed, the states | ¢;) and | ¢f) can be
expanded in the stationary states | n) of the Hamiltonian H, say

la) =) In)(nla)=> [n)¥(a) .

where it is assumed that
(n|my)=adnm-.

In the limit L — oo the contribution of the ground state | 0) dominates, since all

E'n,fEO)A

other states are suppressed by the factor ~ e~ 2. Thus we have

(a(m)a(m).a(r)) = LLHONED —rn ) o) () e ) | 0)

Furthermore, note that )
Z={qs e ™" q)
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hence the first factor in the above equation equals 1 (in the limit L = o0), and we
have

(q(m1)..q(7v) ) = (0| Gr(7~) Ge(Tn-1)---gr(T1) | 0) .

Note that the operators here are arranged in the order of 7 increasing from the
left to the right. Let me stress that the Euclidean Heisenberg operators can not be
arranged any other way, as otherwise the product of the operators (the sum over
the intermediate states) does not converge. More generally, if we consider complex
values of 7; (which we will), the above product of the operators makes direct sense
in the domain

Reri <Rerp, < ... <Rery

where the sums over the intermediate states converge (hence the sums yield analytic
function).

To relate the above Euclidean correlation function to the real-time ones one
analytically continues to pure imaginary values of T,

Tk:itk—l—o,

where ”+0” shift indicates that if there is a branch cut along the imaginary axis the
values at the right edge are to be taken.
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6 Lecture 6

Previously, we have discussed the path integral representation in ordinary quantum
mechanics. The real-time transition amplitude is represented as a suitably defined
integral

(ar |7 | iy = [ [Da(0)] o €500,

q9(T)=qy

over all "paths” ¢(t) from ¢; to ¢y. Now I want to discuss how the idea of the path
integral can be applied to a relativistic particle.

Path integral for a relativistic particle

We have seen that the KG theory is the theory of spinless Bose particles, and we
expect that the Feynman propagator Dg(z; —z ) (and related Euclidean correlation
function Dg) admit an interpretation in terms of amplitude associated with the
particle propagation from x; to ;. Can we write such amplitude as an integral over
the “paths”?

In classical mechanics the action of a relativistic particle travelling from x; to x5

zf
S——m/ Vdzx, dzt = —m

where the integration is performed along a given path (generally described by a
parametric curve z#(s)) from z; to ;. In classical theory it is assumed that (dz")? >
dx? along the whole path (the particle velocity never exceeds the speed of light) the
time component ¢t = x° of z# can serve as the parameter of the path, and we can
write

18
(tgxy)
Vdt? — dx?,

(tixq)

Sx@®)] = -m /t_tf dtvV1—x2.

In quantum theory we may attempt to write for the transition amplitude

[ o),
paths(i— f)

where the integration is over “all paths” from z; to xy.
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The problems appear when we want to give a precise meaning to this expression.
On the formal side, we observe that the Hamiltonian associated with the problem,

H = +\/m? + p?

(where p is the momentum conjugated to x), is not “local” in the sense we discussed
the last time; the matrix elements (x | H | x’) do not vanish when x # x’ (check
it against your solution of the Problem 1’). More fundamentally, the problem is
about the class of the paths which we need to include into the path integral. The
expression dz, dz" in the square root in .S can be either positive or negative, de-
pending on whether dz* is time-like or space-like. One can try to exclude from
the integration the paths having space-like dz# anywhere, but it does not seem to
be right idea if we want to describe the propagator Dg this way. Indeed, unlike
the commutator, the function Dg(x,t) does not vanish outside the light cone (at
[t| < |x|). It is exponentially small if you go far outside the light cone, but it is not
zero. This is similar to a nonrelativistic particle in the classically unaccessible region
of its configuration space - the wave function is exponentially small but does not
vanish ("quantum tunneling”). Thus we have to admit the paths having space-like
dx* somewhere along them. Ones such paths are admitted, the Lorentz invariance
requires that paths in which dz® is allowed to take negative values (i.e. the paths
with the folds going “backward in time”) are admitted as well:
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X

For such paths x(t) is not a function, and the integral over [Dx(t)] does not apply.
Besides, whereas for the case of space-like dx* there is a natural choice of the branch
of the square root /dx,dx* in the action (e*® must receive exponentially small
contributions from the space-like parts of the path), we have no clear intuition
which sign to choose in the case of the time-like “backward in time” paths.

All these ambiguities are resolved by adopting the Euclidean (= imaginary time)
formulation of the path integral. Replacing as before

t:—iZL’4,

we have 1S — —A, where the Euclidean action is

A=m [ iy,

with explicitly positive expression
da?, = dxg + dx*

under the square root. In the subsequent discussion I will often omit the subscript
E for the Euclidean 4-vectors. With this, one can define the Euclidean amplitude

as the integral
/ e—A[path}
paths(z;—2xy)

over all paths connecting two Euclidean points x; and z¢; one expects that the real-
time propagator will be accessible through analytic continuation, as we previously
discussed.
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Note that
A[path] = my L[path],

where L[path] is just the Euclidean length of the path. T have replaced m by the
“bare mass” my; we will see that this parameter does not necessarily coincide with
the physical mass but requires “renormalization”.

By analogy with our definition of the path integral in ordinary quantum mechan-
ics, let us define this path integral as a limit of finite-dimensional integrals. Namely,
for given (large) number n, let us consider the piecewise linear paths from x; = 0 to
xy = x, each linear piece having fixed length A.

'
h
'

0

The overall length of such path is
L,=nA.

Let v be the unit 4-vector in the direction of the k-th piece; |v| = 1. In this
discrete approximation the path integral can be written as

i; e / (kf_ll du(vk)) oW (A ; v, — ).

Here du(vy) stands for the usual measure on S3, and the delta-function ensures that
the vectors A vy, add up to z, i.e. the path indeed is from 0 to x = z; — z;. Finally,
the sum over n must be performed since we want to include all paths, with arbitrary
length L.

The delta-function can be represented as

(4) d'P iP(x—AY vg)
) (AZ Vk—l') = We k)
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For fixed P the integration over [[ du(vy) splits into n identical integrals I(PA) =
[ du(v)eiser,

H/d,u(l/k)e_m”kpz [I(PA)]".

Certainly, the integral I can be evaluated explicitly in terms of the Bessel’s function.
However, there is no need in its explicit form. We are going to send A — 0 (in which
limit a significant contribution comes from large n). Therefore only the behavior of
I at small values of its argument is important. We find

I(PA) = A— A¢ P2 A%+ O(AY),

where exact value of the constants A = [, du(r) = 47 and £ = 1/8 are not

important. We have
I" ~ A" e—A2n§P2

Now the integration over P can be performed, and we obtain for given n
—2 _ «?
(47T nAzf) e 4€nal

Note that A enters here in the combination n A%, not n A as one could naively
expect. Attempting to take the naive limit

A—=0, n—oo with L =n A = finite

would lead to the propagation amplitude which vanishes at any finite |x|. This result
is not surprising. Our calculation was nearly identical to the well known probability
calculation for a Brownian particle. We know that a Brownian particle with typical
microscopic velocity v will be found, after the elapsed time 7', at the distance

T=0vVTAt

away from its initial position. Here At is the typical time between collisions. In this
analogy

A~DAL, n~T/At.

Thus we expect to have
2 =nA?,

in agreement with our calculation.
We conclude that the right continuous limit is achieved by taking

A—0, n—oo with s = &n A? = finite,
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and it is the parameter s that characterizes the geometry of the typical path; the
microscopic length L = n A becomes infinitely large in this limit. The absolute
majority of the paths contributing to the functional integral are extremely crumpled
at all scales, as the drawing illustrates:

The parameter s has the dimension of the [length]?; it is said that the typical path
has the fractal dimension 2.

Finally, there are two unpleasant factors to be dealt with before we can take the
limit A — 0. These are

A" e Mo nA _ e " (mo A—log A)
Consider mg as a parameter which can carry some dependence on A, and is free to
be adjusted (in the limit A — 0) so that

Amo(A) —log A — Em?* A? as A—0,

where it is m?, not mg, which remains constant in this limit. Then the above two

factors combine into

—m2¢&n A2 m?s

e — e

For large n the sum is replaced by the integral over s, and one obtains

/OO dS €—m2s / d4P €_SP2 eiP:c
0 (2m)* ’

which is exactly the Schwinger’s proper-time representation of the Euclidean cor-
relation function Dg(x) of the KG theory. Thus this correlation function admits
interpretation as the integral over the paths in Euclidean space-time. As we know,
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the Feynman propagator Dg coincides with the analytic continuation of this corre-
lation function back to the real time, x4, = it.

Remark: In our calculation above we have assumed that the linear pieces of
the discretized paths have equal lengths A. This is not essential, and is done for
simplicity only. One can change details of the finite-dimensional approximations,
but in the limit the same correlation function Dy comes out (though the relation
between the “bare” and “renormalized” mass parameters mq and m does depend on
the details of the approximation). This is an elementary example of universality.

In principle, it is possible to develop a theory of interacting relativistic particles
based on the idea of integrating over all the particles paths, including the paths of
many particles, with interaction events - ”"vertices”. But much more universal and
powerful approach is based on quantization of the field variables. In the associated
path integral, one integrates not over the paths of the particles, but over the paths
of the field variables, i.e. over all the "trajectories” ®(x,t) of the fields. Let us
elaborate this idea in the KG theory.

Path integral in Klein-Gordon Theory

Let us now apply the idea of the (Euclidean) path integral to the KG field theory.
In this case the role of the generalized coordinates ¢ is taken by the field degrees of
freedom (x), thus we have to replace

q — (p(X) ) Q<T> — SO(Xa T) = (p(xE) )

where 7 is the “imaginary time” which I will denote z4 below, and zg = (X, x4).
The euclidean action is obtained by substituting ¢ = —i x4 in the KG action, i.e.

A= [ sy {(am? (V)4 m? sﬂ _

1 m?
/ d4fL‘E |:§ (aMQO)Q + 7 4,02:| y

where © = 1,2,3,4. We are interested in the path integral

7 — / (D ()] e Alp(@)]

95



More generally, we may be interested in the correlation functions defined as the
ratios

(plaelen) . plon)) = 5 [ Dol e(@)plas) . plam)e . (01

Here and below I drop the subscript E and use the notation x; for the Fuclidean
vectors, unless stated otherwise. As we discussed before, when continued to complex
values of (x;)4 and specialized to (x;); = it;, these correlation functions yield the
time-ordered expectation values

(O] T(p(xa,tr) - ¢(xn,tx)) [ 0,
where ¢(x,t) denotes the real-time Heisenberg field operator.

Few words about the definition of the path integral in the case of fields. For the
path integral in quantum mechanics we had a definition in terms of a limit A7 — 0
of a finite-dimensional integral with discretized “time” 7. There are many ways to
build finite-dimensional approximations in quantum field theory. For example, the
4-dimensional space can be replaced by, say, the hypercubic lattice, in which z# take
discrete values

t =nt A, nteZ.

The derivatives and the integration in the action can be replaced by finite differences
and summations, i.e.

Quplo) = 5 (et ) =) [dr Aty

eM

(e# is the unit vector in the direction x); with this one can set
D] = hm H dp(x

In the Klein-Gordon theory such definition works more or less straightforwardly.
In more interesting cases defining the integral over [Dy] can become highly non-
trivial problem, which is closely related to the problem of critical behavior; many
subsequent lectures will be devoted to this subject. Let me also note here that in
the context of field theory the integrals like those above are usually referred to as
functional integrals (the term “path integral” is also used).

The action A of the KG is quadratic in . This makes it possible to evaluate the
above path integrals explicitly. I am not going to explain how these integrals are
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actually evaluated; this calculation is presented in § 9.2 in the textbook. Instead I
will derive the above correlation functions using formal properties of the functional
integral. The resulting formula is known as the

Wick’s Theorem:

e The correlation function of any odd number of fields vanishes,

(p(x1) ... p(xans1)) = 0.

This follows from the fact that the action A is an even functional of ¢, while in this
case the product of an odd factors ¢ in the integrand is odd.

e The two-point correlation function is

(p(x1)p(72)) = Dp(z1 — 22),
where Dg(x) is the familiar function
d*p 1 ,
D Y .
o) = | G

From now on I will usually drop the subscript E, so that D(z) will stand for this
function.

e The 2N-point correlation function

(p(r1) - p(r2n))

isasumof 2N —-1!'=1-3-...- (2N — 1) terms, each term corresponding to one of
(2N — 1)!l distinct ways of “pairing” (or “contracting”) between 2N field insertions
(1) ... p(x2n). A pairing of the insertions ¢(z;) with ¢(z;) is usually denoted by
an overbrace

1
Every contraction gives rise to the factor D(z — 2/),

o) p(a) = D(z— ')

The last rule of pairing can be expressed in a compact form, in terms of the
following
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Wick’s Recursion Relation:

(plar)p(es) - plan)) = ) Dlwr =) (p(an) - pleil] - o(an)),  (6.2)

where the “cancel” slash indicates that this insertion is dropped. This relation
expresses N-point correlation function in terms of the N — 2-point ones. When
supplemented with the condition (p(z)) = 0, it contains all the statements of the
Wick’s theorem ((1) = 1 by definition). Let us derive this relation.

Consider the functional integral representing the N —1-point correlation function,

7 / D] p(as) - plan) e A

Note that the product of the insertions starts with ¢(x2), and involves N —1 terms.
Make the following change of the integration variables

p(r) = ¢ (2) = p(a) + €(z),

where €(z) is an arbitrary infinitesimal function. The action changes as follows

Al +d = Al + [ dve(wn) [m* = A, Jolan) + OE).

where I have assumed that the function e(x) decays sufficiently fast making the
integration by parts possible. Here

A, ::Z

4 ( a )2
= ozt
is 4D Laplace operator. Since the change of integration variables does not change
the value of the integral, we have the identity

N

0= clor) [ DA plaa) - pher]- - plow) e

k=2

_ / 0z e(ay) (m? — A,,) / Dg] p(ar)plan) - plon) e
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As the function €(z) is arbitrary, we must have

(m® = Ag, ) (@) p(s) - p(an)) = D 6@ (@ — ) (p(wa) - plaeil] - () -

Assuming that the N — 2-point correlation functions in the right hand side are
known, we can think of this identity as of the equation for the N-point correlation
function in the left hand side. The solution has the form of our recursion relation
(6.2), where the function D(z — 2') solves the equation

(m? — A,)D(z —2') = 6W(z — 7).

The Wick’s theorem can be derived in many other ways. Direct evaluation of
the Gaussian functional integral is performed in the Section 9.2 of PS. Derivation
of equivalent rules in the operator formalism is explained in Sect.4.3 of PS.

The rules of the Wick’s theorem are conveniently represented in terms of dia-
grams. With every factor D(x — 2’) one associates a line connecting the points z
and a2/,

D(x—2') = r — 4

The diagram consists of the lines representing the contractions. For example

(@) (@) p(@s)p(aa)) = p(a1)p(x2) @las)p(za) +

+ two other ways of contractions =

] — T9 I T2 il )

L3 —ooon T4 xT3 Ty T3 T4
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7 Lecture 7

Interaction

The KG theory describes free particles. Its action is quadratic in the field variables.
We want to add interactions. This is done by adding new terms to the action. It
should be done in a way that preserves the locality. We can modify the Lagrangian
density by adding local terms involving higher powers of the field(s). Let us consider
an example known as the

' theory

It is described by the Euclidean action

Y o m? 5, A 4
A[go]—./d:cb(ﬁuga) +7g0 +Ig0 .

Here \ is a new parameter, the "coupling constant”.

As in the KG theory, one can be interested in the correlation functions

() plon)) = 270 [ (Dl o)+ plax) 49,

Now the action is not quadratic in the integration variables ¢, and the integral
cannot be evaluated in an explicit form.

Exercise: Performing the change of variables p(x) — ¢(z) + £(x) in the func-

tional integral defining the N-point correlation functions in ¢? theory, derive the
equation

(m2 - a) (o) pl@n)op(on)) + 2 (@) o) oipln)) =

— Z oW (2 — m;) {p(a1).oip(@)..p(n))

Equations of this kind are generally known as the Schwinger- Dyson equations.

Unlike the KG theory, the Schwinger-Dyson equation in the interacting theory is
not closed equation for the correlation function (p(x)...), since it involves (p?(x)...)
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which has no useful expression in terms of the function (p(z)...) itself. Even the
definition of the composite field ¢® may be a non-trivial problem (we are going to
consider it later on).

Practical way of computations is the perturbation theory, which generates a power
series expansion in the coupling parameter A.

Perturbation Theory

Perturbation theory allows one to evaluate the correlation functions as the power
series in the coupling parameter X\. Omne splits the action into the free-field part
(quadratic in the field variables ¢), and the interaction part, which includes the
terms of higher order:

A=A+ Ar.
The exponential exp(—.A4) is then expanded as

G_A = e_-AO (1 —A[—F%A%-l—)

Since Ajg is quadratic, each term can be evaluated using the Wick’s theorem.

To see how it works, consider the ¢? theory. In this case the natural way of
splitting is

.Ao = .AK(}, A] = % / g04(x) d4x

(later we will see that in actual calculations it is more convenient to include some
parts of the quadratic action - the so called counterterms - into A;, but at the
moment we ignore this detail). With this splitting, the power series expansion of
exp(—.A;) generates expansion in the powers of \.

Suppose we want to calculate such expansion of the two-point correlation func-
tion (p(x1)p(r2)). By its definition

(plaelaa)) =27 / (D] (1) (i2) =0 A1

Expanding the last exponential as prescribed, we have

27 [Deletaietan) (1-§ [ Fwds+009) e,
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The zero-order term is just the functional integral for the two-point function of
the KG theory. We can rewrite the previous expression as

Zo A

(p(a1)p(r2)) = — <90(x1)90(x2)>o—@/(90(561)90(962)904(f6)>od4x+.-. . (7.1)

where Zg = [ D[p]e ™ and (--- ) stand for the partition function and correlation
functions in the free theory. This expression represents the general situation: the
perturbation theory allow one to write the correlation functions of interaction theory
as a power series in the coupling parameter, the coefficients being certain integrals
of the correlation functions of the free theory. The role of the factor % will be
clarified later.

The correlation functions of the free theory are computed using the Wick’s rules.
In the above example, the first-order in A term involves the d*z integral of the
correlation function

(p(21)e(e2) ¢*(2))o = ((21)p(x2) () p(2)p(2)p())o.

This is a six-point correlation function of the free theory, with four points coincident
at x. According to the Wick’s rule, it can be written as the sum of

all=15

terms corresponding to different ways of pairwise contractions of the six fields in-
volved. Many different contractions lead to identical contributions. There are two
classes of such contractions with essentially different contributions:

(i) First, one can contract p(z1)p(ze) — @(x1)@(xy), and then contract four
factors ¢(z) among themselves. There are three possibilities for contraction of the
first factor, and once that is chosen, there is only one way to contract the remaining
two insertions:

3 ways 1 way
(2)p(x) p(2)p(x)

We find that such contractions brings in the contribution

3 % (1) wlra) @(x) (x) $(x) p(x) =3 D(a) — x) D(z — x) D(z — ).

62



(ii) Otherwise, we can contract ¢(z;) with one of the four identical factors ¢(x)
(4 ways), and ¢(x2) with any one of the remaining three factors p(z) (3 ways); this
leaves just two insertions (z), with only one way of contractions. Therefore there
are 4 x 3 = 12 identical contributions

12 % (1) 9(2) @(x) o(x) ¢(z) ¢(x) = 12 D(z; — &) D(s — ) D(x — x).

The resulting contribution ~ A in the brackets in (7.1) then reads

A

o] [SD(ml—atg)/d4.77D2(m—37)+12/d4xD(ml—m)D(x2—m)D(x—a:) (7.2)

Depicting contractions as solid lines

plr)p(a!) = v e—e2' - D(x—2)

the two terms are represented by two diagrams

3 x xlo—-f28}+12x[xl._o_.x2} (7.3)

where the loop represents the contraction

in (7.1), we find that the two diagrams in (7.3) come with the factors —\/S; and
—)\/Ss, respectively, where the so called ”symmetry factors” here are
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Similar structure is found in the higher orders of the A-expansion. The n-th
order term has the form

1 (_%) (o(x1)(s) [/ P'(y) d4yr>o (7.4)

n!

which involves the n-fold 4-space integration

U ¥'(y) d“yr =/<p(y1)so(yz)-~-so(yn)d“yl---d“yn-

The correlation function in the integrand is that of the product of 2 + 4n factors
@, two at x; and 9, and 4n at the integration points v, ..., y,, four factors at each
point.

Contractions of these field factors are represented by diagrams. The diagrams
are built from n + 1 contraction lines connecting two types of ”vertices”:

There are two ”external vertices” associated with the points x; and x5, with
exactly one of the contraction lines attached to each,

External points : Ty e— —e I3

and n "interaction vertices”, associated with n integration points i, vs, ..., Yn,
with four contraction lines connected to each of them:

Interaction points : ></1 >-<y2 e >Qn

Thus, in the order A\? the diagrams involve two external and two interaction
vertices, for example

Many distinct contractions are represented by identical diagrams. For instance,
the above diagram may represent the contraction

(1) SIO(yl)QIO(@/I)9};(y1)9ID(y1) sb(yz)szlﬁ(yz)so(yz)sa(yz) o(x2)
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as well as any one of 4 - (4!) equivalent contractions related to this one by inter-
changing of the contracted factors ¢ inside p?(y;) and p*(y»). Every such contraction
corresponds to the same product of the propagators

D($1 - yl) Dg(yl - yz) D(yz - 932) )

and since the contributions involve the integrations over the interaction points

/d4y1d4y2 (...)

the diagrams related by the interchange vy, <> v yield identical contributions. There-
fore the above contraction comes with the multiplicity factor

2.4 -4,

This factor almost entirely cancels the overall factor (1/n!)(—A/4!)" in (7.4), which

forn=21s
1 2N\
20\ 41)

leaving behind the overall factor (—\)?/3!. Finally, total contribution of the con-
tractions corresponding to the diagram in this example is

(=N)?

5 [ty Dl = ) D = ) Dl = ),

with the "symmetry factor” 1/S = 1/3\

This example illustrates the general rules of the diagrammatic representations of
the contributions in the perturbation theory, known as the

Feynman Rules (for ¢*)
To find A" contribution to

(o(@1)---w(rn))

1. Draw all diagrams with N external vertices associated with the points x, - -+, xy,
and n interaction vertices. Exclude disconnected diagrams with ” vacuum fragments”
(see below).
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2. For each diagram, associate
i.
v e——e 1 = D(z—21');

iii. Multiply by the ”symmetry factor” 1/8S.

ii.

3. Sum the values of all the diagrams.

Remark: These rules are generalized in a straightforward way to interactions
involving any powers of the field ¢,

A= / d'y [Al(y) ply) + AQZ(!y) P y) + AB?)(!y) ¢ y) + A4! eMy)+-- | (T.5)

Here I allowed the coupling parameters Ay = Ag(y) to be arbitrary functions of y (this
generally breaks space-time translation and rotation symmetries of the theory). The
interaction term may also include the terms linear and quadratic in . (Later, these
generalizations will allow us to use diagrammatic representations of the generating
functional and effective action.) The Feynman rules generalize to the case (7.5) by
including k-leg vertices

— e = —/d4y)\1(y), —— = —/d4y)\2(y),

Returning back to the homogeneous ¢* theory, let us take another look at the
diagrams contributing to the two-point function. We write

(peele) = |7 [DApteppteer ] « |2 @
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where Zj is the partition function of the free theory defined by Ay = Agg. The
diagrams we wrote down in the previous lecture actually correspond to the first
factor in (7.2). For this first factor we have

e ( xl._CL.m%( e e, 8 )

Observe that there are diagrams containing disconnected pieces, like the diagram
(c) above. This diagram has a fragment

3

which is not connected to any of the “external” points (x1,xs in this case). Such
fragments are called “vacuum diagrams” (or “vacuum fragments”). The value

D21 — ) x (— % / di D(:E—as)D(:E—:L’))

associated with the diagram (c¢) above is the product of the values of its parts,

T1 e—————o T2 — D(g) —1,); 8 = —% / d'zr D*(z — ). (7.8)

As follows directly from the Feynman rules above, this holds in general: the value
of any disconnected diagram is the product of the values of its connected fragments.
In fact, in computing the correlation function (7.7) the vacuum fragments should
be ignored because their contributions are canceled exactly by the second factor in
the r.h.s. of (7.7), which contains the partition function Z of the full theory. To
see this, consider again the diagram (c) above. In higher orders of the perturbation
theory we obtain infinitely many diagrams in which the vacuum fragment in (c) is
repeated many times,
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.88

n times

The value corresponding to n copies of the vacuum fragment is just

888 g

n times

the factor 1/n! being the extra symmetry factor associated with the permutations
of the fragments. The sum over n therefore yields

This simple analysis can be repeated with any other vacuum fragment. As the result
we obtain for the first factor in (7.7)

( ] &————e T3 mlo&cxg_k xlb—@—0$2+...>x

N J/
~”

sum of all connected diagrams

—
sum of all connected vacuum diagrams

Consider now the second factor in (

Dyple 0 e~
7 /W ’



Expanding in A; we find that this quantity is given by the sum of all vacuum
diagrams, which again exponentiates in terms of the connected vacuum diagrams.
That is

Z|Zy = exp (sum of all connected vacuum diagrams) (7.9)

so that the second factor in (7.7) cancels the contributions of all vacuum fragments.
Thus, if we are interested in the correlation function, the factor Z~! in the definition
of the correlation function can indeed be ignored if we simultaneously drop all the
diagrams with disconnected vacuum fragments.

Note that the above analysis of the “vacuum fragments” generalizes straightfor-
wardly to the case of interaction (7.5) with arbitrary z-dependent coupling constants.
In particular it is still true that the partition function of this more general theory
exponentiates in terms of the connected vacuum diagrams, as in (7.9). Of course in
this case the diagrams involve all the vertices in (7.6).

Let me comment on the interpretation of the above formula (7.9) for Z. The
first of the connected vacuum diagrams is given by the vacuum fragment in (7.8),

8 = —§D2(0)/d4x

Clearly, it contains an infinite factor

/ dlx = v,

where V® is the volume of the 4-dimensional space. This is the common feature of
the connected vacuum diagrams

As a consequence of translational invariance each of them contains this volume
factor. Therefore

7 = Zy exp ( — € V(4)> (7.5)
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where €7 is just the sum of all connected vacuum diagrams with the volume factored
out.
The functional integral

Z = / (D] e

can be interpreted as a (configuration) partition function of a classical statistical
mechanics. The classical system in this interpretation is a field ¢(z) in 4-dimensional
(Euclidean) space, with the potential energy U],

BUle] = 3 Al

where [ is interpreted as the inverse temperature. (f can be set equal to 1, again
by suitable choice of the energy units.) This is a spatially homogeneous system with
infinitely many degrees of freedom associated with all points in the 4-dimensional
space. Naturally, its free energy is an intensive quantity proportional to V. We
see that the quantity

got+er, where g0 = —log Zy/ VW

is interpreted as the specific (per unit volume) free energy of this system, the first
term being the specific free energy of the free theory and e; incorporating all cor-
rections due to the interaction.

Another way to look at the formula (7.9) is to recall the relation between the
path integrals and the matrix elements of the (imaginary) time evolution operator.
The path integral defining Z can be thought of as the T" — oo limit of the path
integral

/[DSO] @ -T/D=py(e) €

P(T+T/2)= f (T)

which represents the matrix element

(ps(@) ] e T | (@)

Here o; and ¢y are arbitrary “initial” and “final” field configurations. The evolution
operator inside can be written as

M= In)n | e
n

where | n) is a complete set of the stationary states; its T — oo limit then is

e T 10)0 ],
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where
EO =& V(g) s

(V®) is the volume of the 3-dimensional “equal time” section of our 4-dimensional
space). Because VW = T x V) comparison with the above formula (7.9) shows
that vacuum diagrams represent the expansion of the ground state energy in the
powers of A (hence the term “vacuum diagrams”). We will see later that all the
vacuum diagrams are highly divergent at short distances. This is similar to the
short-distance (high momenta) divergence of the vacuum energy of the Klein-Gordon
theory which we observed before. Proper understanding of the physical content of
these divergent terms is important in certain problems like the Casimir effect or
interaction to gravity.
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8 Lecture 8

Continuing our analvsis of the diagramnatic represent ation of the correlation fune-
tions let ns consider the diagraim expansion of the four- point funetion

(ol Jola)eles)elan) )

in the 24 theory. First. by applying the saine argiinents as before it is casv Lo show
that in this case (and indeed for any correlation [unction) the “vacuum fragments”
are again get canceled by the expausion of Z in the denominator. However. in this
case the discomnected diagrains remain even alter we drop the vacnum [raguients.
Consider the fivst few diagrams for the above four-point function.

T e 1y 1 Ty % / Iy

(1) (h ()

I .-ALL‘ B! A Iy 4 i) ‘

Iy e——— o | 3
(d) (r) (f)

The first three diagrams here represent the four point function in the free theory:
they consist of the propagators which heing connected to the external poiuls are not
connected to cacl other. These contributions are expressed in a sinple way through
the free-field two-point functions 7). The diagram (d) and similar diagrams are also
disconmected: they represent corrections to those two-point functions. The diagrams
(¢) and (f) represent the class of truly connected diagrams. By the structure of the

above diagram series it s natural to wril e
Colrdelen) o) o(e) ) =

(;(»1'1)53(-1'2]>< ?(-f"{){(-f'ﬁ)‘*'(?("'1)#(-1';) ><1:(~".’)§(<"l)> } <75(-f':)‘73(51'1) )(v«"(-"z)?(-?‘j)>+
Ll o lea Jeotas)eo o] )
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where (lie first three terms combine the contributions of the disconnected diagrams:
they are expressed in terins of the two-point functions. The connected diagrams are
incorporated in the last term which is called the connected correlation fetion.

Similar pattern is observed for the higher-order corvelation functions. There are
disconnected dinerams which s up into the lower-order corvelation functions, and
hesides there are truly connected ones, their smns define the conmected correlation
functions.

In fact the discomected diagrams can be efficiently sorted ot by using the so

called Generating Functional.

Generating Functional (PS Sect.9.2, 9.3)

Perturbation theory represents any correlation function as the sun of the Feynnan
diagrams. There are connected and disconnected diagrams. The vacuum bubbles
can be ignored as they are canceled out by the expansion of the normalization factor
7 ', The remaining discommected diagrams ave efficiently sorted out by using the
method of Generating Funetional. Although the following analvsis is done for the
case of 2! theory. it is uselul to keep i mind that all the arguments helow can be
repeated step by step for the generie interaction.

Let us define the Generating Functional as
i @) 1 .
o B 1 3 )
dﬂZE:m/JIVHWMWUWHAMHﬂmymMU. (8.1)
n=0N o

It depends on the anxiliary function /. and incorporates all n-point correlation

functions. By the definition

(ple) - ) Y (5.2

Lr;‘ J']_ ‘f: J'” = e . . )
0.J () 0 S (1) e

The generating functional can be written as
([J] = (exp / Jr)ete)dia | )

and therefore it 1s expressed as the ratio

¢[7] = Z[J1/ 210}

—I
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where

£

J| = / [Dip] el HeIgteRls mdg] (8.3)
is a partition function associated with the action
A;=A-— / J(eVte) dls .

For this reason the function J() is usnally referred to as an “external source”.
The sowrce-dependent action above is a particular case of generice theory witly
r-dependent coupling Ay () = —.J(r).
e ~ At
Ar= | do| = J(r) g () + T4 (1)

Therefore its partition function Z[J| (move precisely Z[J]/Z0) is given by a sum of
all vacmnn diagrams which now contain two kinds of vertices.

" = /d'.r.](.r'). = —A / dlr

By taking the variational derivatives, with respect to J{r) we just .convert the
one-leg vertices above ito the external legs - this ig the meaning of the fornmla
(R.2) above. Now, the st of all the vacum dingrams exponentiatesin terms of the

s of connected vacuum diagraans, Defining . . _ ,
ClJ] = exp W] (8.-1)

we conchude that the expansion of (his new funetional W] in terms of J will
generate the connectod correlation functions. namely

B 9| 1 *
W] =3 = / dlrg e dNe, W ) ) ().
nel T

where

WA - = it = L) - » 48 085) Ve

|



The functional 117[J] is called the generating functional for the connceted correlation
functions. In the KG theory one can evaluate the Gaussian funetional integral (3.3)
for Z|J] explicitly and find

L
Wien[d] = 2 / A rd T D — )T

L

which shows again that in the free theory all conmected correlation funetions but
the two-point one vanish.
Exercise: Using ¢[J] = exp W[ /], check by direet caleulation that
A Y S
VS (peara] = Celeeleg] )s
Al .
il ’(,rl.--- i) = (glan ) laa) S~
(o) () Y (s )elarg) ) - two other discomnected terms.

In meuty cases it is uselul to decompose the connected correlation functions [ur-
ther into more clementary “blocks™. Consider the dingrams for the connected fowr-

point function

(wler) b)) =

XK XX X

(a) (h) (¢) () (¢)

It is clear that some of these diagrams (like (1), (¢). and (e)) represent the corrections
to the “external legs™. This shows that the connected correlation funetions can bhe
expressed through so-called “amputated” correlation functions,

W e ny) = / h—[ dly, W, — .m)] Wl i)
' i |

where T used the shorthaud

Wir — ph= Wi e, y) = {olately))
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Let us give a graphical representation of this relation.  Denoting the connected
n-point correlation fumction by an cipty blob with n legs.

(ol ) s ¢ v Ta) Yo =

- - 2 w
we have -
X x ' (2)
- / —~C>— =W J(—-x’)

“
According to this definition the amputated correlation functions do not contain
neither external legs nor the corrections to them.  Note that by this definition
I’l]m,,(.r. y) S — y) is inverse (in the operator sense) to the two-point funetion.
i.c.

/ d'ySle —y) Wiy — o) =W =),

I the free theory this is the inverse of the function D e just the (Euclidean)

IKlcin-Gordon operator

Sylr—y) = (mz = Af)rﬁ'(‘”(.r —y).

Finallv. let us define the so called proper certiees (also velerred 1o as the “one-
particle irreducible correlation functions™). For n > 2 the n-point proper vertex
—T gy - Ly,) is the.sum of all diagrams coutributing to I'I-'(”)(m. o i) which
cannot he wade disconnected by antting just one line (please pay attention to the
minnus sign in this definition). In particular, in the ;' theory ren = —H]E,I,,),, (wliv?).

f.e. diagranunatically

]

N

but for the G-point [unctions we hiave in graphic representation

G



TR i + O similar terms

n)

where cach shadowed blob with n Tat points on it stands [or the proper vertex I
For the reasons that will hecowe clear later the two-point proper vertex deserves

special definition, namely

E

TN’ = S+ 1)

Its relation to the one-particle irreducible diagrams is as follows. Write
Sle =)= Sila = o) +E(& -4}

The function X(x — 1) is often referred to as the mass operator. It is the function
—¥ (again note the sign) which is equal to the s of all one-particle irreducible
diaerans [or the two-point correlation unetion. Indeed. denoting —X by the two-
poiut shadowed bloh we have

e 8 -
X x' = e & " I
@ xx’ xx' X %

The full set of diagrams contributing to 117

/ fo QQ
Wd— ] = ).(o———-—>0< | {___Q_‘X 1 X X £

can he obtained by by repeating the one-particle irveducible diagrams ina chain-
like manmer.

w |

Explicitly.

W=D-Ds«SsD+DsSxDxSaD—

|
-1



Here A+ 13 denotes a convolution

(A D) r =2 - / d'y Ale ) Bly -2,

Using
Sf(] w [ =17
where T = d'(r — ) is the nnit operator. it is strishtforward to cheds that S+ X

1s mdecd an inverse of 11,

Similarly to the above generating functionals ¢ and 117 we can define a generating
functional of the proper vertices. This functional. denoted T[], is called the

Effective Action (Sect 11.3-11.5)

It turns out that Tle] is related to the functional 1717 by the functional version
of the Legendre transforne. To give some motivation and also to remind what the
Legendre transform s, let us consider a magnel which in the absence ol an external
ficld is deseribed Dy a Hamiltonian {1, IF we add an external field 2. its internal
CHETEY 18
(NB)={(H)-MDB

where AL is the magnetization.

aF

o
and Fo= U = TS5 is the free energy. One can solve (he above equation for 3:
3= B, and define the thermodynmmnic potential

! o=

POA) = {F(B) + .UB’} ={(H)pan—T8§,
1Bl
so that _—
o
By = 2]
AV
I particnlar the equation
(D i
ON

deteruimes spontancous magnetization in the absence of external field. The trans-
formation relating @A) to F(13) is the Legendre transforn.
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Note that the above functional Z[J] is interpreted as the partition function of a
field statistical system with the Hamiltonian

Al ] / Haelala) e

i.e. the source J(r) plavs the vole of the external field in the above example. The
senerating lunctional W[ = log ¢[/] is then nterpreted as mins [ree enerpy.

W[l = -F

7).

I particular
a1

aJ(r) (85)

(.)(.('. I]]] — <\;(_!') >;
where {--+); denotes the expectation value e the presence of the source J. Let us
asstne that the above equation can be solved for J, defining the inverse functional

J=Jlr. o))« J(o ol [J(D)]]) = ). ol [T (e [on]]) = onlr) .
for any functions Jy(r) or oy(). One can define then the anadog of the thermody-

namic potential

Ilo] = [ )+ / J(Arjf:)(.r)(]‘.r-]

Iir) Tirdel)
It is not difficult to show that for Ife] thus defined the relation Lolds

e
T [o]) = % (8.6)

Indeed. taking the variation of

L] + T[] = / J(r)olr)d'e =0

(where it is understood that o and J arve related through (7.5)) we have

" e | OF e T Vi) =
/ d’a L‘w(.r] O(,)(.I)+——r}__](‘rln.](.r) olr)aJ(r) = J(e)ad(x)| =0

The second and the third terins here cancel each other in view of (7.5) and we obtain
(7.6).
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It cau be shown that the functional I'o] coincides with the generating functional

of the proper vertices. Namely, its functional Tavior expansion in o.

= |
I'e) = Z ~ / dloy-dle, TV oo crp)olry) - ole,)

w2

has the proper vertices T as its coellicient funetions. Let us see how it works for

lower-order correlation funetions. using 2! theorv as an example. We have

”‘N] - é / ”’I'I" “H'rz Wiz - J'z) e ) T (es) +
] 1
i / [H (].I»;-,J W gy, - ro) I ) () T{es) J () + O(J%)
T I=]
atd o
[“{,‘-)] ) / dl'h (]I'I‘z [ﬂm(-"l — ) r;J(,J'\)(_')(‘Iz) +
TR
4_' / li]i[ (]]A.",} Ij( ]J(,rl e .1'[) (.'J(_r] )(.‘)(,I‘E)(*)(_1-:5)('-)(.1.l) | ()(("_‘)h) .

=1

Using the ecquation o(r, [J]) = o117/80.7(r) we can express @ in terms of J as

pla L) = / A (i — L) ) +

3
i1

7]| / {H ('11.1',} W (., rpodg, ) J(e) () () + O(T").

p=1

Similarly. using J(r.[o])  aU/do(r). T is expressed throueh o as

s [h]) = / Al T — w0l +

3
1 f ) i
5 / m ! "f'f} POy g ) oleoledo(r) + O(0%).
o o

These two relations must be inverse one to another. Substituting the livst into (he

second we have. schematically

AL = / PR = W by = g Iy +

30



L 2 .
Tﬁ / [*(‘-](_r _ (/)II [-I](U- f}].}'}'2-,U-f)'](-ul)‘]{"}2)’](""';5) -+
. gy

1

Ej! i ”{l'”i"“",i
YUl

DOy e )TV (=) T (= 2TV (=) T () T (r2) I () + OCT) -
As this must be an identity, we find again
(e -1 =S —2).
and
W ey, ) = — / T gy g )T (= W (=) TV (= )WV (g1 =1y )
i

which coincide with our definitions of the proper vertices T and T,

Exercise: Carry out the Legendre transform to the order 6 inJ and o. Find
W iy terus of TW PO T,



9 Lecture 9

There is a uselul way to reorganize the diagraimns contributing to 1W[J] or T'[e3] known

as the

Semiclassical (or Loop) Expansion

Generally, classical imit appears as the leasing term if one tries to estimate the
functional integral using the saddle point approximation.  Then, the integral is
dominated by the ficld configurations close to the stationary point determined by
solving the equation 0.A[2] = 0. L.e. the equations of motion of classical field theory
defined by the action Af2]. With this in mind. let us restore the quantmn paraueter
I (previously set to 1) in the delinition of the generating funetional

Z[J] = / (D] e a (AT t0an) (9.1)

The sewiclassical approximation hecomes exact in the limit i — 0. while corrections
to the leading semiclassical contribution can be developed in the form of a power
series in A Nole that as in statistical mechanics interpretation b ~ AT, aed we can
also talk here about the Tow-temperature expansion. For this reason it is convenient
to retain hr as the formal parameter!,

FFor the prurpose of the preseut analvsis T will consider a generie action of the

forn
- . _
A= S0 + =" + V)| (9.2)

with 17(2) ol geueral form

wilh constants Ay although T will often give illustrations in terins of 21 theory.

T of course is alwavs possible to choose mnits in which the actual Plank's constant is 1. Then
lormal parameter named A in (9.1) is dimenstonless. and it looks like an additional parameter of
the theorv, In fact, sucl paraneter can alwavs be traded for conpling constants deterining, the
strength of interaction. For exaniple, the 2! action can he written as

A 1 / ](‘) 4 m* (- 7
= — - = = r
x ) et g & Ty e

in terms of the renormalized lield \ - VA 2.




The leading (tree) approximation

For stall h we caleulate the above inteeral (9.1) for Z[J] using a saddle-point
approximation. That is, one [irst funds the wininn of the action [unetional

mm:Am—/ﬂwmm

i.e. the solution of the classical cquation of motion

dAle] _
Sp(r)

J(r).

The solution depends on J; T will denote it as
gelr) = @l ]} -

Then in the leading approxiination
| .
log Z|J| = > ( — Al + / J () (r)) + O
! dis

When 7 is explicit it is convenient to normalize the generating functional WJ| so
that
Z[J} i

- = (¥h

We write
W = WylJ] 4 b ]+

In this notalions we have

Wal) = —Alzd + [ Jlede). (9.3)

where it is understood that o, = 2] J].

The relation of this leading semiclassical approximation to the ordinary pertur-
bation theory (expansion in A,) is recovered by expanding the solution . in the
powers of J. In view of the chosen form of the action (9.2) the classical equation

has the formn

b= By e & Vale]) = Ha).

83



This can be transtformed to the inteoral equation
) : gral eq _.

gil) = / DU =) T ~ f Dl = )V (o)

which can be solved iteratively, with the last term with V7 taken as the perturbation.

LFor example, il
2 A 1 ot

w|—
T
..

we find
2 (s, [J]) = / D — )" -

A\
3!

Obviously. this generates the expansion in J. Also. this series is represented din-
i =

/ Dir =YD — o)D" = ) D — .1";)‘.1(.1', VI(ra) T () 4+
sraminatically as

~ o oA
Gl = Jmes 4 Fme K 3

Here I mark the “external point™ &+ wheve 2, () sits by a cross to distinguish it

from the one-leg vertex

il = / A J(r).

[t 15 casy to see that the diagrams appearing here have no loops (i.e. one cannol
travel along the diagrain and come hack the starting point never going, the same line
twice). Such diagraws are called the frec diagrams.

The casiest way to obtain the funetional TT5[7] (9.3) is to observe that

ol 0.A w e A
oJ Tleg T Ty

1%
where the fact that 2, solves the classical equation is nsed. Integrating the above
expansion of 2. [J]) term by term we [ind
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w, ) W,

W,
WolJ] = e & ~+ %_% +.>é
—Ng

i.e. the leading semiclassical approximation for 11 is just the sum of all connected
tree dingrams.  For this reason the leading approxiination is also called the free
approcimation.

Let ns find the effective action in this approximation. By the definition of the

Legendre transforin we have Lo sel

Theun the effective action in this approximation is
Tolo] = =TV[J] + Jo = Alge] = Jgp + Jge = Alo] .

i.c. in the leading semiclassical approximation the effective action I"yler] coincides

with the action Afo]. Tn particnlar

Iﬁ[(,”)(i..r"} = Sola — &) = (m” = Aol — o)

and asswing for example that V() = ’I\lﬂ st %\,:(’ +oeee,

i \\ // ) Y s
-1 . 6y __ N
r(] - /\"\ : Fn - ’,’/K‘

* ~ ‘ ®,

where T have shown where the amputated legs used to be by the dotted lines.
Clearly, these are the simplest one-particle irveducible amputated dingrams for T

The first order (one-loop) correction

To evaluate the first correction to the effective action one must take mto account
the gaussian Huctuations around the classical solution 2. I (he functional integral
(0.1) defining Z|[.J] set

wla) = @)+ x(r)
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and expand the action A; to the terms quadratic in .

a4
Asle] = Algd —Jge+—+—

Mz |
e

] deA
"")T EEomm _® mog m oo D ¥ 4 ¢ E
\ “*/ e m | BN

R

As usual. the terms linear in y cancell in view of the classical equation g, satisfes.

ad we oblain in this approximation
AR Y 5ol J] / [D\] ¢ p Al

where
)

: o, 3 o B |
Ailx] = / ' [5 (Jy)* +-%x“+§b (;r).\'z} (9.4)

Since the higher-order terms in y are neglected the integral over \ is ganussian
and it can be evalnated explicitly in terms of the determinant of the operator

l V-
Kirg') = s

3 m ="{I0" — Ag JUE — ) + V" [z )o(d — &)

¥

Exercise: Evaluate n-dimensional gaussian integral

T

I”I [/K (15,} exp —% Z Sty
! | S

- [ |

where s;; are elements of a svinmetric positive matrix. and show that it equals to

(2m)"72 [det (s,,)] "

Actually, we are interested in the vatio Z[J]/Z]0]. therefore we need to evaluale
the ratio of the determinants

1

[m (Sola — ') + 8 — m")‘v”’(.r"))} .
et (LS"“(‘-IV - .i'"'))

|
XD [ 5 lop det (f5(.r' — ')+ D{r — .I")\"”(y?f (’!)))}
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This can he transformed with the help of the identity. valid for any positive Hermi-

tian operator Af:

log ({1[% Jf) = tl‘( log _/U) .

which is established by bringing A to the diagonal forim.

1r)5_§(H ;) = E log i, .
t

1

Using this property, we obtain

. 1 :

Wyl = — 5 b lf]g([ Jr,.i(?:()). (9.5)

where A is an integral operator with the kernel

Ale, 7Yy = D =YV (zelr)
and I is the ideutity operator. I(e.a') = d(v — +7). The logarithm expainds as

log (J+A)=A4- "+ — . -4

When taking the trace we obtain

frd = / Dr — 1y V(r).

S

trA? = / By — 25V ah) Bl = ) V' (),

cte

Here V(r) is the shorthand for V{2, (). Obviously. this expausion can be repre-

sented 1 terms of diagraims

|
W] = = trlog (1 + 4) =

o .- O O -
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with the Iime standing for 12, as usual. but with the special two-leg vertex

I it
s e A S / e V" (e (2]}
A diagram with n such vertices comes with the factor
l L1
2 2n

/2 already being a [actor in (9.5). and 1/n coming from the expansion coefficient
of the log finetion: this factor can be interpreted as the symmetry factor of the
n-vertex diagram. Of course the above diagram expansion can e obtained divectly
from the Fevnman rules for the action (9.4).

To obtain TV [7]. substitute

= 7‘:"[]} = Xx—e -+ +

Pl
which. as we have scen. is o sum ol the tree diagrams. For 2! theory
L

Iy”(?:r') = T ¥

27’

Theretore 117 is the siun of the diagrams of the forin

annd so

\/

—r
P

which have exactly one loop. This is why the ~ & corvection to 117 s called the

“one-loop correction”.



It is not difficult to find the effective action in this approxitation. We have
D[] = =WWolJ] = RV JT] + / Jo+ O(F).

where we have to substitute J = J|o]. Note that definition of the Legendre trans-
form. the r.1us. of this equation is stationary with respect to variations of .J with o
fixed, Therefore the correction ~ A to the relation between J and o will produce a
change of the ovder of B2 to the ris. of the above equation. Henee at order it we
still can replace JJ by the solution of the equation

Then. again =11, + ] Jo = Alo]. aud
['o] = Ao + BT [0 + ()(fl;)) .

where ,

Iio]=-wlog (I + Ale)) =

(4 - Oj @Cg e )
with A 64) k/) = D&~_X/) \//(q(aéc’l)/ 2o d

=

& = - V"(o).

Ll —=

Note that all these diagrams are one-particle irveducible,

Similar analysis can be carvied ot in higher orders in i, One finds that at the
order B only the diagrams with exactly » loops coutribute to 7).

Effective Action vs Generating Functional

We can now clarify the nature of the relation between T[] and Tlo]. Write again

39



and represent T as an n-point bloh

X X2
[R78 .
S
The generating luncetional T[] is related to T'lo] by a fauctional Legendre trans-
form. ;
7] -Te] + / J()e(r)
Ay o=un[]]

One first solves the equation

with respect to o). Exactly as was done when solving the classical equations of
notion. the solution is represented as a sun of tree diagrams

ole 1) - e (O—e X— +

this time with 1170 — /) (the fuverse of T8 ie. the full two-point function)
standing instead of the propagators D, and the functions % playing the role of
the vertices. In drawing the above dingrams T have asswed that the inleraction

was even, V() = Vi=g). so that odd order vertices are absent: of course. this
liitation is not sienificant. Again, inlegraling the equation

AR

—— = olr.[J]])

0J(r) ]

term by term in J, one finds that 1[J] is a s of all tree diagrams, again with 177
for propacators and ' for vertices.

M| = —(—  + + all tree diagrams

This is exactly what we expect 1o he the relation hetwoeen the stun of all connected
diagranis aud the sunt of all one-particle inveducible diagrams: one takes one-particle
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irreducible diagrams and connect thern in a tree-like manuer to produce all connected

dingrams.



10 Lecture 10

Now we turn to actual evaluation of the diagram contributions. For this purpose in
Most cases it is el more convenient to se the Feviman vules in the momention
space. evaluating the Fourier transformed correlation functions

/ T ey, ) e PO et ey, =

(2r) a " py 4+ ) W ) (5%

Here again 7170 denotes connected n-point corvelation function. The delta function
in the rhes. appears because of the translation invariance: W (-0 ry,) depends
only on the differences o, — .

I will skip detailed dervivation of the diagram rules in the momentum space (look
up Sect. b4 of PS for the details), Very brieflv, in any diagram one nses the fourier

: I
Dy ~a")= / dp % il
. (271‘)" i e

(‘XI)&lllHi{JHH

of all propagators. Then the integral over all o associated with vertices. as well as
over all external” points o can be evalualed explicitly vielding the momentwm

delta-mmetions, As the resalt one obtains (he

Momentum-space Feymnan rules:
(1) ~Iuternal™ propagators carry (directed) momentumn to be integrated over.

po— — —p / d'p 1

(27)0 p? + m?

(if) “External” legs carry fixed momenta

Ii'FH)U)]l._. .fj,,) -

(i11) The vertices conserve the momentn

2

(10, 1)



Pt
R ;/?1
V)1 \\7'5 = = A 2a) M (o P)

¥ P c g . . 3 y
(iv) Iutegration | ('.)_i”}’l is performed over all the momenta associated with the

propagators.

“internal

Some properties of 170"

In the momentum representation many operations simplifv. For example the “am-
putation” takes very simple form

15;’“”(;), D) = (H ﬁ'(p,)} ﬁ,ﬂ:l;(lﬂ‘ cee )
[

where 117 (p) is the fourier transform of W (e — ). Similar simplification ocours to
the relation to proper vertices.

Excrcise: Fxpress WO (<o pg) in teris of Oy oo pg). T and .

e 1 . . B . T .
The momentwn space TE(p) s just the inverse of 117(p) in usual sewnse,

rot s [ 2 ) G
') = —— = p" +m" + X(p) .

where = E(p) is the sum of all one-particle ireducible two-leg diagrams in the

11O0INCIELLLL S]Pace.

Leading contribution to X. Mass renormalization

Let us caleulate some perturbative contributions to X(p). In the leading order we

Liave

V‘,( ) A /~ ((IIJI\' | /\ /-\ |fl1‘{(i|]||
A )] = — ey _ — = = I—— e T
! 2 ) @)yt k24 m? o 8at f, P m?




This integral is hadlv divergent as & — oc. What should we do about it? We
can get rid of the meaningless expression by introducing a “eutoft™. say. replacing

| 1 3 G
= Ik AA=) .
B2 4 me ’ K4+ n? PO

with the “cutoff factor™ $() decaving at € — ~x fast enough to make the integral

convergent. Then

Cgly
2 [ S A = D P )
2 (2m )Y 2 < 2
Just as in the case of KGovacimm energy. this move alone brings no real progress -
it replaces something meamngless by something undelermined.

In this siiuple diagram one can note that the contribution has no mwomentin
dependence. and enters the quantity I:("”(p) in the combination

et ) b )\ G . i F
P p) = p* +m* + 5 1™ FLAS =)0 |

We see that no matter what @ and A are. the parameter m in our action is not

actital mass of the pavticle: the interaction leads 1o a shift that happens to depend

o the cutofl (We will see later that actual mass gy of the particle ininteracting

. . . 'DERM] ~ . X

theory is deternined through the equation l‘“J(p)‘ pomi = (). Therefore it is
= mh

reasonable to change the notations, denoting g the coeflicient in front of 22 in the

Y ~ oy
action. Then. up to terins ~ A°,

L . i /\ 2 2
P8 () = p?* + g + 5 mg FA2/mg)

<

2
m

Recall that we have already observed similar phenomenon in our path integral
representation of the free propagator D, We started with a discrete approximation
ol the path integral (an analog of the cutofl). and we were foreed to take some

pararneter g instead of e the cutotl action
A = mgLength

we then found that g had to he given some dependence on the cutofl parameter
A (which plays the same role as A" here) to keep actual mass m finite in the it

A — 0.



Similar procedure can be applied here. Assume that the pavameter g in the
action ( mg is usually called the "hare mass™) depends on A is such a way that (he
actual mass \

- o s ) vy 3 i
me= g+ g E(A~#i5 ) -+ )

remnains linite as A = oc. Then. to this order.

([ 2) 2 2 2

P2 p)y = p= + m* 4+ O(A7)
has (inite limit. The result is expressed in terms of the actual masss all ambignities
associated with the cutolf are “absorhed” by the “bare” mass paraeter.

This idea can be refined as follows. We start with the action
B " mf, o Ay
A / E (()?3) + )‘2‘— &k F -

Let us write
2 B P
g = T A 0nT .

where m? is assuied to coincide with actual mass squared: at this point the ternn

dm? is just owr way to acknowledge that the niass parameter in the action need
) T . . = . . 3

not be equal to m?. We then split the action into the free and interaction parts as

follows N )
A ' L din? 5 A 4
=\ T s
% 4
Ao Aj
Now the propagalor is
— P ]
e
not ;TQLIT as in the origival perturbation theory, but we have an additional vertex
L

o= =
=

= dmz(27r)1d"'”(p1 - pa) .

which we will rather write in a shorter form

)P —p oy
= —ome.

o



refiecting the fact that in this case the momentum delta function is casily integrated
ont.

Thues taliin, 255 S2m the action is the simplest counterterm, and the associated
two-leg vertex is called the connterterin vertex. In this modified perturhation theory

we Liave (up to terms ~ A* and higher)

ifE P S A (L . ==

Bo) = -(---wr-- -

N ofodk R
= ; / (Eﬁ')l m(b(_}‘n' /A ) + dm- = E F([\ /IN )+()f?1 i

4

Sinee we insist that oeis the actual mass, we have 1o set

o A yoiias u g
dam? = —=lif FA?/m?) + O(N).

Note that this looks different from the relation

/\ ¥ ) 2}
mi = m? — 5 mg F(A*/md) + OO0

we Lave obtained within the original perturbation theorv: however these two rela-
¥ 5 2 s r ) e i o
tions are consistent since the difference 15 ~ A% The relation hetween the original
and modified perturbation theories is illustrated by the solution of the following

As we have seen. in the inodified perturbation theory, to the order ~ A the
countterter diagram exactly cancels the entoff dependent bubble diagram.

e @
e ——— 4 —— N =,

by choice of the parameter dm®. The result lias no dependence on A and ©.Note

also thal this cancellation ocenrs inside more complicated diagrams, like

06



The idea hehind this modified perturbation theory can be extended to obtain
the so called renormalized perturbation theory. i which all divergences of original
perturhation theory are eliwinated. But first let's find out exactly what diagrams
diverge.

Divergences in ¢’

Clonsider n-leg proper vertex
ak
\
o, ol

IL‘(!}}(JU]"“ -}'Jn) T

’

How to characterize diagrams which contribute to this vertex? Assume that the

dingrain contains

i vertices
r propagators
) T
! momentun integrals (7? :
sy

These mumbers ave not all independent. First, Vo overtices must absorb exaetly
4V lines. 207 coming from the propagators, aud n from the external (amputated)
legs, ie. 4V =20 40, or

2P =4V — s

Nex(. there is a d-momentun Howing in cacli propagator. but there is also a no-
mentum delta-function associared with each vertex. Eacli of these delta-funetions
reduces the number of d-momentum integrations by 1. This is true for all delta-
constraints but one. hecause the momentum-space connected corvelation functions
st have one overall delta function left. namnely

e a (e pa)-

g 3



Therefore

F=P-Vi4l=(P=2V-n/2)=V -—n/2+1.
This we have two equations
207 =4V —n
4 =4V —2n + 1

Now., the expression for the diagram has the following eencral form

/' i SRR
Jo(gl+m?y (qh +m?)

where Ao JA are the integration momenta lelt over after eliminatine the delta-
functions, and gy, -+ - gp are some linear combinations of ]."} and the external mo-

menta p;. For our present analvsis it is brelevant if we have m? or m in the
propagators.

We are concerned with possible divergence as A = oc (which generally imply
i, = x ). Ronghly speaking. the above inteeral diverges il the overall power of the
womenta i the integration measure in the munerator exceeds or equals the overall
power in the denominator. Therefore let us detine the superficial degree of divergenee
D as

D=4l =2,

The mtegral definitely diverges il £ = 0 (but D < () does not guarantee convergence,
see below ). If we introdiuce a cutoff momentmn A, the diagram of the superticial
degree of divergence 1 is ~ A7,

Substituting the above expressions for I and 1. we find

D=4V -2n44 -4V +n=4—-n.

We see that the muuber of the vertices 17 cancels, and the superficial degree of
divergence depends on noonly. I addition. we see that only finite munber of the
proper vertices (n = 0. n =2 and n = 4) are superficially divergent,

Incidentally. it a perturbation theory which has finitely many superficially diver-
gent vertices (as the o pertwrbation theory does), it is called renormalizable, for
the reason which will become clear later. Otherwise. when infinitely many proper
vertices have are superlicially divergent, we ave dealing with non-renormalizable
perturbation theory,

.
Exercise: Analyze lin‘( superficial degree of divergence for all proper vertices in

b YRS I i
& theory.
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In the 2! perturbation theory, the proper vertices with n > 1 are superfcially
convergent.  This does not mean alt the diagrams for these vertices arve given by
convergent integrals (that is why we use the name “superficial” for that. essentially
dimensional, analysis). The reason is that the diagrams for U9 with n > 6 still can
have 2- or 1-lee subdingrams. For example. the diagran series for 1% contains the

diagrams like these

% 1,_"—] // N l - T 7 ’))/
~ e — y <
& i |
S Y - § T

which contain divergent blocks with two or four legs, We will come back to decide
how to handle such subdiagrams later.

The vertices with D > 0 (the so called pranutive diecrgences) ave PO and T
Ve have already observed the shinplest divergent diagram for = The diagrams
for T have the superficial degree of divergence D = 0: this means these diagrams
are logarithnacally divergent. To clarifv the meaning, of this term let us consider
the simplest connected diagrais for this vertex,

P fi 2 Pz
’/Fg N P‘+P‘;KI//

N

-

- ~ s ,
-1 [”([’l-ﬂz~ papi) = /( + ( p { pernut 21110115) o B
N r'd 25 P ’ \.
P Py /,,Pz 7K \ Pu
The explicitly shown loop diagram represeuts the momentun integral
(—A\)? / 'k
2 L k) (4 e - KM
When [k >> |py + po| and [A] >> m this reduces to

/\2 ’ (]']]i'
2(2m0) ) RPRE
Note that d'k = d§, |k d]k]. where d€2y is the surface element of a wuit 3-sphere
S [ dS2y = 277, We have

A2 2573 / |R[* k| 4& / dik|

2 (27)! |1 L6z J |}

S



The integral diverges at large [k] (one shouldn’t worry about its divergence at [k —
0: the above simplified form is not valid at small [A]). Tf one introduces a cutoff, say

replaces

|
el :
24 e A2 n®

with some ©L) such that () = 1 for » << 1. but decavs fast at o >> 1. the
/\2 ‘,\2
T 1()§_§ — - f([)lz) .
167 ni-

where f(pr2) (I wse pro = pp + p2) has linite linit as A — o<, Including the

(/A

integral evaluates as

"permutations’ teris. we then have

A4

. e A?
P = ) : (:% log, + S () + flms) + f(PH)) -

1G7? m?

One can observe that the divergent termm carries no dependence of the external
womenta, and in this respeet contes on the same footing as the leading contribution
A. Therclore at least at the order A the A-dependent termr can he absorbed into
sonie redefinition of the conpling constaut A, This can he formulated more precisely
as follows,  Just as in the case of the mass renormalization discnssed above, we

should start with the action
" I 2 ”-’2 ) /\IJ
= = s} 4 s 2 !
Q(J 27 T
with some “hare” coupling constant Ay (as well as the “hare” mass paramcter mg).
Then it is possible to give Ay certain depewdence on the cutolf momentum A,
Ao = Ag(A) .

such that the Hmit A — ~ of ' in this order of the perturbation theory is finite.

Namely, let us sel

0oy 2
3A A :
M(A) =N+ —— [ log — + ] + O(\}).
lGm- m-
where new paramcter A is called the renormalized coupling constant. and C' s arbi-
trary munher. We then have
2
A
1a*

f(l! - A(]*

A2 ,
(3 lug + f’(]})) + ()(/\'S) =

23
=
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:% /\2 ;f\z . /\) . 1\2 i 3
A+ i (]Ug 2 —1-(,) ~ 5 (5 16 — +j([))> + O(N").

m 111

(Heve f(p) = f(pra)+f(pia)+f(pia). The A=dependent teri cancels oul. Asswining
that A is fixed in the limit A — ~c. the above proper vertex has finite limit when

the cutoll is removed.

Later we shall formmulate this renornalization presceription with full precision,
and i particular explain the meaning of this coustant ¢ But for now we still have
one more divergence to deal with.

Pk

Consider the diagram

1” Sy i it D P S

<o
K
contributing to —X(p) in the order A% T will denote this contribution as —‘:2(})).
According to the general counting above, this diagram has superficial degree of
divergence D = 2, .. with the cutoff introduced it behaves as A® as A = x. We
can see Chis writing the contribution explicitly.

(_A‘)) /‘ (]4]‘,] (]]]1'2 1
3! (2m) (27)L (B2 4+ m2) (A3 4+ m2)((p — ki — k)% + m?)

*-‘:2(1)) =

(note the syunnetry factor 1730, For Ay ks = > pome the integrand simplifies as

/’ A ol \2
J AR hy + Ry)? o

Let us write

Here

—) = =5 ¢ - ) 3 9 » S
31 (2m)r (A2 4 mA (A3 + m2) (A + ko)t +m?)
This divergent termn does not depend on p:in this respeet 1 s shilar to the contri-
bution of the diagram



Clearly. it also can be absorbed into the mass renoralization, by suitable mod-
ification of the counterterim
-
dm=(A)

2 T
The difference
La(p) = La(0) =
AF / eVl d L 20ph) + 2(phs) — p?
3 (2a) (hF 4 2R3+ m?) (b Fh)?2 + ) (ke + ky — )2 4+ m?)

still diverges (logarithmically). T the cutoft is introdnced. this contribution is written

il=
i

) A .
~ p* log — + finite.,
L

This divergent termn cannot bhe absorbed by the mass renormalization. since it de-
pends on the momentim po Note however that this dependence has simple form
~ P

Recall that the proper vertex '™ has the form

P (p) — p7 w1 loop corrections .

where the p? term originates [rom the term

(0¢)°

o] —

term in the original action. This suggests that the above divergent ternn ~ p? can be
understood in terins of the “field renormalization”™. Originally. the field & appeared
i the theory as the mtegration variable in the functional integral. Let us rensune
this integration variable as . and call it the “hare field”™. The new divergent term
shows that the correlation functions ol this hare Held retains the dependence on the
cutoft parameter A, even after the mass and coupling renormalizations ave carried
out. The way this dependence appears (through the p? terin) sugeests that one can
define renormalized feld.

(1) = Z72(A) golr)

e
with cortain cutoll-dependent renormalization constant Z(\). such that the corre-

lation functions

<7:('I'l) T ?(-ﬂl))

admit finte A — > limit.
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11 Lecture 11

We are ready to formulate the renormalization program.

Renormalization program (¢! theory)

1. We start with the action
1 z  mi . /\
0.2
A= / £ !'_ (f)uf[l) i sl e = ‘Frl )
12 2
whicli involves the bare ficld 2g. the bare mass n.g, and the bare coupling constaut
Ag.

2. We introduce some cutoff, with the cutoff momentum A, to malke all diagram
contributions finite but cutoff-dependent {This can be done in many ways, as we
shall discuss later).

3. The bare parameters i3, Ag, and the field renormalization constant Z should
be given certain dependence on the cutofl mornentum A,

ma(A). AglA),  Z(A),

such that the correlation functions of the reuormalized field () = Z712 ¢ (2) will
have finite A — oc limit.

In practice, one uses the perturbation theorv ro evaluate the correlation func-
tions. The above program can be further 1eformulated as the

Renormalized perturbation theory

Let us rewrite the action as

1 2 om* L, N, 8Z .. .2 mE o, A
A:/d4'f!:§((‘)£,9) +‘—"(,02j~‘—r,f’l'+'—2—{‘a¢) +‘?*{J“+'ﬂ‘y4 .

N =t -

free paxt interaction part counterterats

where m is the actual mass and A is suitably defined renormalized coupling constant
(to be discussed later), and ¢ is the renornalized lield. The last three terms are the
counterterms. The identity w1t.h the original action implies



- r 2
e 44 = Zing
z\ + f’))\ = 232 )\[) =
In perspective, the renormalized perturbation theory is an expansion in the renor-

rnalized coupling constant A. We should assume that the counterterm coefficients
7. em? and $X themselves depead perturbatively (i, as the power series) on A,

§Z =2 M4y A +--- I = by A +Ey D34+, Sh=a X +az X+,

with A-dependent coefficienrs. We must show <hat these coefficients can be adjusted
in such a wav that the correlation functions of the renormalized field ¢ are A-
independent order by order m A,

Let me stress that this renormalization program is based on our observation
rhat the w! perturbation theory contains only finitely many basic types of divergent
ciagrams (the “primitive divergences”). Namely. the primitively divergent diagrams
cre in I and T@. The diagrams tor higher vertices I'™ can be divergent only
through subdiagrams of the T™ and T™ types. The idea of the renormalization
program is that the above thrae primitive divergences can be absorbed in three

renorraalizations
mA(A) = Z7HA) (m? + o (A)): Ac(A) = Z7A) (A + 0A(A)); wo= Z%(A) Q.

crder by order in the renormalized coupling constant A

Before we turn to execution of this program in * theory let us briefly discuss
clivergences and renormalizations in a gealar field theory whose interaction term is
rnore general polvnomial in .

Divergences in Scalar Theories
It is instructive to consider such field theory in the space of d dimensions, with
geueric d. We will consider general scalar Lheories witiy the actions of the form
; N
¥ 1 e R Ao 4
. 2 0 & :
A = / e [§ (D0)® + —2 o) + > St (11.1)
E - ~N=3 ’
7he Feynman rules remain the same as in 4-dimensional theory, except for the
mementum inlegrations gu over d-dimensional mementum space,

Pk dk

St __‘)

(2)1 FZ;T” ’

8

104



and of course the diagrams contain k-leg vertices associated with the couplings Ay .

As before, we can consider a generic diagram contributing to I'™, containing
P propagators and [ d-momentum integrations. Because now the momenta are
d-dimensional, the superficial degree of divergence of this diagram is

D=d.-IT-2.P,

Assumne that the diagram contains Vi A-leg vertices. Analysis similar that we have
made for ©* theory reveals two icentities

~

2])—)122-4 k-
k

T=P=3" Ti+l.
k

Combining these equations one finds

. d—2 ! r\\‘ 7 d—2
D_;C---Q——A,—o)\r —n+d.

£

This formula admits simple interpretation in terms of dimensional couning.
Note that in our units ¢ = h = 1 there is only one independent unit. which we
take to be mass unit. T will denote by [X| the mass dimension of a quantity X, for

example
[mass| =1, [length] = —1.

The action is dimensionless and therefore it follows from its form that

d—2 . d—2 )
[go] = —5 ™ mgl =2, [Moi]=d- 5 k. (FLE)

[ want to note in passing that this simple dimensional analysis is applied to the
bare quantities. We will sce later that because of renormalization coustant Z(A) the
renormalized field ¢ can have different dimension. This is why the above dimensions
in (11.2) are often referred to as canonical {or “engineering”) dimensions.

It is easy to check that

] = g - 222

5 .
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Therefore the equation {for the superficial degree can be written as

Ag k} Vi (113)

= e = N

D=2
k

Now the meaning of this equation must be obwvious. For A >> |p;| the dominating

contribution of the diagram with Vi vortices Ay is
[t “] f\S’*kJ B (11.4)
k

and our equation simply describes the halance of dimensions.

It iy clear from the Eq.(11.3) that the mass dimensions of the coupling constants
Mg 1. must play the key role in the analvsis of the perturbative divergences. Suppose
somte coupling Ag  in the action have strictly negative mass dimension, [Ag &) < 0.
Then there are divergent contributions to I'™ with any n which come from the
diagrams with sufficiently large Vy. In other words such theory has infinitely many
primitive divergences which of course canaot be absorbed by any finite number
of counterterms. Quantmm Aeld theories of this type are called (perturbatively)
unrenormalizable. Overall consistency of unrenormalizable theories is questionable
(but not impossible). From pare pragatic point of view. the necessity to introduce
infinitely many connterterms brinzs in also ‘nfinitely many free parameters, and
predictive power of such theories is limited.

If mass dimensions of all conpling constants in the action are non-negative, the
equation (11.3) shows that there is only finite number of primitively divergent proper
vertices (1his is true if d > 2. the case 4 = 2 i3 exceptional and must be studied sep-
arately); these divergences then can he ahsorbed by finitely many renormalization
constants. For this reason such theories are called (perturbatively) renormalizable.
Moreover. if all g 5 have strictly positive mass dimensions there is only finite num-
ber of divergent diagrarns. The theories of this last kind are often referred to as
super-renormalizable, in which case the term “renormalizable” is reserved for the
theories with infinitely many divergent diagrams but linitely many primitive diver-
gences; in view of (11.3) this requires that at least one of the coupling constants is
dimensionless. We will see later when studying renormalization group that super-
renormalizable scalar theories (with the polvnomial V{yy) bounded from below) are
consistent field theories. Owerall consistency of a renormalizable theories require
more subtle analysis, but at least they make sense perturbatively.

One observes from (11.2) that for d > (i there are no (interacting) renormalizable
scalar theories. For 6 > d > 2 renormalizable field theories are

" in d =6 dimensions,
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P in d=4 dimensions.
et i st in d=3 dimensions.

It is not difficult to show that anv polvnomial in » is super-renormalizable in d = 9
dimensions.

[ want to stress here that nonexistence of perturbatively renormalizable field
theories in high dimensionalities does not imply that consistent field theories are
limited to low space-time dimnensions; there may exist perfectly consisten: field the-
ories which are just “too far” from free field theory to admit meaningful perturbative
interpretation. I hope to discuss this possibility in ereater details lager.

Systematics of Renormalization

If the theory under cousideration is renormalizable, like ! theory in 4 dimensions,
one can develop renormalizable perturbation theory. According to the program
outlined above one has to start with the action in its “bare” form, implicitly equipped
with some “regularization”, or “cutoff”, ie. with some modification of the theory
at the momenta > A which malkes all integrals in pertwbation theory convergent.
There are many possible implementations of the cutoff which can he more or less
convenient depending ou circumstances. Let us ciscuss soine more frequently used
Ones.

Regularization methods

Lattice regularization: We already discussed this regularizasion in relation with
the definition of the functional integral. [r this approach continuous space B9 is
replaced by d-dimensional, say hypercubie, lattice with some lattice spacing A which
plays the role of inverse cutoff parameter A1,
)
=T, =A > B 5

p=Lod
where ¢, is the unit vector in the direction g and ny, - -+ .y are integers. The lattice

action is obtained hy replacing derivatives by finite differences,

oo e n y 2 2
Apor = A¢ Z l:é Z (Hl{.x, I AE’A,;) ‘;-f(l(l')) 4 f% \Fé(l) n V(%CD(I))}'] 1.5)
. 2

reAZd

J7ES BT
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and the integration measure in the functional integral is taken as

[Dy] — II dipn () .

axchzd

Advantage of this method is that it makes sense nonperturbatively. The lattice
theory (11.5) is perfectly meaningful in classical statistical mechanics. At the same
time perturbative caleulations in this appreach are relatively complicated. In addi-
tion, continuous space symmetries are broken, and one only expects them to restore
after the cutoff is removed.

Exercise: Develop the momentwmn-space Fevnman rules in the above lattice
theory with V{e) = 22 . In particular, find explicit form of the propagator D(p),
end compare it with the finite A expressior. in the Problem 5. Why does this

regularization makes all diagrams finite?

Proper-time regularization: \We hav= seen before that the momentum-space
propagator D{p) admits Schwinger's proper-time representation

gas) -
D(p) = ds e )

S
where s is interpreted as “renormalized length™ of the path of relativistic particle
in the Euclidean space-time. One can exclude the path which are “too short” by
replacing D(p) — Da(p).

o 139 2 2
Dy(p) = ] e L
1/‘Ail
Note that this is particular case of the regularized propagator we considered before,
. O(p? /A%) (11.6)
p? ot m? B ’

D(x) = %,

Pauli-Villars regularization is another version of (11.6). with

e Iy A2 THE
Dpy(ptfAT) = S 1
pvi(p” /A7) 77 1 A2
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In this case
1 1

1
Dip) = — FINE) = - ;
() P2+ m? ot P m? ptp A2

Dimensional regularization: This is the most technically advanced (although
perhaps the least physically transparent) regularization method. Its advantage is
that it usually preserves important symmetries (in particular the gauge symmetry
in the gauge theories) and significantly simplifies caleulations, and for these reasons
this method is used today in perturbative calculations more frequently then others.
The idea is this. We have already observed that lowering the space dimension
generally improves the large-momentum convergence of Feynman diagrams. Suppose
that for d sufficiently low the momentum integral associated with given diagram is
convergent without any additiona’ cutoff. Supposc that in addition we have managed
to calculate this integral as an analytic “unctions of d. Then we can analytically
continue the result to the “physical value” d = 4; the 4-dimensional divergences
manifest themselves as singularities (poles) in the variable d at d = 4. On more
formal level one can define the dimensional continuation of mementum integrals by
three conditions (obviously valid for couvergent integrals):

(7) /dd}.' F(k A p) = /ri’ik Pk translation
(i1) /df“k POk =0T ’!/ddkF (k) dilatations

(1i1) fddkd‘i’k’ F(k)(:‘(k'}--/ddk F'(k) [dd'k’(r’(k’) factorization

Let me illustrate this approach by simpls example. Consider the integral

f a7 ] (11.7)
r)? (k2 + m2E -

This integral converges for d < 4. For anv d < 4 it can be transformed as follows

S dJ. .
sds _d_ﬁ'__ e—siv'ﬂz-rmz) _
0 (2

/ sds (drs) gt (11.%)
J0
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where the properties (iii} and (i) were usec n evaluating the k-integral. Using the
clefinition of the Euler's Gamma function

e

Tlzy = / PR
0

we obtain for d < 4

(m?)i? (. d
(47‘—')"—3—1 (z - 5) . (11.9)

As is known the Gamma function [(z) is analytic - actually, meromorphic (Google
the term!) - function of z with poles at =0 ~1.-2,.--. In particular, the above
expression has pole at d = 4, L.e. exactly where the integral diverges logarithmically.

Ford=1—-¢,¢—0
r(z- 4 -
_ 5} =

where v = 0.5772.. is the Fuler's constant.

It is interesting wo explain on this exaraple the interplay between dimensional
continuation and cutoff regularization. If we regularize the propagators in (11.7),
say by proper-time regularization (which amounts to replacing fDDG ds = LC;OAZ ds in
(11.8)) the integral (11.7) becomes regular function of d for all d including d = 4.
n the neighborhood of d = 1 one wonld have instead of (11.3)

-~ + Of¢)

IR v

2y4-2 x
_‘___)_d__. det'=Fe!
(4.—1’7') oo m2rae

The integral here can be transformed using integration by parts,

> iod g 2 ..d > = 9-d 4
dtr—tet = S (f' S - it det).
a2 4 —d v m?jA2

oy
A2
For ¢ =d4—d<<1and m? << A? the cutofl integral hecomes

If at fixed d < 4 we send the cutoff mementura A to infinity we obtain the “dimen-

sionally continued” expression with the pole at d == 4. On the other hand, if at fixed
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A we take the limit 4 — 4 we get a finite result with log A replacing the pole in
1—d.

With this understanding one can often use dimcusional continuation to do the
calculations cfficiently and then interpret the results in terms of cutoff regulariza-
tion. Instead of giving the bare parameters mZ, Ay and Z dependence on the cutoff
momentum A, within the framework of dimensional regularization one adjusts their
dependence on e = 4—d, so that that the correlation functions of renormalized ficlds
» have finite limit d — 4.

Some generalizations of the integral (11.7) will he useful in future caleulations.
For instance,

/ d’dk 1 - / _(i(lh( s(kZ4m? )_
(2m)2 (k2 +m?)e B T(a) (2m)4 N

(m?)-< T(a ~ 4)

; : ) | 1 )
(4m)3  Tla) (11.10)
/ dth i o d% [ 1 mn? B
(27 )4 (k2 + m?)= (27‘“ *‘ (k2 — 2=l (k2 4 gp2)a N
{m? )"‘“ dT{a—-4-1) -
PR R (11.11)

In deriving (11.11) the defining property of the I' function ['(z + 1) = = [(2) was
used.
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12 Lecture 12

Renormalizations in ¢! theory (cont’d)

Let us recall the basic idea of the (perturbative) renormalization program. To
develop renormnalized perturbation theory. one starts with the action

T - A
A= / d%r [{—) (D) ~ . (0 4 i £t -+ counterterms| |

expressed in terms of the renornmalized quaatities. I have written it in the d-
dimensional form having in mind dimensional regularization. This action contain
counterterms

57 s om? . N

counterterms = —'—5'—- (Gw)* - R TE

We are planning to treat the theory perturbatively, with
A
1
Ap = 0 -k counterterins
Jx X

taken as the perturbation.

The comnterterms bring in additional vertices, so the disgrans will contaiu the following ele-
ments (momentum &-functioos are implicil)

oo 1

e ) = -(p?dZ +ém’)

N / -

a

The counterterms 6.2, dra? |, 6 are assumed to be power series in A, i.e.
T 1 ]

52 =M N4 2PN 4
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FmP = bW A4 BB Xy . e
FA=a® X+ @ 34
with the coefficients dependent on A, or, in dbuensional regularization, on
e=4—d.

in such a way that all diagram contributions to the correlation functions of renor-
malized fields have finite limit A — 20, or, respectively, e — 0, order by order in A.
This is general strategy of renormalized perturbation theory. Specific calculations
depend on the choice of the so called “Renormalization Scheme™.

Renormalization Schemes

Obviously, just satisfying this requirement - chatl the counterterms cancell all sin-
gular contributions of ordinary diagrams - is not sufficient to fix the counterterms
uniquely. For instance, the renorinalized ficld ¢ always can be renormalized further
by multiplying it by a finite (i.c. regular at « = 0) constant

1
73 =
¥ = Z’,:inne ¥

similar finite renormalizations of m? and ) ave possible. Obviously, such renormal-
izations do not spoil finiteness of renormalized perturbation theory., We see that
there is a whole class of renormalizable perturbation theories, related one to an-
other by finite renormalizations. These different renormalized perturbation theories
are called the Renormalization Schemes. Of course all these renormalized pertur-
bation theories describe the same feld theory, and yield the correlation fanctions
with identical physical content. What is different, besides lnite renormalizations
of the correlation functions due to the field renormalizations, is parametrization of
the correlation functions. If o, m*, A and 3, m?, A are renormalized quantities in
two different renormalization schemes, the corresponding correlation functions are
related as

s
2

T (p,|m* A) = [zﬁmte(mz, )\)J I (g i(m2. 0, Am?, ).

One can think of the parameters (m?, \) as coordinates in the “space of £* theories”.
Different renormalization schemes correspond to different coordinate systems in that

space.
A renormalization scheme is usually defined by certain Normalization conditions.
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Normalization conditions

These are concitions that specify the choice of the renormalized parameters m?,
A, as well as the overall normalization of . This is usually done by relating the
renormalized parameters to the physical quantities (this is not so in the so called
“minimal subtraction scheme” which has mere technical definition; we will discuss
it in some details later). In practice, the schemes where these relations are simple
are 1ore convenient.

One sich normalization condition we have discussed aleady when we defined the
renorroalized mass parameter m?® as the physical mass sqared. Namely, assuming
that T12{p?) has zero at some negative veluz of p? we have defined —m? as the
position of this zero. Note that this condition does not depend on the overall nor-
ralization of . The later must be fixed by a separate condition. One can fix for
instance the slape of TE(p*) at this zero p* = —m? a convenient normalization

condition is to set this slope equal 1, ie.
f(z)(pz) = p° + m® = O((p* + m*)*) as pt+m? 0. (12.1)
Equivalently, this condition means that the two-point correlation function

e - 1 i : ;
Wp)=5——-001) as p+m’=0 (12.2)
p?— m?
has a pole at p* = —m? with the residue one. We also need to fix normalization of
A. This usually is done by imposing certain condition on I, The condition often
taken in high-energy theory calculations is

o

[ (p, p,~p,~p) = (12.3)

= m?

(the quantity in the left-hand side is related to 2 — 2 forward scattering ampli-
tude at zero energy). The equations (12.2) end (12.3) above specify one possible
renormalization scheme (I will refer to it as the scheme SI).

Of course there are other schemes. Another scheme which is 1nore frequently
used in statistical mechanics context is specified by the normalization conditions

f‘(?)(pl) — ].}'12 4 pz + ()(p:l)’ (124)

TA(0,0.0,0) = X. (12.5)
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Here I have used the notations m? and A for the associated renormalized parameters
to stress that these parameters are different from those defined in the scheme (SI)
(in particular m? does not coinside with the physical mass), ie. it defines differeat
“coordinates”. Henceforth this schime is referred to as SII.

Let us see how this program works in few leading orders in the coupling constant.
The following calculation is equivalent to the one in PS, §10.2, 10.5. There it is done
using the normalization condition (SI). For the sake of diversity I will instead adopt
(SII). To facilitate the comparison T will use notations m* and X for the renormalized
parameters. Also, to simplify notations T will write 7™ for the momentum space
proper vertices (omitting the tilde).

Renormalization at the leading (one loop) order
Consider first the two-point function,

T2 (%) = p* + 2 + V(p?).
The normalization condition (12.1) states

20)=0:  £'0)=0. (12.6)

In the leading order in A there are two diagrams contributing to 2,

(@) (h)

where the diagram (b) comes from the ~ A terms in 62 and dn?,

1 E L 2]
(1) = A MR 4 )

_'__ﬁg—"_'_

The coefficients =) and ™) are to be adjusted to satisty (12.6).

We already have considered the diagram (a). It is a constant independent on p?.
Therefore to satisfv (12.6) we have to choose
i 1 ()t

(1) — . (1 _ - o o
M= bl = (a) = (2m)d k2 + 2 (4”.")% I'(1-d/2),
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where the dimensional regularization was used to evaluate the integral. Note that at
this order there is a trivial cancelation between the diagrams (a) and (b). Because
of this, in considering higher-order dizgrams we can in fact set 81 = 0 if we at the
same time decide to ignore the *bubble” contributions (a) in all propagators.

Consider now the leading perturbative corrections to the four-point function I'*),
At the tree level ™ = A and the normalization condition (12.5) is satisfied at this
order if we st ) = 0. Le. dA = Of 5\3) Nontrivial contributions appear at the
order A?: the corresponding diagrams are

T oo g = A =

where again the diagram (d) vepresents the conlribution of the counterterm dA in
the order A2,

Each of the diagrams (a-c) can be expressed through the integral

a (idk 1
d e / (2) (k2 - ) ((p+ k)2~ m?)’ )

namely
) 2

A 5
@)+ 040 =5 (1) + Tk + 162))

a

where pip == p1 - P2, p1a = p1 + Py, Pra =P+ Pae
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The normalization condition (12.5) requires that

(a) + (b) + (c) -+ ((I)J =,

=0
which fixes the value of the counterterm constant in (12.7).

3
@ =2 /(0).
2()

With this we obtain

2

- A _ , - o
FM)(]“I?' T 1}”4) =A- 7 ([?('pfﬁ) + [?"(pii) s ]T(p/]“d }) -+ ()(Aﬂ) ’ (]29)

where
L(p") = I1(p*) - 1(0).
Our goal now is to show that while the integral (12.8) is singular at = 4 the
combination appearing in (12.9) has finite limit at = 4
The integrand in (12.8) can be transformed using the so called Feynmeon parametiriza-
tion. The identity®

i / ! du
AB  Jy (A~ (1-u)B)?
which can be checked by explicit evaluation of the integral in the r.h.s., allows one
to write the integral (12.8) as

- / / d?k 1 .
(2m) (m? + k% + 2u (kp) + up?)? ; (12.11)

The combination in the denominator can be put in the form

P+ k% — 2u (kp) —up® = m? + wll —u)p® + (k- up)?.

SMore general identity

11 TIfa-+3) /1 e wL(1 - )it -
Ae B# T T(a)T(g) [wA + (1 - wiB]ate 10)

is often useful. To verify it, change the imegration variable to w = Bz/(Hz + A(l — 2)) 1o reduce
the integral to the Euler beta integral

Cayee [ g aam1gy _ vaer D(@T(3)
Bmﬁym/d - a -

i
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and by applying the translation property (i) of the dimensionaly continued integrals

1 ~ il
L dlk 1

The momentunt integral has the form (11.10) with o = 2 (see Lecture 11), and
hence

we have

;. T4y rl ., ,
I(p™) = —‘:—“T"‘) / du [m” 4 u(l — u) 7)2]%‘2.
(dor)z Jo

We see that due to the factor I'(2 — d/2) = 2/¢ — v + O(e) this expression has
pole at d = 4. However the combination

; T LT . — d
IL(p*) = I(p*) = 1(0) = ————1—2—) / du /[ﬁl" fou(l —u)p?le ¥ ~]m?a—*
¢ o 0 \
has finite value at d = 4 as the result of compensation between the pole of the
gamma function and zero of the integrand. One finds

"1 2
= -——-l.—— / du log (1 +u(l = u) lj—) =
(

(471)* Jfq n?

——— e —_

1 { /3}2 + drh? \/‘52_‘;?%?722 + \/19_2 9]
A 5 0g e = el B
2 [V 2 T el -
1 leave evalnating the last explicit expression as an Exercise. We see that by giving
the counterters coefficient a® certain dependence on d which is singular at d = 4,

s 3 s0(2-9) L.
ald == 2 [(0) = - _L“l (m?)i~2, (12.12)
2 2 (4t

we compensated the singulazities of the diagrams (a), (b), {¢) above.

Exercise: Compaire the above calculation with the one in §10.2 of PS. Find the
relation (to the order A?) between our renormalized parameters m?, A and parameters
m?. X defined there. which correspond to the scheme (SI).

It is instructive to study renormalization at the next, two loop order. The two
loop contributions correspond to the terms ~ A% in T and A* in T™). Analysis of
the two loop terms in '™ can be found in P8 Sect.10.5. I repeat it in the Appendix
below. along with the brief discussion of the two-loop divergences in T'®),
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To complete our analysis, we have to check that no new counterterms are required
5 . . E 6N 7
to compensate for divergences in higher proper vertices ', T etc. At one-loop
level the higher vertices are finite without any counterterrs since the diagrams

———

(2n) _
- FI ~loop -

. “-;_A._a

are convergent at d = 4. The two-loop contributions to these vertices involve
divergent diagrams. with the divergences coming from the 2- or 4-leg subdiagrams.

G . . . L
For example, Té’_}loop receives contribution from the diagram

o
B o f )
R

which is singular as 1/¢. However, it is possible to check that the one-loop

counterterms N -
MG g ABE
2 a7
are suflicient to cancel all such divergences. For instance, the above divergent dia-
gram comes along with two other divergent diagrams

o, 2 2 1 L., 2
(<>\ L
B 6 )
. ®
3 e 3 6
E 4 ' 4 T s
5 4



involving the one-loop counterterm vertex.

Sunilar sitnation persists to higher loops. Suppose we have renormalized the
theory (i.e. determined all the counterterms as the functions of €) up to L — 1-loops.
Then contributions of all L-loop diagrams. with al L — 1-loop counterterms, to the
effective action I'[#! can be written as

PEle + T ).

where T¢Y has the form

m!)(c‘) 13(”(() \4(])(6)
L d 4 2 £ it
—- )\ / [r,!T i !}A*:—“ (l’)ql) ——— 2 @ 5 ﬁﬁE.___
with coeflicients having Lth orcer pole in r.

gl gl L o) % A5

s B : e A
y S Nl L N Pk
E o & Blfem j,=rn &V, S [1218)
= k=L k=1

and T is finite at € = 0. [t is clear then that the divergent part can be compen-
sated [or if one adds to the action the L-loop countertenn

o B0 . Ra®(e
AW = L /dd.:. [——;Ej (D) - .)(()5‘*“ + a4| (t)(‘ﬁ :

with

(L)

e

G i

= 20+ 2B ey = BB+ B, alP(e) = AN (e) + AP,

.
(€

are finite numbers.

L
where /{ j,Bm 1”‘)

The freedom in the choice of these finite numbers represents the freedom in
the choice of the renormalization scheme. In given scheme they are determined
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by the normalization conditions. like (12.2),(12.3)) or (12.4).(12.5), which usually
directly relate the parameters A and m? to physical quantities. The form (12.13) of
the divergent part of the effective action suggests another class of renormalization
schemes. In so called Minimal Subtraction Scheme one simply sots Z[EL) = ), B((JL: E=
0. A((,L) = 0. In other words, in this scheme one chooses the L-loop counterterm to
be exactly equal to the divergent part of the effective action renormalized to L — 1
loops, as defined above, i.e,
ANl = Tdv (5]
In this scheme the parameters m3, 4 and Ay g entering the the action

1 mie . As : 1
A= [ d= [E ()2 + —{‘)’é £°+ %ﬁ o' + Countertermns in MS S(:hcmc‘J :

are not apriori related to physical mass and scattering amplitude. This relation has
to be calculated order by order in perturbation theory.

Full proof that such procedure works to all orders is rather involved (it can be
found c.g. in J.Zinn-Justin, Quantum Field Theory and Critical Phenomena, or in
original papers quoted on p.338 of PS). According to these general theorems similar
renormalization procedure works o all orders in any field theory whose perturbation
theory has only finitely many primitive divergences. We have seen that this is true
if and only if the mass dimensions of all couplings are non-negative,

Appendix: Two loop analysis of ¢! (PS Sect.10.6)

Here we carry out two-loop renormalization analysis in the o theory. Let us now
start with the A* contributions to ™). I will still assume the renormalization scheno
STI. Also, I will disregard the 5!} term in §m? counterterm and the “trivial bubble
diagram”; we saw that these cancel each other exactly. Then we have 16 diagrams
contributing to T'* in this crder:

""‘FM)(J'UL v Tp_l:} =
\
! 3
t ,’5 \I ,? \ /’5 !\ ,, I’\ /3
(,‘OO" + ;@ + D\ of 'C%;(Z) +(2);O )+
; ‘ ¥ r & £ \ - ¥
z ' y =z 1 2 y 2 Y
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(a) (&) (¢ (d) ()

(l(] diagrams with pertntations of the exrernal ](!gs) it

(o)
A

The diagrams (d) and (¢) (and 4 similar diagrams w'th permutations of the
external legs) involve the counterternt vertex —? a'® with the cocfficient a/® which

-

was already determined in the one-loop anelvsis, see Eq.(12.14) above.

The last diagram shown above represenss the contribution of the term A% in dX
counterterm. We must see that it is indeed possible to adjust this single coefficient
¢!3) in such a way that all divergences (i.e. all singularities at d = 4) cancel.
This last contribution is momentura independent constant. For our renormalization
prograin to be successful to this order we must prove that all momentum-dependent
divergences cancell out awong the first 15 diagrams above.

Congider 5 diagrans (a-¢) above. It is useful to divide them into three groups as
follows

I

Ne”
LN

s
R
. Fd
\:7)
‘ﬁ\

N

'

L
Cafo—
a ra
Q
f ~

17

2 LY /'
Let us show that all momentnm dependent divergences cancell separately within
each group.

) \D* 3
<
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Consider first the group I. The first disgrain there is easily calculated to be
Sl T
7 [[(}%ZQJJ '

the 4 in the denominator being the symmetry factor, pra = p; — ps, and again

5 d'k 1
[ e a— o
J@2r)d (k2= m) ((p+ k)2 + )
Now, cacli of the other two diagrams in tais group contribute

123
3 a® 1(p},),
so that the sum of all three diagrams in this group is

Group | =

A3 2 5 33 r 12
5 [ota] 2 % S0 1= J’
where the expression a'® = 2 7(0), Eq. (12 14), is used. We know from the one-loop
analysis that the difference [,(p*) = I(p?) -- 7(0) is finitc at d = 4 and therefore the
divergent parts of the diagrams in vhe group I indeed sum up to a momentum inde-
pendent constant (the last term in the expression above), Note that this divergent
constant has second order pole at d = 4. i.e. it behaves as 1/¢* as ¢ — (.
Consider now the group II. Il contains the diagram

i 13

T) f(m} + 2 {f(m

A NREN
Py =" K
- "“g p FS
~

/ -

P?— 71,/ %‘f‘ I< P"f
Mook 1 1 "

i i k -4 .

2 / (2m)* K2+ (pia + k)2 + W I((k 4 p))

where I(p?) is the integral (10.2). which we already found equal to

‘) . ,l"'J -—2
Hp®) = v-—h——d-—/ dv 2+ u(l ~u)p J !
(47)
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Using, this formula and combining the propagators with the help of Feynman parametriza-
tion we obtain for the above diagram

M- d

2 (4m) 1

. ' dif; 1 1
du du VT T : T Y 5
Jo 0 @m0 (kpue) v pta + %) (2 u(l — ) (k+ p)?)? 2
The k integral here can be evaluated by using the transformation generalizing the
Feynman parametrizaticn. Namely. consider the identity

1 Tla+8) [ dews'(l-w)®! . (12.14)

A8 DDA Jy A4 (1 —w) B)e+s

It can be derived by explicit evaluation of 1he integral in the right-hand side: pro-
jective transformation of the integration varianle w = Bz/(Bz + A(1 — 2)) brings it
to the form of the Beta-integral

" . ; IMa) (3
Bla, 8) = / de®L [T v g1 ‘( )-—--—( ) .
Jo ' e+ 3)

{details can be found in § 10.5 of PS). Using this identity one can write the above

integral as

M@ -d/e :
_ ( _{&_/_l X / du di dw -
2 (4m): 0

/ 4k w3 (1 - w)
27 w92 4wl — ) (k+ p2) + (1= w) (32 4 k% 4 20 (kpra) +vpd)[t 8

By appropriate shift of the d-momerntum integration variable the denominator can
be hronght to the form
N —
Aot PE

where

A= (1 - U“‘) _ U'U(]. - ”‘) . A‘w:ﬂ =1,
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and P is complicated function of pz,p1 and the parameters u, v, w. We only need
to know that
P =w(l ~v)pi,.

=0

In this representation the integral over ¢ is readily evaluated.,

Y3 1 1-4 :
— T3] =y . o
%?{fmﬁ / du do: du —"*i--——ij——fffl m? - Pt
Jo A

Evidently this expression is singular at d = 4. First, there is a pole at d = 4 in
the factor
I'(4 - d) = T(e) = % — o)
in front. In addition, at d = 4 the integral over w diverges at w — 0 because of the
factor w'™% in the integrand; as the result the integral over w has additional pole
at = 4, i.e. the whole diagramn again has s sccond order pole at this point.

To isolate the singnlar contributions let us write the integral over w as

1 _ 1 1
fn dww'™? f(w) = f(0) A dww' % + /0 oy w5 [f(w) = F(O)].

The second piece is

- : ‘
—%— %ﬁ@ /0 du dv duw '™ [l‘ ; G PR =i e P = O
Here the integral over u,v,w is convergent and brings in no additional singnlarity
at d = 4. Therefore the abive expression has only simple pole at ¢ = 0. To evaluate
the residue at this simple pole one can set. d = 4 everywhere exept in I'(4 — d). Tt is
clear then that this residue does not depend on external momenta, i.e. this part of
the above diagram has the form

Gy s
T + L’l(plz e :Pﬁ),

where Cp does not depend on p;, and the € is finite at € = 0.
Let us take a look at the other piece, proportional to f(0). It is

! 2 2.x O o T
S(0) [0 dww' ™% = - f(0) = - a—:—)); /0 dudv (/* 4-v(1 - v)pi,)
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The u integral lere is trivial. Now. for ¢ — U the integral can be written as

1
/ du (1 ~ ¢ log(m? + vl - v) pi,y) + O(ez)> .
Jo
and therefore this piece of the diagram is

¥ T g 1 N
S s (— -5 + logdmr — / dv log[m? + v(1 —v) p%zj) + finite terms.
¢ Ju

We have to add here the second diagram in the group II, which is

2 AP . X 4

37 a® I(pf,) = £ 1(0) I(p3a)

where the expression (10.4) for the cosfficient a'® is used. Recall that

T +1 )
]{pi') — I_(Z_‘_g_/i) / di [m2 =l - U]pz] 2
{

(4m)i

1 2 : oy 2
( e du log(ri® -+ u(l — 2) p*) + O(e) | .
0

('1'17 )% \ €
Therefore the contribution of this diagram is
1/2 w4 o ) .
7T (— — 29+ 2log dm — log rh* — / du logm” + u(l —u) piy] | + finite terms.
7)o \e Jo

Adding the two diagrams of the group II we see that the p ;- dependent singular
terms cancell out,

o1 _ AT

Group 11 = —— =~ [ = — 5 + log 47 - log m* | + finite terms.
(4m)t e \ e

The group [11 can be analvzed similarly. We find that all singular parts of the first

15 diagrams are pole terms with the coeflicierts independent of external momenta,

<. g €

15 diagrams = X\ (-—; FRt S F s - 1P4)) ) (10.5)
13 €

where ¢_,, ¢ 1 do not depend on p,, and F is finite ar d == 4. Therefore the coun-

terterm coefficient a/® appearing in the 16th diagram always can be appropriately
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adjusted to compensate the singular terms. In fact, according to our normalization
condition (SIIb) (I"*)(0,0,0,0) = X), this coefficient is determined as

3 C_a C_q i
e L P
3 ( )

and hence

All 16 diagrams = A\ (F(pl' TS R A (VR ,0}) :

Eixercise Verify these two-loop celculations. Evaluate ¢_y and c_;.

Let us briefly consider the A* contribusions to T®. These are given by three

diagrams
I3y = p? — -
PR+ Ky
Ze C)
&)
(——— ——— o+ —==wRe-- ~—~®—~—)
()
N~ « 5
(a) (b) (¢)

The diagram (b) involves the counterterm vertex —A?a'®, and the diagram (c)
contains the A? part of the counterterms §Z and dm?,

7 n
(2) = — X (29 p® + 3y,

—
—_— = R — -

Again, the cocfficients here must be determined from the normalization condition

(SIIa).
Let us denote £,(p?) the contribution of the diagram (a) to the mass operator.

One can write it as

5a(p?) = Ta(0) + 0 L(0) + £.(p%),
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where by the definition
(%) = 0Y) as Pt 0,

Let us analyse the diagram (a) and show that ¥, (p*) has finite value at d = 4.
The contribution of the diagrarm (a) is given by the integral

. X2 de dik, 1
E-"u (pZ) = / d

El (2702 (32 a2 (k3 + i) {(p + ky + ko)? — mM2)

One of the k-integrations, say over ks, can be done exactly the way we did one-loop
integrals for T

Atk 1 . "
; . = [((p+ k)) =
/ (2m) (k5 + ) ((p + Iy + hy)? 4 102) (7 -+ £1)%)

(2 - d/ ) / el
dw |7
(%|:1| } -’- S0 "

d
g2

(1 —u) (p + k)

We find

.07 = A2 I‘?—d/?)/ / A% 1
AT (4mi  Jo (25004 (il —u)(p + ki)? + Mm2)2-4/2(k2 + 2}

The remaining integral over k; can be done using 112.14) which allows one to trans-
form the mtegral as

. NT(2-dj2) T(3-d/2)
Ealp™] = Jl (flﬂ')% ](;2 BESIVEN _/(: du / dw J(w,w)

]( ) / Ildﬂ"[ '(.l”l--i
J(u.w) = .
(27) 172 + (1 — ) k2 + wu(l — u) (k; +p)2]3“%

The integral over Ay can be avaluated after she shift of this momentum variable

g o= iy e Et'_‘l{_ﬂl "

where again
A={1-w)+wu(l-u).



One obtains

dlq w42
J(?L, w) = f (‘7ﬂ-)d o
(A g+ w(l —wu(l —u)p?/A + rhz)

holRL

With appropriate rescaling of ¢ oue can bring this integral to the form (11.10), and
obtain
A¥F T(3-d
Sy =22 23 )
(4m)z T(3 - d/2)

qd—-3
'~ [u'(l ~wu(l — u)p* + A 7}"2] :

Combining these results we get

X T@E3-d

I . A
Ta(p?) = 37 (1m)? /0 dwdu w' % 43 % [u-(l —wuw(l—w)p*+ A ﬁlﬂ] .

This quantity has second order pole in ¢, one singular factor coming from the Gaunma
function )
I'(3—d)=->40(1),
(

and another appearing due to the divergence of the integral over w at w — 0.
However, subtracting Z,(0) and p* £/ (0) one obtains

M IE-d

1
o Bl B il oo
P [ dudww' "2 A72 Hiu w).

T (i) = Tt
+(p%) 31 (4 [4
where
H(uw) = (1 +p* By =1~ (d~3)p’ B.
and |
e B0~ ] — )
e A

Note that H(u,w = 0) = 0 and therefore the w integration does not produce

singularity in this expression. Mcreover, one can see that H = O(e),
H(uw.w) =¢ [pﬁ B (1+p*B) log(l + p* B)J + O(e?),

and therefore ¥, has finite value at d = 4,

RE g B g e P | '
= By zl?fli’zjg\l“rl_.;_ -’[}
31 (4m)! /n T A ‘.” (1 + 2% B) log(1 +p )}

=, (p%)

129



At the same time the subtracted terms %,(0) and ) (0) are singular at d = 4.

The cont:ibutions of two diagrams (a) and (1) to X then has the form
Ya@®) + Eu(p?) = Lp(p®) + A2 (M () + 2 Nie)),
where the constants /(<) and NV {e) have poles in ¢,

M. A N
M(c) = izz—': = Lioy: N = --_gi +0(1).

The diagram (¢) brings the contribution
S p*h= b [pf =g pEYY,
and our normalization condition
Bie= L) =0

requires the choice
by = —M(c): 2B = —N(c)

(12.15)

of the vounterterin coeflicients at this order. For the proper vertex we then have

simply )
T2 (p?) = p? + m* + B.(p%) + O(NY).
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13 Lecture 13

Renormalization of composite fields in ¢* theory.

In many cases one may be interested in correlation functions involving composite
ficlds, such as powers of ¢*(x), or energy-momentum tensor. Such correlation func-
tions can be computed perturbatively, as the power series in the coupling constant .
However new renormalizations, in addition to the basic renormalizations of the pa-
rameters 2, A and the field ¢, have to be made to make such correlation functions
finite. Let us demonstrate this for the simplest case of the composite field

p?(r)

in the * theory.

Consider the 3-point connected correlation function

(340l

C

where p(z) stands for the renormalized field, ¢ = Z7Y2 @y, Z = 1 + §Z, with
Z chosen according to some scheme, say SII. Diagrams can be used to describe
perturbative contributions to this correlation function if one introduces additional
“external” vertex

Z

W

associated with the insertion %tpg. As before, it is useful to switch to the mo-
mentumn representation, and introduce the associated amputated vertex

W 2)(91 ,P2)

W (p1)W (p2) ’ )

- l—»(-,a2.2)(p11p2) e
where

(250 (g — py — p2) WDy, ) = £ <—u;2(av) oaela)) |
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with g, p;. p2 being the momenta corresponding to x. ;, x», respectively. It is given
by the sum of all one-particle irreducible diagrams

’ .
~TE A gy py) = el 4 O "

\

(@) )
~ 5
A+ Q-
(© (@ (¢

Most of these diagrams are singular at d = 4, and a quick look reveals that these
singularities can not be climinated by renormalizations of the parameters m?, A, and
the field . This is already seen in the order ~ A. All the counterterm vertices that
we have introduced already show up at the order A* (diagram (e)) and higher. But
the diagram (b), which is ~ A, is singular. Indeed its contribution is

2 A
—T& 2 (p) pa) =1 — 3 I(p},) + O(A?)

where I(p?) is the same integral (12.11) which we encountered previously. We know

that
[(P%E) = 1(0) + I(pfa) ,

where I,(p?) has finite limit at d = 4, while J(0) diverges as 1/e. In fact this shows
what we need to do. We write

—I D (g, ) = (1 = gI(U) # U()\z)) (l - g L(p?,) + 0(’\2)) +O(A%).

Therefore, at least to the leading order, we can handle the problem by defining the
renormalized field [¢?]g,

¢ =22, ¢, (13.2)

where 5 I - d/2)
Z—zl e 2y o 2 d/2—1.
s =1 5 1(0) + O(A9) 1(0) (dm )2/ (m*)
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Then
W2 i 2.
T2 = Z‘pzl F(‘DR’Z),

where the vertex function of the renormalized field [p?]g is finite, to the order .
It is convenient to invert the above relation,

[0 r(z) = Zp ¢* = Zp Z7" 5. (13.3)

(Note that in the ratio (13.1) defining T2 (p,, p2) the field renormalization factor
Z cancels out.) As with other renormalization parameters, we assume that Z.
expands in power series in A,

Zo2= zg.? + /\z‘f;) 4 )2 zg}) o

[

@) — 1; with this we have

In the above calculation we have set z,

1
zgz) =3 I(0) + finite

By inserting the renormalized field [¢%](z) instead of ©?(x) we replace the ¢? vertex

with
/ . . / -
’W\ - ""‘(\ = Zqﬂ ’

In the perturbation theory (i.c. expansion in A), this new vertex is represented as
the series in A,

. S oS m(é/ + 5
NN AN

where

(n i Lm)
~
In computing the correlation functions with the insertion of [»?]z one has to take
into account these new field renormalization vertices along with the counterterm
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vertices associated with the counterterm part of the action. The field renormaliza-
tion constants z(? are to be adjusted, order by order in the perturbation theory, to
cancel the divergent parts of the diagrams.

As in the casc of the renormalizations of the parameters of the action, there is
freedom in of finite renormalizations

[©%]r = Zgnite [#7)R -

This ambiguity can be fixed by imposing some normalization condition. For in-
stance, one can fix the normalization of the field [¢*]g by

_I‘(Isc"“’ln-Q)(O1 0)=1.

where —1"“‘*’21’"*2)(;)1. p2) is the momentum-space amputated correlation function

[Wlle) (e (es) >

[Nl

7F([‘F\2JR!2) (plpz) W(pl) W(p-z) - ft <

(¥

Under this condition we have

0 y_ 1
=1, = 5 1(0).

Renormalizations of higher composite fields follow the same idea but are more
complicated. In particular, it generally involves the phenomenon of ”operator mix-
ing” - renormalizations of higher composite fields may require forming linear combi-
nations of them, with renormalization factors becoming matrices. Brief discussion
of simplest case of this phenomenon - mixing of the fields ¢* and Ay - are given in
the Appendix. More systematically this phenomenon is discussed in the context of
Renormalization Group.

Perturbative Renormalization Group
Finite renormalizations

Renormalized perturbation theory allows one to obtain the correlation functions
of ©? theory as power series in the renormalized coupling parameter A with well
defined finite coefficients. This concerns the correlation functions of of the field ¢
as well as the ones involving appropriately renormalized composite fields. This is
achieved by adjusting the counterterm coefficients dm?, §), 67 in the action (and,
additionally, the renormalization factors in the composite fields) as the functions
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of regularization parameter (¢ = 4 — d in dimensional regularization, or A if some
cutoff regularization is assumed). Renormalized correlation functions appearing in
this way depend on two parameters, A and m?, named the “renormalized coupling”
and the “renormalized mass parameter”. Precise relation of these parameters to
physical quantities, as well as the field normalizations, are specified (explicitly or
implicitly) by the renormalization scheme.

By doing calculations in two different renormalization schemes we are not solving
two different field theories; rather, we are describing the same theory in terms of
different parameters. One can think of two-dimensional (because two parameters,
m? and A, are involved) “manifold of ¢? theories”, with the parameters m? and A
playing the role of (local) coordinates on this manifold (the latter is often called the
?theory space”).

Bach point of this manifold represents a field theory, i.e. a collection of all
correlation functions, defined up to finite ficld renormalizations

T

(P(1) + fal@a)) ~ L plr)  nln)).
To simplify things one can consider the ratios like
R(zy, 22573, -+, 2n) = (p(z1)p(22) - - - (320 )} /{210 (22))"

which do not depend on the normalizations of the fields. Different renormalization
schemes correspond to different choices of the coordinate system on the above man-
ifold. Ones the coordinate system (i.e. renormalization scheme) is fixed, that is the
points arc somchow “labeled” by two parameters m? and A, the above ratios become

functions of these parameters,
R(xg|m?, X).

Relation between the parameters (m?2, A) and (m?, A), associated with two different
renormalization schemes, is just a coordinate transformation,

m? — mA(m2 ), A = Ami ).
At d = 4 this relation has the form (by dimensional analysis)
mi=m?2fd), A=), (13.4)
where the functions f, g can in principle be computed order by order in A,

f) = fo+Afi+ 22 fa+-n,
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gA) = A+ N g+ Mgyt
the cocfficients fi, gx being finite numbers. The correlation functions (or rather the
above ratios R) computed in the two schemes are related as

R(zilm® f(N), g(A)) = Rl(z.[m? ),

so that these are the same correlation functions expressed in terms different param-
eters, that is, coordinates in the space of ¢! theories.

Short distance problem

Renormalized perturbation theorv, no matter what scheme is assumed, yields the
correlation functions as formal power series in the coupling parameter A. Although
in each given order these series give finite and well behaved correlation functions, the
problem of overall non-perturbative consistency of the theory is a separate question.
There is an issue of convergence of the perturbative expansion. It is possible to
show that these series in ¢* have in fact zero radius of convergence, and at the best
they can be understood as asymptotic series. If so, there is an important question if
these series can be understood as asymptotic expansions of some non-perturbative
correlation functions which are compatible with requirements of locality and with
quantum mechanical interpretation (the property usually called positivity). Although
one can show that these properties - locality and positivity - are preserved at the
perturbative level, i.e. in each given order in A, it is conceivable that they can break
down after summing the series up.

We have seen that in Euclidean version of quantum field theory locality implies
in particular that the correlation function

(p(x1)e(x2) -+ - p(T0n))

viewed as the function of, say, x;, has only point-like singularities at z; = x5, 23, - - , Zon.
(We have observed this in the free Klein-Gordon theory, but arguments we have ap-
plied in that analysis depend only on general properties of the energy-momentum
spectrum, and are generalized straightforwardly to general interacting theories; I
hope to come back to this point later.) This is because upon continuation to complex
coordinates and ultimately to the Minkowski space-time these singularitics translate
into the singularities at the light cones associated with the points s, -+ |, za,; we
have seen that these singularities are directly related to commutators of the field
operators. Locality states that the commutators of Heisenberg field operators must
vanish outside the light cone,

[@(x.8).4(0.0)) =0 for #<x*.
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This property of locality is preserved in the renormalized perturbation theory at each
order in A but there is no guarantee it will not break down in full non-perturbative
theory. It is very well conceivable that upon summing the perturbative series up
singularities at finite space-like separations may be generated, leading to violations
of the local commutativity.

The following example demonstrates this possibility. Consider the power series

3 ()" (tog iz — )

n=0
which models & perturbative series for some correlation function. At cach given
order the above expression has point-like singularity at z; = z,. However its sum is
1
1+ A log m}.’()l —.ZCQI '

This function is singular at

|21 — 7| = 29 = m! e
As the result, if one continues to the Minkowski space-time the light cone “fattens”

and causality is broken at short scales ~ zg 8

80ne can take different attitudes toward such possibility. One pragmatic attitude is that we
do not know what describes short-distance physics anyway. After all, al short distances quantum
gravity must play important role, perhaps along with extra dimensions, superstrings, D-branes,
and who knows what. And therefore we do not care about possible inconsistencies at these short
distances. With this attitude quantum field theory is viewed as a way of producing (renormalized)
perturbative expansions in the coupling parameter. Such expansions of course are useful only if
the coupling parameter is small. Tn quantum electrodynamics (QED) where the analog of A is the
fine structurc constant which is small indeed, this is valid point of view. And if the interaction is
not small in any sense, according to this philosophy one would conclude that quantum field theory
is not uselul at all.

In the past, at certain stage of development, such was prevailing attitude. Discovery of Asymp-
totic Freedom in nonabelian gauge theories, along with better understanding of Renormalization
Group has changed that. On the face of it, the discovery of the asymptotic freedom was pure per-
turbative result, obtained by computing few diagrams, but through understanding the Renormal-
ization Group one can see that it actually guaranteed full nonperturbative consistency of quantum
nonabelian gauge theories. More generally, renormalization allows one to understand quantum
field theory in terms of criticality, or vice versa, to the extent that from theorctical point of view
quantum field theory and theory of critical phenomena are much one and the same thing. More-
aver, main idea of the Wilson’s renormalization group has proved very uselul in theoretical physics
well beyond quantum field theory. This is why [ hope to devote significant part of this course to
it.
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The problem of the short-distance consistency of a quantum field theory requires
analysis of its behavior under changes of the length scale. The latter is generally
understood in terms of Renormalization Group. Here I will briefly discuss the basics
of this approach, in its perturbative version, and applied to ? theory. The analysis
is substantially simpler in the case of massless theory.

Massless *

As a preparation, let us discuss what happens with our renormalized perturbation
if one sets the renormalized mass parameter m? to zero. Although precise meaning
of m? depends on the renormalization scheme, the condition

m? =10
is scheme independent, i.e. ones it is satisfied in one scheme, it so does in any other

scheme, as the Eq.(13.4) suggests. There are at least two reasons why this case is

interesting.

o Potential problem with locality can oceur at short scales, much shorter then
m~!. The mass term is not important at such scales. and by analyzing this case one
can understand the general situation.

e We will see that in applications to critical phenomena the case m? = 0 describes
physics at exactly critical point, and therefore it is of central interest.

Taking a look at our previous perturbative results we discover that it is not
possible to just set m? = 0 there, since nearly all quantities we have computed are
singular at this point. Consider for instance the 4-point vertex,

2

A
(0,50 = A= 5 (16 + L)+ (5ko)) +O0%),

where again

1 2
I(p?) = e du log (l +u(l —u) p_) ;

dr J, m?

Obviously, there is a singularity at m? = 0. It can signal one of two things.
Either the theory itself becomes sick at this point, or our coordinate system does
not extend smoothly to this case. T want to argue that m? = 0 singularities of the
perturbative correlation functions originate from a coordinate singularity”.

"Think of some a function f(z,y) written in new coordinates (z’, y'),

g=a', y=y +y logz?.
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Indeed, a particular coordinate system is determined by the normalization con-
ditions. For example, in our scheme SII we have assumed

dr@ (pz)
dp? g

p=

r%@*| =m?, and =1, (13.5)

p*=0

At m* = 0 the first of these conditions remains useful, just stating that T'* (p?) has
zero at p® = 0, which can be considered as a scheme-independent definition of the
“massless theory”, but at m? = 0 this is no longer a simple zero, being replaced
by more complicated singular point. We will see in a moment that at m? = 0
2 contains terms like p? log p? and therefore the second of the conditions (13.5)
cannot be imposed. The coordinate system associated with our scheme is singular
at m? = 0.

It is useful to have a scheme which admits smooth limit m? — 0. Such scheme
must involve dimensional parameter different from m?®. Let us denote it 4%, Since p
can be chosen arbitrarily, we will have familics of schemes, parameterized hy auxil-
iary scale u. Let us take one such p-dependent scheme, defined by the normalization

conditions

dr(p?)

pe: =1, (13.6)

pr=p?

and

T (pi, -+, pa) = A » (13.7)

=€y
where e; is some set of four fixed 4-vectors, which satisfy e; +ey+es+e4 = 0, but have
no other linear dependence. To be specific, we can choose symmetric arrangement,

(5? =3 and ((fl (fj) =—1 for 4 7& J

I write A, for the renormalized coupling constant as the reminder about the scale
1 associated with this scheme. It is conventional to refer to this auxiliary scale as
the “normalization scale™. It is perfectly legitimate to use such scheme in general
case, but we will apply it to massless theory, which is singled out by the condition

@) =0. (13.8)
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We can now develop renormalized perturbation theory for massless ¢! theory
taking exact same steps we did before. We start with the action in its bare form,

m2 o
i /dd [ (Bp0)" + 3P et + e 4}

with some bare mass parameter (vet to be adjusted), and write it as

)\
A= / dix [ i’lf) @ +counterterms]

Where
-1/2
e=2Z," e,

and the counterterms are

67, ;O 5\
counterterms = —~. (659)2 R o+ () o
2 2 4l
with
02 = 2y — 1,
Omiuy = ms Zw

6)\('“) - /\[] Z(“) - A(ﬂ.) .
Again, we assume that all the counterterm coefficients are power series in the
renormalized coupling A,
y — L2 y2
0Z() = Z(y Ay T
_ @
6)\(#)_0’(;1)}‘ T
g
(Sm(m = b(u) A ey,
with the coefficicnts determined from the normalization conditions (13.6), (13.7),(13.8).

A remark is in order. We have put two parameters, mj and Aq, in the bare
action. Renormalized massless theory depends on a single parameter, the renormal-
ized coupling Ay, only. The normalization scale y is not a parameter of the theory,
in that it is an attribute of the renormalization scheme, rather then the theory itself.
We have imposed three normalization conditions Eqs.(13.6)-(13.8). While Eq.(13.7)
defines the renormalized coupling Ay, and Eq.(13.6) fixes normalization of ¢, the
Eq.(13.8) states that the theory is massless, and thus it imposes restriction on the
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theory itself. In principle, this last condition can be translated into certain relation
between the bare parameters m2 and Ag. The bare theory is implicitly equipped
with some regularization, and precise form of such relation depends on the regu-
larization method. For instance, if some cutoff regularization is implied, with the
cutoff momentum A, at d = 4 the relation has general form

tig =2 A€ ol (13.9)

Precise shape of C(\p) heavily depends on specific implementation of the cutoff.
Subset of ! theories selected by this condition corresponds to critical domain in
the theory of second order phase transitions. In dimensional regularization there
is no cutoff parameter A, and simple dimensional analysis shows that this relation
must take simple form

g = 0 (dimensional regularization) .

This means in particular that dm? = 0, and we do not have to bother with the mass
renormalization at all. This is one of the technical advantages of the dimensional
regularization technique.

Again, thinking in terms of the “two-dimensional manifold of y* theories”, the
massless ¢* theories correspond to certain one-dimensional “critical” submanifold

(critical curve, in our case),

In statistical mechanics, the "bare action” models microscopic interaction, and the
parameters m2 and Xy, as well as the cutoff energy A, are related to temperature
and the microscopic physical characteristics of the matter under consideration (c.g.
molecular interactions in a gas/liquid). When these parameters cross the "critical
subbmanifold” the macroscopic system undergoes a second order phase transition.
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Renormalization as the scale transformation. Callan-Symanzik equation

Although in general ¢ theory the coordinates (rm?, A) depend on the renormalization
scheme, the "critical submanifold” m? = 0 is scheme independent. It is because
the condition (13.8), being a physical statement, is scheme independent. But even
within the critical curve there still is a freedom in the choice of the coordinate A
along . Within the above class of schemes (13.6)-(13.7) this choice is controlled by
the choice of the normalization scale g, If p and i are two different, values of the
normalization scale, the associated renormalized couplings constants

A= A(#J and 5\ = /\(ﬁ)

are related as )

A=g(A) = g\l i/u),
where at d = 4, by dimensional counting, the function g can depend on A and the
dimensionless ratio ji/p. And if 7 is infinitesimally close to e, Le. fi = p+ dp, then

A

A=X+ L8N,
+MBH
where do(0E)
B = <7
e |,

is a function of A alone.

Of course the correlation functions are essentially independent on the renormal-
ization scheme, in the present context on the choice of the scale . More precisely,
the ratios of the correlation functions, e.g.

{p(z1) - (Tan)) o) (13.10)
(PN

R(xi|Apy. pe) =

which are insensitive to the normalization of , do not change under substitutions
= e Ay = A -

Here the index g in {---),) signifies that the correlation function is calculated in
the scheme with the normalization scale . This independence can be expressed in
the form of partial differential equation

d 12,

— + BN = | B{zs|A ) =0,
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where now A and p are viewed as two independent variables.

These equations can be extended to the correlation functions themselves il one
recalls that a change in renormalization scheme in general induces a finite change in
normalization of ¢,

1
. f'i —~
P = Znte(A /1) P
where again at d = 4 the constant Zgp;. can depend on A and dimensionless ratio
ji/gt. For an infinitesimal change ji = u + o

op
Plutdp) = (1 - ”; 7(’\)) Plp) s

with )
AZgnite (A, €) ’
d€ At
Taking into account this transformation of w we obtain the so-called Callan -
Symanzik equalion:

Heg) =

(‘“% AR % - ”7’(")) (plz1) - e(zn))gn = 0 (13.11)

where the correlation function is viewed as depending on two parameters, A and p.

At the first glance the Callan-Symanzik equation contains strictly zero physical
information. Indeed, in order to make a meaningful renormalized perturbation the-
ory we have introduced an auxiliary scale g having in mind that nothing physical
can depend on this arbitrary scale, and then the equation (13.11) just states that
ves indeed nothing physical depends on p. This is absolutely true if no information
about the functions S(A) and v(A) is added. However, if something is known about
those functions the Callan-Symanzik equation becomes useful.

To see this let us first notice that by dimensional counting any correlation func-
tion of the d = 4 massless theory can be written as

((,0(1'1) e ;:C(I'rl))(#) = H-n O(”)(,uml, R ,U,Zl’,‘nl)\) ’

where C™ is dimensionless function of dimensionless variables pz; and A. Therefore
the Callan-Symanzik equation (13.11) can be written as

(; IJ?F & B 1L A - BN (%) (p(z1) - plza)) =0, (13.12)
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where the coordinate derivative operators have the following exact meaning

o=yl
T— = T — .
Yo, bt

1=

Note that the differential operator Y, 2,0/8x; describes infinitesimal dilation of the
coordinates z; and therefore the equation (13.12) is the statement that such dilation
can be essentially compensated (up to the field renormalization) by appropriate
change of the coupling parameter A. More precisely, an infinitesimal dilation of
the coordinates is equivalent to certain infinitesimal shift of A plus an infinitesimal
renormalization of o,

o (L—dL)a* & Ao A+FBNIL, @ o+ (1+v(A) gL .

Let A(L) be a solution of the following differential equation and initial condition

d
Lm ML) = BML)). A1) =X, (13.13)
Then the Callan-Symanzik equation states that
Z% (L) {p(Lay) - - o(Lan))acry = {o(1) - p(xa))a (13.14)

where the index A now shows the value of renormalized coupling constant, and Z (L)
solves the linear differential equation

7250 = (14900)) 250 2

=

L (1)=1. (13.15)

dl.
It is assumed that the correlation functions in (13.14) are computed within the same
scheme, with the same normalization scale g, but with different values, A(L) and
A, of the renormalized coupling parameter. Note that p does not appear in (13.14),
i.e. in this form the Callan-Symanzik equation is not a statement about scheme
dependence but rather determines how the theory behaves when one goes from one

scale to another.

Appendix: More on renormalizations of composite fields

Simple multiplicative renormalization of the field 2%, i.e. the form [¢®]g = Zs(€) %,
is not sufficient for removing divergences in all correlation functions. Instead, one
has to look for the renormalized field in the form of the linear combination

1 Zy

5 W =576+ 2o = Zoar Gip (13.16)
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The reason for adding the term ~ 8¢ will become clear in a moment. As usual, the
coeflicients Z are assumed to be certain power series in the renormalized coupling

constant,
Far=] 4 Bl 4 vee g

Zg]—~51+)\z(1) T,
d}]_” :)\231n o+

Therefore, insertion of the renormalized field 5[cp3]R gives rise to series of vertices,

@’ )

= 1, o i /\zél), ete

and

3 (O
3 () 0) ¢ D g 20,

(‘F e e = ;:(1,‘1, e = A(zé_ler 23 (0 etc.

Then, for the vertex I'#&1) we have the following series of diagrams

« () ' ‘!ii___) X




We already know from the free theory that

il 1 [ d/(2r)?
zé?l) == D(0) + finite = & ﬁ -+ finite. (13:17)

The finite parts here, and in higher order counterterms are arbitrary in that they
are not constrained by general requirement of locality. After all, finite renormaliza-
tion of %], or adding finite portions of (already renormalized) fields ¢ and 9%y
produces equally good local field that one can take for renormalized ¢°. One can
fix this ambiguity by adopting minimal subtraction scheme, or by imposing some
normalization conditions, say

—T¥Rl () = O(p"). (13.18)
in addition to the one we have taken already,
—I¥%3(0,0,0) = 1.

With this normalization condition, the finite term in (13.17) must be zero, so that
the two diagrams ~ A” cancel exactly. At the order A!, the first of the above
diagrams is

where 11(p?) is already familiar integral

1) — / d'hy d'k, 1
= (2m)2 (A2 + m2) (k2 +m2)((p+ k1 + k)2 + m?)

We have found that
() = (%) — TI(0) — p*IT'(0)

is finite, and the above normalization condition is satisfied by the choice
1
1) 1 Z:g )

Lo
40 =50 - 2-DO), = =5T(0),

where zgl) = 217(0) is the first-order counterterm associated with Zs. Under this
choice all singular parts cancel, and the above three diagrams ~ A' sum to finite

quantity — 3 I, (p?).
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We have seen few lectures ago that the fields in the correlation functions satisfy
the equation of motion in the “weak sense”,

A
(m§ — )eolz) + 5y wo(z) = 0, (13.19)

the “weak” equation F'(z) ~ 0 means that
(F(2)O (1) - Op(xs)) = 0 for z#zy, Ty,

with any local fields O,. The above “weak”™ equation was obtained by formal manip-
ulations with the functional integral, namely by performing the change of variables

wo(z) = wo(z) + €(x)

in the functional integral written in its “bare” form. It involves therefore the bare
parameters and the bare field ¢,. As it stands it makes sense only if some regulariza-
tion is present. One can repeat the same manipulation with the functional integral
expressed through the renormalized field and renormalized parameters. This way
one obtains

At dA

(m? + dm*)p(z) — (1 - 62) aﬁcp(ac) +

which of course is just the same “bare” equation (13.19) expressed through renor-
malized parameters and renormalized . It contains the singular counterterm coeffi-
cients as well as the field ¢* which, before renormalization, is also singular. Again, it
makes sense only in regularized theory. However now we can use (13.16) to exclude
the ficld * in favor of the renormalized field [¢®]g. One then obtains the equation

m? B2 () — (‘)ﬁ w(z) + é}f By [%r(z) ~ 0, (13.20)
where
L (m?+0m?) Zs — (A +6M) Zs,
m? (1+38Z)Zs— (A + X)) Zy 10
By = ‘ L+3dM/A -
(14+07Z)Zs — (A+0A) Z310
The cquation (13.20) states certain relation between the correlation functions of fully

renormalized fields which remain finite when the regularization is removed (i.e. when
¢ is set equal 0). This suggests that the coefficients B,,2 and B, which appear as

Bl
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complicated combination of singular counterterms, are in fact finite. This finiteness
is direct consequence of the existence of renormalized perturbation theory. Let us
check it in the leading order in A. As dA/A = aP A+ 0O(N?), Z3 =1+ ::él) A+0(N?)
and §Z = O()\?) we find for example

Bie=T + (M = zgn) A+ O(X?).

It is not difficult to check that the difference o — zé” is finite in any renormalization
scheme.

Note that canonical mass dimension of ¢* at d = 4 is
3
[990] =3,

and
[]=1, [0°¢]=3.

The renormalized field [©%)g is a linear combination of the bare fields of canonical
dimension 3 or lower, which have the same symmetries as ¢*. It is not difficult to
check that there are no other composite fields, besides g, 9%¢g, and 3 itself, which
i) have canonical dimension < 3, ii) transform as scalars under coordinate rotations,
and iii) change sign under obvious symmetry of the y* theory: ¢ — —y. This
is a general feature of renormalization of composite fields. In order to eliminate
divergences, it is sufficient to look for renornmalized fields in the forms of lincar
combinations of the bare ficlds of the same or lower canonical dimensions, and of
the same symmetries. In doing so one usually assumes that the fields of lower
dimensions are already renormalized, and so renormalizations of composite fields
goes step by step, from lower dimensions up.

To illustrate this further, let us briefly discuss renormalization of the fields of
canonical dimension 4. There are two new fields of this dimension,

1 1
Or==8)?, On=—_y'. (13.21)
2 4!
Along with these we must consider two other fields
1 : 1
O = = 82 * O ==¢*,
H =3 S v =3 14

because the first of them also has canonical dimension 4, and canonical dimension
of the second is 2 which is lower then 4, and both have the same ¢ — —p svmmetry.
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Of course renormalization of these last two fields is completely determined by the
renormalization of the field ¢? which we already considered. At the same time
renormalized fields correspouding to (13.6) must be obtained as lincar combinations
of the bare fields O4 . A=111,111. 1V, ie.

OA.RWZ}:Z%} OB’(_].
AB

3

AB
Z = :
0C
Here C = diag (Z,2, Z2), and 2 x 2 matrices A and B must be found from suitable
normalization conditions order by order in A. Note that this matrix has triangular
(in terms of dimensions) form: fields of higher dimensions do not mix into the fields

of lower dimensions. Renormalizations of composite fields of yet higher canonical
dimensions, and renormalizations of tensor fields. follow the same pattern.

where 7 is 4 x 4 matrix
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14 Lecture 14

Renormalization group flow

We can give this equation the following geometric interpretation. The coupling
constants A and A(L) are coordinates representing two points, P and P(L), of the
critical submanifold.

P(L)

The cquation (14.5) then states that the two field theories P and P(L) are rclated
bv the scale transformation

t— L (14.1)

(the field renormalizations obviously do not affect the physical content of the theory).
The equation

L4EA(L) = BA(L)) (14.2)

describes, in given coordinate system, the "flow” in the space of field theories gen-
erated by the scale transformations. It is called the remormalization group flow,
and the equation (14.2) is usually referred to as the renormalization group equation.
The quantity A(L) is often referred to as “running”, or “scale-dependent” coupling
constant. The fact that the scale transformations (14.1) gencrates a “flow” is not
limited to the massless theory; we will see shortly that the Callan-Symanzik equation
generalizes to the case m? # 0.

We have scen that the functions 8(A) and v(A) contain most important infor-
mation about the scale dependence of the massless theory. Unfortunately, these
functions are not known exactly. However we can compute them perturbativly,
order by order in the coupling parameter A.
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There are many ways to do this. The simplest is just to compute the correla-
tion functions perturbatively and then determine the functions 8 and v from the
Callan-Symanzik equation (13.11) itself. Let us first note that the Callan-Symanzik
equation in the form (13.11) applies to the momentum-space correlation functions
as well as to coordinate-space ones (the Fourier transform relating the two depends
neither on A nor on p). Moreover, simple calculation shows that this equation can
be written as the equation

& a
— 4+ BN = — ny(A) ) T (py, -+, pa) =0 14.3
(i3 + B35 =m0 T, ) (143)
involving the proper vertices.
To the order A? the proper vertices I and I'™, when computed in the scheme
(13.7)-(13.6), are (recall your solution of the Problem 6)
2

I (p?) = p* + % (:T)lez (log(u.Z/pz) + 1) +O(V?) . (14.4)

T , )_}\_l_/\izl Ph + log Eig— +lo p_ﬂ_ + O(A*)14.5)
P1--P1) — 2 (47)2 98 4y 05 4412 E 4412 .

where p?, = (p1 + p2)?, etc. Let us first plug (14.4) into (14.3). The result is

2 A, 2 A
A BN =
B @E? TPV Ey

p? [log(1?/p%) + 1] — 2¢(A) p* + O(X%) = 0.

where the first term came from the pd/8p term in (14.3). The second term contains
p? log 4* /p?: this dependence cannot be canceled by two other terms exposed in the
above equation. The only way to satisfy this equation in the order A? is to assume
that B(A) ~ A? so that the second term has to be attributed to the O(A?) corrections.

We then find

2
v(A) = 1% (“4%4 {37 (14.6)

Similarly, substitute the above perturbative result for T into (14.3). We have

/\2

-3
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We already know that ¥(A) ~ A* and so the term involving this function is O(A?).
Therefore
/\2

@y " O(X%) . (14.7)

AA) =3

Note that the leading term (14.7) of the S-function is positive. This is the
feature of * theory. The flow equation (13.13) then shows that for small A the
scale-dependent coupling constant A(L) increases with L. The equation (13.14)
shows that larger L correspond to shorter length scales (this is clear if one rewrites
(13.14) in equivalent form

(o) - @lam))amy ~ (@ L) @(enf L))
showing that the correlation functions computed with A(L) are equivalent to the

correlation functions computed with A, with the separations “shrunken” by the

scale factor L).
If one ignores the higher order corrections in (14.7) the low equation (13.13) is

easily integrated,
A
1-— 3——(4i)2 log L

ALY = (14.8)

At sufficiently large L (i.e. sufficiently short distances) the function A(L) diverges.
This signals potential trouble with locality which we discussed carlier. Of course
when A(L) becomes large one cannot ignore the higher-order corrections in (14.7);
in fact in order to understand short-distance behavior of ¢! theory we need to know
the shape of the S-function at large A. We conclude that the question of consistency
of ¢* theory cannot be settled on the perturbative level.

In nonabelian gauge theories the leading term of the S-function turns out to be
negative, meaning that the running coupling constant decreases at short distances
(instead it increases at large distances); as a result, although nonabelian gauge
theory usually cannot be solved by means of perturbation theory, the question of its
consistency as a ficld theory can be positively answered on the basis of perturbative
calculations. We will discuss this phenomenon known as asymptotic freedom in
greater details later.

Mass perturbation

Let us refine our techniques further. So far we have considered the rencrmalization
group flow in massless ¢! theory. We would like to generalize this picture to the
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massive case. The most natural way to do this is to consider the massive ¢! theory

2 . .
as the massless theory perturbed by adding the term - * to the action density.
We already know that the field ¢? requires renormalization. Let us discuss how this
field renormalizes in our g-dependent scheme.

In the massless theory the normalization condition I'*#2)(0, 0) = 1 we have used
before has to be replaced by some nonsingular ¢ dependent condition. One can take
for example

TR (. }”2)’ =1. (14.9)

p2=2?

(P1p2) u?

The renormalized field field [£%](,; defined by this condition differs from the bare
ficld @2 by the renormalization constant®,

oy =1
9 2 '
[l = (ZE’L)) @ -
Simple calculation similar to that discussed in the previous lecture shows that in
the leading order

1 A, T2 =d/2)T%(d/2-1)

Zga(p) = 1—5(—4;5?( 1) T(d=2) + O(N) (14.10)

Although Z7) * is divergent at d = 4, the ratio Z(“i.s /Z("Z 2) is expected to be finite.
An infinitesimal change of the renormalization scale u — p + dp then leads to
infinitesimal renormalization

[¢2](u+5ﬁ) = (1 - 5_# %ﬂ()‘)) [9021(#) :

1
where
AL
Vo2 (A) = (Z(,L)) #a Zi) (14.11)
is finite function of A. From (14.10) we obtain
A
Y2 (A) = ) +O(X?). (1d:12)

8Note that this definition of the ?® renormalization constant differs from that introduced in
Lecture 13, Eq.(13.3). There, we have defined the constant Z,z as the coefficient between [¢?]r

and ¢?. The new Z¥" differs from Z,» in Lecture 13 by the factor of Z.
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Repeating our previous calculations we find that a correlation function with N
insertions of [£?)(,) and n insertions of ¢, satisfies the modified Callan-Symanzik

cquation

a
(Ma—#ﬂf(/\)%ﬂlﬂ)\)%’\f w(/\)) (p(x1) - @) [y (1) - - - [Py (yn)) gy = 0.

Let us now introduce the mass term as
Hir=
A;\f'z = ./4.(] + f (id11?7 l(pzj('u) s

where Ap is the massless action

1 A 3z dA
_ % 2 4 () 2 () 4
AO/d:c[Q(&p) taY (Bp)* + ar ¢

Here 6Z,) and 0, are counterterms computed in the massless theory, within the
above pi-dependent renormalization scheme (and T assumed dimensional regulariza-
tion and therefore the dm? counterterm is not included). Recalling that

. Ziw)
[9:2](.11) = 7_:2 (:02 : Z(;j) =1+ 52(#) )

()
the massive action can be written as

1 M2 A 67, dAIZ SA
. d, |2 2 2 4 (1) 2 (1) o2 (1) 4
Appz = / dfx [2 (Og)” + - ¥ + a? T (D))" + o P al }

where

. , P2
SME, = M* (Lj - 1) . (14.13)

rha

()

This action can be used now to develop a renormalized perturbation theory in the
massive case. Note that the above definition of the mass parameter corresponds to
specific renormalization scheme in which

o The counterterms §Z;,y and dA,) are borrowed from the massless theory; in
particular these coefficients do not depend on A2,



e The counterterm 4 Mﬁ ) 18 expressed by (14.13) through the p*-renormalization

constant 7 (‘; 2); again, this constant has to be computed upfront in the massless theory,

and oM (i) depends on M? linearly.

Although it is possible to show that the counterterms thus defined indeed com-
pensate for the divergences in the renormalized perturbation theory, no explicit nor-
malization conditions are imposed in the massive theory. Relation between M2 A
and physical quantities in this scheme is not specified in advance but must be com-
puted order by order in the perturbation theory. In this sense this renormalization
scheme is similar to the “minimal subtraction™ scheme.

Note that in this scheme the correlation functions depend on two mass parame-
ters, M and our auxiliary scale g, although we know only one is needed. This is the
price we pay for defining specific coordinate system (M2 A) which is nonsingular
on the critical submanifold M? = 0. It is not difficult to check that correlation
functions computed within this scheme admit smooth limit M2 = 0; in fact it is
clear in advance: at M2 = ( this perturbation theory simply reduces to the massless
renormalized perturbation theory.

Like in the massless case. nothing except for normalizations depends on the
auxiliary scale . Under the infinitesimal change
= p+op

the renormalized field [¢?],,) transforms as

)
[992](,u+5,u) = (1 - j "mz(A)) [502}(#) ¥

s

This brings in certain change in the action, which however is compensated if we
simultancously change the mass parameter,

AM? — (1 .o W(,\)) M*.
H

Invariance of the action w.r.t. the above simultaneous change in x and M? leads to
the equation

a ad a
(,u, o + B(A) T Y(A) + 72 (A) AL? BMQ) {p(z1) -~ plza)) = 0.

This equation shows that in the massive case the scale transformations induce the
“Aow” in the two-dimensional space of ! theories,
d

L
dl.

A= B\, i 2 = Y02 (A) M2, (14.14)

dl
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Note that B(A) and () here are exactly the same as in the massless theory, while
Y2(A) is also determined from the massless theory via Eq.(14.11).
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Spin

So far we have limited attention to scalar field theories, where the ”fundamental
field” (=integration variable in the functional intcgral) was taken to be a scalar
under Lorentz transformations. More realistic field theories are based on fields with
non-trivial transformation properties. Such are the

Electromagnetic field : Fo(z) = =F,,(x)
Dirac (electron-positron} field : vo(z), (), w=1,2,3.4.

More generally, fields are classified according to irreducible representations of the
Lorentz Group.

Representations of the Lorentz Group

The Lorentz group includes both spatial rotations and Lorentz boosts. Formally, it
consists of all linear transformations of the space-time coordinates 2# = (2% 2%, 22, z*) =

(t,x)
o = i =Alz” orsimply z—%=Ax

which preserve Minkowski psendo metric
$2.37) = g — P — 7Y = (x = %) — (¢ — )2
Here
9y = diag{—1,4+1, +1,+1)
is the Minkowski pseudo-metric®. Tn mathematics, this group is referred as O(3.1).

Scalar field transforms the most simple way: The value @(x) depends only on
the point in space-time, but not on the coordinate system. In other words, when
coordinates are changed by any Lorentz transform z — & = Ax, we have

#(z) = §(F) = p(A™'7)

However one can consider fields with more complicated transformation properties.
For example, a vector field V#(z) should transform as

VHE(z) — VH(E) = A%, V¥(A™'2)

“In PS notations, g,. has opposite sign, i.e. g, there denotes diag(+1,-1,-1.-1)
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For co-variant components V}, of this field

Vilz) = V(@) = (A1 Vi (A7'%)

j i

Another example is the rank-2 tensor field
B*(x) = B"™(%) = K, A, BPA™ )

In general case we can consider multicomponent fields ®;(27) with the transfor-
mation law )
‘I’](CE) — (P,r(.’f) = AI[J(A) ‘I’J(Ail.’i) .
The Lorentz transformations form a group, i.e. for two transformations A, A’
the product A’A is also a Lorentz transformation. Then M (A) has to be a matriz
representation of the Lorentz group

M(A'A) = M(A') M (A) .

Once we have a matrix representation of the group a question arises. Is it possible to
break apart the field into smaller sets that do not mix under Lorentz transformation?
How do we make this decomposition into wrreducible representations of the Lorentz

group?

Exercise: Docs B form an irreducible representation? If not, what irreducibles
it decomposes to? What arc the dimensions of those irreducible representations?'’

Complex group O(4,C)

To understand better the structure of the group as well as its representation, it is
useful to start with complexified group. To that end, let us promote the space-time
coordinates to the complex variables

o = (2", 2t 242 = (2% x) e R — ¢ =(2"212%2% = 2) eCt.

1 The solution is obtained via the decomposition
1
B (z) = A" (x) + " (x) + 1 g T(z),

where A# is antisymmetrie (A" = —AY") and S*¥ is symmetric (5* = S“#) and traceless
9 8™ = 0). It is not difficull to see thalt 4%, §* and T do not mix each other under Lorentz
transformations. Is it possible to further break apart these fields into still smaller sets that do not
mix under Lorentz transformation?



We already have done something of this spirit when dealing with the paths integral.
Then we complexified the time variable ¢ = z°; since in Lorentz-invariant theory the
time comes on alinost equal footing with the spatial coordinates, this complexifica-
tion comes as a natural step. In fact, it will be convenient to relabel the variables
as follows., We introduce

# =t gt a2t = L2t 2 i)

with 2!, 2%, 2% are the same as before, but 2! = iz° (Since our coordinates 2z are
already complex numbers, appearance of i here is legitimate.) Then the Minkowski
interval takes the {complexified) Euclidean form

32(2:. z.’) - Z(za - z!a)z - ()‘ab(za _ zta)(zb _ Zlb)
a

which generally takes complex values. The group of linear transformations which
preserves this form is the complex orthogonal group O(4,C), i.c. the group of
complex orthogonal 4 x 4 matrices 2 such that

CCF = F.

The group O(4.C) includes several real groups ("real sections”) as subgroups.
The most important are (1) Real orthogonal group O(4.R) (rotations of 4D Eu-
clidean space, by taking all z” real), and (2) Lorentz group O(1, 3), discussed above
(by setting all 2°, 2!, 22, 2° real).

Relation to S7L.(2,C)

O(4.C) is locally isomorphic to the direct product
0(4,C) ~ SL(2,C) x SL(2,C),

where SL{2.C) is the group of 2 x 2 complex matrices with det = 1. To see this.
for any vector 2 = (z, z*) € C* consider 2 x 2 matrix
Zi(z) =n+ioz,
4

where o = (01,02,03) are Pauli matrices. Here 23 = 2% as a part of standard
Euclidean z, = 94 2°. We can also define

Z_(z) =24 —ioz,



which satisfies identically (direct check)

For (2?) # 0 we have

It is also straightforward to check that
det Z,.(z) = det Z_(2) = (2)?
Next, consider linear transformations
= z

defined via

Z.(8)=AZ. () B!,

or equivalently
72 = B L) A

where A and B can be arbitrary complex 2 x 2 matrices such that

detA=detB=1

It is straightforward to check that such transformations indeed preserve the complex
Euclidean form s*(0, z), i.e.

()" = (2)"

The pairs (A,B) of such matrices form the direct product group
(A,B) € SL(2,C) x SL(2,C)

so that indeed O(4, C) is essentially this direct product.
[ say essentially because there is a subtle differences. First, O(4,C) contains two
disjoint components O(4, C, £) defined by the sign of the determinant

Q0 =1 detQ=£1.
On the other hand, SL(2,C) x SL(2.C) is connected. In fact
SL(2,C) x SL(2,C) ~ SO(4.C) = O(4,C, +)
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which is the connected component of unit element. On the other hand any element
of O(4,C,—) can be obtained by combining some transformation from O(4,C, +)
with "spatial inversion”, or " parity operation”

P: z=(z.2) © Z=(—2,2)

Note that
P:2,(z) « Z_(z)
so that the "parity operation” interchanges the roles of the "left” and the "right”
factors in SL(2,C) x SL(2,C).
Second, the pairs (A, B) and (—A, — B), which are different elements of SL(2, C) x
SL(2,C), realize the same transformation of z. Therefore, in fact

S0(4,C) = SL(2,C) x SL(2.C)/Zs

while SL(2,C) x SL(2,C) provides two-fold cover of SO(4,C).

Real subgroups
Some real subgroups of SL(2.C) x SL(2,C) are worth mentioning here.

First. the "diagonal” subgroup SL(2, C)gi,, is obtained by taking the pairs (A. B)
with B = A, i.e. (4, A). Obviously,

Z4(2) = AZy(z) A7

leaves z; unchanged (2; = z), and this diagonal subgroup SL(2,C) realizes the
proper orthogonal rotations of the complex 3-vector z. More precisely, SL(2, C)giag
provides double cover of SO(3,C). If, in addition, A is unitary, ATA = T, so
that elements A € SU(2) realize proper rotations of real 3-vector z, the group
alternatively named as SO(3,R).

If A and B are independent matrices but both are unitary, we have SU(2) x
SU(2). In this case

Z(3) = AZ(z) Bt

brings real vector z® to real 2%. This is because with real z the matrix Z,(z) (as
well as Z_(z)) is unitary, and viee versa. Therefore SU(2) x SU(2) is a double cover
of the the group SO(4.R) - proper rotations of real 4-vector z*.

Finally, choosing B~! = A', i.c considering the pairs

(4, (A7)
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one easily checks that

brings anti-hermitian Z, to anti-hermitian Z.,
Z_T'_ - fZ'i- L er = —2+
This corresponds to 2% of the form

7% = (2, 24) =13, izx")

with real o#, 12 = 0.1,2,3. This subgroup corresponds to the proper component of

the Lorentz group
SUI(L; 3] = SL(2.0)/ 4.
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15 Lecture 15

Spin (cont’d)
Representations of SL(2,C) and O(4,C)

Irreducible Matriz Representations of SL(2,C) arc well known. The basic ”funda-
mental representation” is a complex 2-vector &, € C2, with SL(2,C) acting as

Ra(A) = A% ¢

with any A € SL(2,C) (complex 2 x 2 matrix with det = 1). One also can consider
7 contra~-variant” vectors n®, which transform as

a 6 ja,B

5(A)n” = Agn
where

A= (A"Ht
However, The contra-variant represeutation is equivalent to co-variant one . This is
because the quantity

. 0 -1
Na = €as 7719_ €ap = 1(02)ap = ( 1o )

transforms as co-variant vector.
General matrix representation of SL(2,C) is a symmetric tensor

(s)

Q] Q2 ... (2g
of rank 2s, with
s=0,1/2,1,3/2,...

which transforms as
AA®.. QA
5(5) o S—— 5(5)
2s times
This has 2s + 1 independent components, and referred to as the “spin s representa-

tion”. Only symmetric tensors are irreducible, because
af
Eapl

is invariant (scalar) under ant SL(2,C) transformations.
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In O(4,C. +) = SL(2.C) x SL(2,C) we have two factors SL(2,C). Correspond-
ingly, generic matrix representation is a tensor product of the representations of the
factors. Such representation is characterized by two spins

(s,8) $,6=0,1/2,1,3/2,...
so that it is (2s + 1)(2$ + 1) component object
(6_(5»&)){511(‘12‘,,027\;}

{aras..a0s}

which transforms as

s, 484G ©4BEBS 0B

2s times 2s times

Here "dot” indicates that the corresponding spin § or index ¢ is an attribute of the
sccond ("right”) factor in SL(2,C) x SL(2,C).
We see that an (irreducible) field ® may be characterized by the ”spins” (s, $)

(¢ )(s'é)){dla“dh} (x), (2s +1)(25+ 1) components.

{a1as...a0.}
Thus, @9 () is a scalar, while ®(/21/2)(z) is a 4-vector. Indeed, we can write

PE=V, 55 +iVal,

af _ 0 +1
- -1 0
is inverse of €45. One can write, equivalently

O (1) =i VH(x) (0,)5

(e}

where = 0,1,2,3 and V4 = iV° and

o Pt — OB H .
where @ = &% @5, and

op= (1,0)

It is not difficult to check that V# transforms as a vector (compare to the transfor-
mation of Z,(z)).

More generally. the representations with integer s+$ are equivalent to irreducible
tensor representations T, ., with certain symmetry properties.

On the other hand, when s+ § is a half-integer, no equivalent tensor representa-
tion exists. This is clear from the fact that under the SL(2) x SL(2) transformation
with (A, B) = (=1, —1) such representation changes sign, while O(4) tensors unsen-
sitive to that transformation.
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Spinors and bispinors

The simplest cases are (1/2,0) and (0,1/2). In both cases we deal with the spinors
¢, and n%, respectively. These transform as

(A.B) : {5“, o Al

ne — Bgl ’(]ﬁ
Note that if (A, B) = (—1,—1) the spinors change sign (this is true for all repre-
sentations with half-integer s 4+ §). Since (A, B) and (—A, —B) correspond to the
same element of SO(4), the spinors are called the ”double-valued” representations of
SO(4). All said applies to all "half-integer spin” (s +$ € 1/2+Z, ) representations.

If we take just the spinor, there is no way in which the inversion PP, which is legit-
imate part of Lorentz group, can be realized. Recall that the inversion interchanges
the factors in SL(2) x SL(2). Therefore we need to add the "right” component 7%,
thus forming what is called 4-component ”bispinor” (&,,7%). The inversion acts by
interchanging

P : (basn®) & (14,€%)

where, as usual, 1, = E(mn*g , and similarly for €. The four component bispinor is
usually organized as

/ [ &

Vu(z) = ( na>

where w runs 4 values 1,2, 3,4

1,2, 3,4
w=
a=12 a=1,2

Dirac Field

Important example of bispinor field is the free fermion field of the mass m. Define
two matrix differential operators (x4 = ix°)

D+E(D+)aa*i+iaV:—i (%—UV)

70$4 8’0
D_= (D,)‘m:ai“—ich: —i <%+av>



(these play the role similar to Z,, with 2* — 9/9z%). One can check that D,
transform correspondingly, as

D, — AD,B™', D_ — BD_A™!

and 9 o
2 2,
W + V= —@ + Vve.=-0

where O denotes d’Alembert operator 82/8z,0z*. 1t follows that the equations

(Df)dﬁy ga =—-m 77d
(D4)* 0™ = —m &, (15.1)

{D,f =-m 7}}
Din=-m¢

are O(4, C) invariant. Eq.(15.1) are known as the Dirac equations. It is straightfor-
ward to check that cach of the spinor components € and 71 solves the KG cquation

D.D_ =

often abbreviated as

(m?+0O)¢E=(m?>+0)n=0.

More convenient notations use 4-component form of the bi-spinor,

()

in which the Dirac equation (15.1), i.e.
0 D\ ([¢€ ) _
(D— 0 )(n>+m(n -
(170, + m) (z) = 0, (15.2)

. o (01 (0 —0o

are 4 x 4 Dirac gamma matrices; the entries represent 2 x 2 blocks. It is straight-
forward to check that +* satisty

can be written as

where

{7} = A = 20
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Integer vs half-integer spins

For generic representations (s, $) the field

(I)(S»é)

lor.ooaas][d...ding)

transforms as

o(z) — &6 = AL @ BY EI(A ),

where
ARA®---® A
A 2P
2s
. B®B®---®B
B(s):\—,_/
25
and

A =tr(o,Ac" B) ;

Here again o = (1, o).
The numbers (s, 5) are SL(2) spins, which take integer or half-integer values

5.5=0,1/2,1,3/2....

There is important difference between the fields with integer and half-integer values
of s+ (which we refer to, for shortness, as the fields of integer and half-integer spin).
One aspect was already mentioned - the half-integer spin fields are ”double-valued”:
the sign of such fields are not uniquely fixed. This is seen in the way they transform
under SL(2) ® SL(2): the transformation with (A, B) = (—1,—I). which maps to
unit element of O(4, C), changes the signs of half-integer spin fields. If the group is
viewed as continuous manifold, the element (—7,—T) corresponds to 360° rotation
in O(4). Generally, transformations (A, B) and (—A, —B) result in different signs
of half-integer fields.

There is another important implication of the sign ambiguity which shows up
when one considers half-integer spin ficlds in quantum ficld theory. In the presence
of half-integer spin fields the notion of locality requires significant modification.

Locality and half-integer spins

As we discussed in the context of scalar field theory, the locality can be expressed
by the relation

[@,(L, %), Pa(t',x)] = 0 for |x—x|>|t—"1| (15.3)
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Here @4, ¢y are Heisenberg field operators
B(t,x) = TPXH(0, 0) ¢ HIHPX

It turns out that if both fields ®; and @, correspond to double-valued representations
(we say ”carry half-integer spins”) the relation (15.3) is incounsistent with quantun
mechanics and relativistic invariance.

Let us demonstrate this inconsistency in a very general framework. Assume that
®; and P, are two fields obeying local commutativity in the form (15.3). Consider
the vacumn-vacuun matrix element

Gra(x,1) = (0| ®1(x,1)P2(0,0) | 0) . (15.4)

Once can show, using the condition of positivity of the energy spectrum, that this
matrix element extends to a function of complex ¢ analytic in lower half plane!!.
Indeed, the intermediate state decomposition

D (01 24(0,0) [ m) e B (0| ©,(0,0) | 0)

n

makes this property explicit.
O "
D0, 0)d( X, 1)

Ret
IX]

x|
D(x, t)®( 0, 0)

Similarly the matrix element

G (=1, =%) = (0 [ 25(0,0)®1(£,%) [ 0) = (0 | D2(=t, =x)®1(0,0) | 0)

'We have shown this previously in discussing the KG field theory. The arguments depend only
on the spectral positivity and thus apply to general theory.
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admits analytic continuation into the upper half plane of complex t. And because
the segment
—|x| <t < x|

of the real axis corresponds to space-like separations, these two functions coincide
at this scgment, and henee the above two functions represent the upper- and lower-
half plane values of a single function analytic on the whole t-plane except for the
branch cuts from —oco to —|x| and from |x| to +oo. For that function, the analytic
relation

Glg(t, X) = GQ](*t, *X) (155)
must hold everywhere except for the brunch cuts.

Now, counsider (complexified) Lorentz transformation with particular choice of
A, B, namely
(AB) = (_17])1

so that .
Z. — Z, = AZ,B™' = —7Z_.

This represents
(t.x) = (%) = (—t.—x%),

i.e. the combination of 180° rotations around (12) and (34) planes. Then
(I)l N A(s1)B(s'1) ‘1)1 _ (_)231 (I)l
(I)z — A<52)B(52) (I)Q = (—)252 (I>2 .
and
Gha(t,x) = (_)Z(SIHQ) Gha(—t,—x).

Alternatively, we could consider (A, B) = (I, —1), obtaining the same relation with
$1 + $9 replaced by $1 + $o. Consistency requires that either

(_)2(51+sy+s'1+32) = +1

or G5 = 0. In other words, either both s; + $; and s, + S5 are integers, or both
of them are half-integers - otherwise the matrix element (15.4) vanishes. Thus, Gy,
can be nonzero only if the fields in the product both carry integer spins, or both
have half-integer spins.

But there is a less trivial conclusion. If G5 # 0, we have

Glz(t,x) = ﬂ:Glg(—t, —X) s
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where + or — appears when both ®; and P, have integer or half integer spins,
respectively.
Assume the latter. Then

Glg(t,x) = — G12(—t, —X) s (156)
Combining this with (15.5) we have
Gia(t, x) = =G (t. x), (15.7)

or
(0] @ (£ x)D(,x) | 0) + (0] Bo(t.x) Py (¢, %) | 0) =0

where trivial renaming of the space-time coordinates was made. To see implications
of this equation, assume that ®; and @, are hermitian conjugate of each other, i.e.
&, = O, &y = &F, and consider two states

) = [ Fex @i 10),
) = [ f-t-x) 2% [ 0).
Compute
(1 00) 4 (0 | ) —
[t (@10 | 96 @) 10+ f(=a)f(=a)0] )00 [0))
Changing © — —z,2" — —2' in the second integral, and using
(0| D(a)! (/) + 1 (2)b(x’) | 0) = 0

we find
(W1 | W) + (Wo [ W) =0,

in contradiction with positivity of norms.
Note that the trouble is due to the minus sign in

Glz(t.X) = —Gzl(t,x) .

If we did the same computation with integer-spin fields ®; and @4, the 180° rotation
would not bring minus, and then the troublesome minus in the above equation did
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not appear. The minus there is direct consequence of relativistic invariance, it is un-
avoidable attribute of fields which transform for the double-valued representations.
The only way out is to "fix” the sign in the equation (15.5), i.e. to change it to
minus as well. That means postulating instead that for half-integer spins

G12(t, X) = —G21(—t, —X) . (158)

How this could be arranged? Recall that in our analysis above the equation
(15.5). i.c.
Glg(t,X) = Ggl(—t, —X)

was consequence of the assumption that
(0] @1(£.%)02(0.0) | 0) = (0] ©5(0,0)®4(t,x) | 0)

for —|x| <t < |x], i.e. outside the light cone. To arrange the ”minus” there one has
to assume instead that for half-integer spin fields ®; and &,

(0] @4(t,x)P3(0,0) | 0) = —(0 | P5(0,0)®y(¢,%) | 0)

for (t,x) outside the light cone of (0,0). This in turn implies that for half-integer
spin @1, ®5 we should write

{®1(z), @o(x)} =0 for (z—2') space-like,

with anti-commutator replacing commutator.

The fields which obey such anti-commutation relations (instead of the commu-
tation relations) are said to obey fermi statistics, and are called the Fermi Fields,
as opposed to Bose Fields which satisfy local commutativity relations in usual form,
with commutators. Existence of local fields which obey anti-commutation relations
instead of commutation relations can not be inferred from any arguments based
on canonical quantization of a classical theory. Importance of the anti-commutator
structures in was one of remarkable discoveries made by the founders of quantum
ficld theory at the carly stages of its development.

The above analysis proves that there is universal relation between spin of a field
and the type of statistics it obeys:

Integer spin & Bose field
Half-Integer spin =3 Fermi field
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This general statement is known as the Spin-Statistics Theorem: The only way to
express locality consistent with relativistic invariance and positivity of norms in the
space of states'? is

D) (2)Py(2") = (=)712D Dy () Dy (x)  for (v — ') — space-like,
where

(12) 1 if 81+$1€Z+1/2 and 82+$2€Z+1/2
o —
0 in all other cases

2Positivity is an important part of the statement. The motion of QFT admits extensions in
which the condition of positivity; in such theories spin-statistics relation may be broken.

172



16 Lecture 16

Bose and Fermi fields

We say that field @9 (z) which transforms as (s, §) representation of Lorents group
is said to have integer (half-integer) spin if s + § is integer (half-integer). As we
observed the last time, there is a fundamental difference between these two type of
fields in the form of the condition of locality. Let

wr(x) integer-spin fields, P (x) halt-integer spiu fields

Then, as we have demonstrated, the usual local commutativity condition must be
generalized as

[or(@), (2] = [p1(z), Yk (z")] =0 for z—a — space-like

but
{K(x), ()} =0 for z—a2 — space-like

where { , } is the anti-commutator, {A. B} = AB + BA. As usual (and no matter
is relativistic invariance is present or not), the fields which obey locality condition
in the anti-commutator form are referred to as Fermi fields, as opposed to the Bose
fields which commute when localized in casually independent regions of space-time.

The above universal relation between values of spin of a local field, and its
commutativity conditions is known as the spin-statistics theorem. Recall that its
proof requires assumptions of (a) relativistic invariance (b) positivity of the energy
spectrum (for analyticity), and positivity of norms in te space of states (which is
not technical - if this condition does not hold, the statement is not valid!)

How to incorporate the presence of fermi fields with the path integral formulation
of QFT? Recall that in the paths integral approach the " fundamental fields” plays
role of integration variables'3. But if the integration variables are just c-numbers,
that the associated field operators will always commute at space-like separations.
Indeed, in the imaginary-time paths integral, representing a correlation function

(cpr(m1) 0y(72).) = / D[@(z)] ... pr(z1)ps(22) ... exp {—A[P]} = (...o5(w2) pr(z1)..)

where © = (21, ¥o, 3, T4), there is no difference in which order the insertions ¢(z;)
are put in the integrand. In that sence the fields associated with c-number integra-

13This, of course, is a tautology. ”Findamental Fields” is just the general name of integration
variables in the paths integral.
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tion variables always commute!*. In order to incorporate anticommutativity at the
space-like separations. one is forced to assume that at least a part of the integration
variables are not c-numbers, but anticommuting variables. If such field variables
(z) satisfy

Y()(a’) = =pa)(x),

then we would have for the correlations
/ Dl....yp(x)] .o db(w1)p(w2) ... exp{—A} = —/ Dl...,y(2)] ... p(m2)p (1) ... exp{—A}

leading to the anti-commutativity of the ficld operators (z) at space-like scpara-
tions. Fortunately, mathematical theory of such variables, including integrations, is
known under the name Grassmann variables; we will briefly review it in the next
section.

Here I just want to mention another possibility of constructing fermi fields in
paths integral formulation, without introducing the Grassmann variable. In order
to satisfy the local commutativity conditions a field O(x) does not necessarily have
to be local function of the fundamental fields. With certain non-local functionals
O(x, [®]) the notion of the order in which such insertions are placed in the integrant
is often non-trivial. Thus, in principle, specially designed non-local functionals can
nonetheless obey local commutativity or anti-commutativity. Explicit construction
exists in 141 dimensions, and known as the Bosonization of Fermions.

Grassmanian algebra and Grassmanian integration (PS Ch
9.5)

Consider a collection of n formal variables {&} = {&, &, ...,&}, which can be
thought of as the coordinates in n-dimensional space. Assume that, unlike usual
coordinates, these variables anticommute

gzgj = _éjfz .

In particular
& =0.

1This does not contradict to non-zero commutators of the associated real-time Heisenberg op-
erators. Recall that the notion of commutator appears upon analytic continuation to the real axis
in the compex-t plane, and is related to the difference of the values on the upper and lower edges of
the branch cuts extending into the internal parts of the light cone. In the "lacunac” —|z| < t < |z|
the different order products of operators then coincide, in accord with local commutativity.
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One can define functions of these variables f(&). Usual functions of c-number
variables (with some assumption of analyticity) is represented as Taylor series

oo
flzi) = Z Ty Liger-Tiy, Aiyi.niy]
N=0

with the coefficients ay, ;5] expressed trough the partial derivatives of f(z) at 2 = 0.
In the anti-commuting case any function f(&;) is defined through the power series

FE) = &in g iny
N=0

where now coefficients ag;,. sy} are completely antisymmetric in the indices. The
scrics obviously truncates at N > n, so for finitcly many variables any function is a
polynomial. For example, a function of one variable is determined by two parameters

) =f+sh

Derivative 9/9¢, by definition, is

or, in multi-dimensional case

P L
1 S S () bt

N=0 k=1

Equivalently, if one first writes f(&;) in the form

f(&re6n) = AlSr - £n) + & B(§1 £--6n)

then o
07@ - B(€17 ”‘752{7 ~~7€N)

Note that by this convention we first bring & to the left, therefore this derivative is
called "left derivative”. Of course, one can define the "right derivative”, with similar
properties. We will use only left derivatives. It is easy to check that

290 90

0606 006
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which can be written as

o 0
{az*az}:”

o ]
(o}

The Grassmann numbers will appear as the variables in the functional integral,
and we need integration rules. For a single variable ¢ the rules are!®

/d{:(), /d§g=1.

For a collection of variables {&} this rule can be written as

[aes =5,

(A,B:= AB+ BA), and

and one assumes that

Note that I have ascribed an upper index to the ”differential” dx*; the reason will
be explained in a moment.

Multiple integrals are understood as repeated ones, for example

/ d£2d£1 ((l + b1& + bobs + (35152) =c / dfl 61 /dfz fg =c.
For arbitrary function

fl, &) =fo+&f + .. +66..6F
[ derde ptenn) = [ ot deragt = 1.

Consider linear transformation of the variables &;,

& — m:ZL?ﬁj,
J

15T}1€ rules are enforced by postulations the properties (i) [ d&(f(¢) + (&) = [def(e) +
J d& £(€), and (if) [ d&(0/0€)f(€) = 0 for any f(§).
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where L is a c-number invertible matrix. Our integration rules

[acs =5

will be invariant under such transformations if we assume that

et — dy; = Z (L) dg’.

J

That was the reason we ascribed the upper index to the "differentials”. We have to
assume that. unlike usual c-numbers, the differentials d¢® transform contra-variantly.

Take the case of two grassmann variables &, &, and consider particular linear
transformation

(&,8) — (m,m2) = (6 + 12, & — i6) -

If we think of £;,& as “real” variables'®, then 7,7, look like complex conjugate,
and one may use the notations

(m.1m2) = (0, 7)

Let me emphasize that this is purely semantic, as grassmann variables are not num-
bers and usual intuition about real and complex numbers does not always apply.

For instance, as
(2)-( ()
2 I — &
dpty 1 (1 —i der 1 [ det —ide?
d? ) 2\ 1 +i ez ) 2 \ de' +ide? )

dn = %(d{l —id€?).  dp= %(d£1 — idg?).

With this rule we find

we have

that is

/dnn=1, /dﬁﬁzl,

/dnﬁ:/dﬁn:m

60ne defines an anti-linear involution - ”complex conjugation” - acting on grassmann algebra;
"real” are elements invariant w.r.t the complex conjugation.

but
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so that 1 and 7 should be thought of as the independent grassmann variables.
The idea how to introduce fermions in the functional integral is to assume that
in the expression

(1(21)..0n(2n)) = Z7 /[Dcﬁ} (1(0((@1))..Pw((x))) e~

some or all of the integration variables ¢(z) = {¢a(x)} are the grassmann variables,
and we understand this integral in terms of the gressmann integration.

Let us start with free field theory involving fermions. In the scalar case, the
functional integral associated with free field theory was gaussian integral, i.e. an
infinite-dimensional version of

" 1
/ d$1...d$n exp {—2 Z xiSijwj}
. id

where x; was c-number variables, and Sj; formed a positive symmetric matrix S.
We know that it is

Const (det(S))_I/Z . Const = (2m)"2.
One way to obtain this result is to apply linear transformation
= By

such that BSB? = I (we assume that S has no negative or zero cigenvalues), which
reduces the integral to

1 .
det(B) / dy;...dy, exp {—2 zl:yf} .

Since det B = (det S)fl/ ?, we obtain the desired result.
Let us apply similar analysis to evaluate the integral

/ dE,...d€, exp {—i 3 @Aijfj} : (16.1)
i.j

where now {&;,...,&} are anti-commuting grassmann variables, and A;; form an
anti-symmetric matrix. we can not diagonalize an anti-symmetric matrix, but for
N = 2M it is possible to find B such that

o 01
BABf(_I 0
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where the blocks are M x M. Then, if
&= Bl
J

the above gaussian integral over grassmann variables reduces to

M

(et B)' T ( / dijidn; 6’77”“>

i=1

with 7 == n;ym(i = 1,...., M). Since
/dr‘)dne”_’" = /dﬁdn(l +n7) =1

we find!”

(16.1) = (det A)* .

The difference with the cvaluation of the gaussian integral over c-variables is in
contra-variant transformation of the differentials. Note that unlike the c-variables
casc, where the matrix S had to be positive in order to make integral convergent,
in the grassmann integral the sign of A is not restricted

Exercise: Using the translation property of the grassmann integral

/ dE . dE f (6o ) = / dEm " (61 + s 1)

where oy, ..., o, are grassmaun numbers, {a;. o} = {@;, &} = 0, show that

1 ; 1
/ dép...d&; oxp {2 > GAE Zaig,} — (det A)Y? exp {2 Zai(A—l),,aj}
i,J i W.J

Paths integral for Dirac Field

The Dirac field transforms as £(1/20 g £0:1/2) yepresentation. It has four components

ww:(ﬁ).

"For any real antisymmetric matrix A the determinant is non-negative; det(A) = (pf(A))?,
where pf denotes the Pfaffian.
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We need to construct a quadratic action invariant with respect to SL(2,C) x
SL(2,C). There are several ways to construct a scalar out of the Dirac field. The
most, important is the case of massive ”charged” field. The last property means that
the theory must have additional U(1) invariance. The U(1) acts on 9 (z) by phase
rotations

P(z) — € P(a);
In order to make an invariant, we need additional field ¢ (z) that transforms as
U(z) = e ().

It is sometimes said that ¢ is ”complex conjugate” of 1. This is consistent with
the above phase rotation rules, but generally is not much more then semantics.
Recall again that Grassmann variables are not numbers, and notions of being real
or complex, or complex conjugate, do not apply. It is correct to regard ¢ (x) and
Y(2) as independent fields. The Lorents representation content of 9(z) is identical
to ¥(x), i.e. (1/2,0) & (0,1/2), but the basis is usually taken as

U(@) = (71°(2). a(2)) -

where the components can be understood as

T =g, Ga=eag &
Jorrespondingly, the four spinors transform as

& — A¢, n — Bn,

U R
where 7% — (7',7%) and & — (&,&) arc regarded as 2-rows. Recall that the
operators D, and D_ defined in the previous lecture!® transform as

D, — AD,B!
D. — BD_A!

The SL(2,C) x SL(2,C) invariant action can be written as (in the imaginary-
time notations)

ADirac=/d4w [E_D_§+77D_7]+m Entm 775] ,

where m is the mass parameter. Note that the mass term necessarily mix compo-
nents of ¢ and .

5Dy = (Dy)as, D = (D)%
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Remarks

1. Note that the four terms in the Dirac action are SL(2.C) x SL(2,C) invari-
ant separately. If m = 0, the "left” and "right” components enter separately. In
particular, in this case it is consistent with proper Lorentz transformation (but not
inversion!) to set, say, 7 =7 = 0, so that the action reduces to

Al / de D¢,

The fermi field obeying this action is called left-handed Weyl fermion (of conrse, one
can define similarly the right-handed Weyl field). Before discovery of finite neutrino
mass, the neutrinos were thought to be described by a Weyl field. There is no way
to add the mass term without adding also the opposite chirality fields n, 7. This will
lead to violation of the so called "leptonic family numbers™, but not necessarily the
full lepton number.

2. The components 7% and & transform according to representations equivalent
to those associated with &, and n%, respectively. Therefore, it is consistent to identify

=Py, E=e¥ ure

The mass term is still possible, but the identification is inconsistent with the U(1)
phase rotations, so the field is "neutral”. Fermi field of this properties is called
Magorana field.

Using the gamma matrices v, a =1,2,3,4

o (0T 0 —o
Yo =11y =1 7 0 ) Y= o 0

the action can be written as °

Airac = / 2 p(x) (—i7Ba +m) V(z).

D_=0/0xy —ioV = —i (0/0t+0V) ,
D_=09/0xy —i0V = —i (0/0t+oV) ,
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This transforms to a familiar real-time form as follows. The imaginary-time paths
integral has the form

/ Dp(x),¥(2)]... exp{—Apirac[t), V] } .

Upon continuation

Ty = it, 8/8I4 = —u?/@t

we have ~ ~
_-ADirac [1,/}7 U] — iSDirac(wﬁ U)

with familiar real-time Dirac action
Sbirac = / dt d’x (z) (1104 + vV — m) P(z) = / dtd*z ¢ (x) (i7'9, —m) Y(z).

where v* = (79, 4) are conventional gamma-matrices which satisf
/s )

{7, 4"} = 29" (a1} = —200)

The path integral with the above action is evaluated using the formulae for
the Gaussian integration over the Grassmann variables. It is easiest to work in
imaginary-time (=Euclidean space-time) formalism. Thus, for the generating func-
tional

Wil =2 [ D). i)
o {= [ dta.3(0) (inds - myvio) 1 [ de (Eaoio) +i0E0) |
with Grassmann-valued bispinor "sources” Z(x), Z(z) evaluates to
W, 2] = exp { / iz d'e’ 2(2) Gl — o) E(x)}

where the kernel G(z) (4 by 4 matrix) is inverse to the operator —i~y,d, + m, i.e.
the (unique) solution of the equation

<—i%£ + m) Gl —2")=I16W(z—1).

182



which is bounded at x—z" — oco. The solution is easily obtained by Fourier transform

4 ~

Glx—y) —

with 4-dimensional wave vectors k. This leads to the equation
(Waka + m) é(k) = 17
stating that the matrix G(a:) is inverse to .k, + m. Consider the identity

(m + Vaka)(m - kab) = m2 + 6abkakb = m2 + k2

which follows from
(Vo 1} = 200
We find B
= m — Yaka
Gk)=——
() = e

and finally
an nally d4k k( ) m— "‘/k
G(x_y):/ e S iR

This is Dirac propagator in the Euclidean space-time. It can be written as

G(2) = (m + 79)D(x).

d4k ikx 1

where
”@:/@aﬁ e

is the Klein-Gordon propagator.
The correlation functions for the Dirac field are derived by taking variational

derivatives of the generating functional. For the two-point function one finds

0 0 WIE,Z] — Gz — )

Multipoint correlation functions may be obtained by taking morce variations. Alter-

natively, one may use recurrent relations.
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Exercise: The functional measure has the property D[y + ¢, ¢ + & = D[¥, )]
with fixed grassmann bispinors €,€. Using this shift of integration variables with
infinitesimal ¢, €. derive the relation

(=700 +m) ()], $(21) 0 (@n)O(y1)Blyn)) = (16.2)
M

DN L 8 — i) (1) (@ n) P ()L Tz D ()

k=1

where [, = 0y, is the identity matrix, and from (16.2)

(Vo(@) (1) P(@n) (Y1) (ym)) = (16.3)
M

D (VT G, (= ) (G (@1) (@)D (W1) - BT D ()

k=1

The relation (16.3) is similar to Eq.(6.3) in the KG theory, it represents in a
compact form the Fermionic Wick’s Theorem, i.e. the representation of the
correlation functions

(@) (xn) () (yn))

in terms of a product of the Wick’s pairings

Q/}w(‘Lz)&w’(yJ) = wa’(wi - yj) .

with the signs appropriately defined signs (see §4.7 of PS).
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17 Lecture 17

Local Integrals of Motion in QFT

Recall that the structure of the KG theory can be understood in terms of infinitely
many local integrals of motion represented by conserved currents

Ji(x) = 0"p(x) f(z) — ¢(x) 0" () (17.1)
where f(x) is any solution of the KG equation
(0,0" +m?) f(x) == (0F — V> +m?) f(t,x) = 0. (17.2)
In classical KG theory the currents (17.1) satisfy
Nt (x) =0

in virtue of its classical equation of motion - the KG equation for the field ¢(x).
These are the Noether’s currents associated with the easily verified symmetry of the
KG action with respect to the infinitesimal shift ¢(z) — ¢(x)+¢ f(x) with any f(x)
which obeys (17.2). See Lecture 2.

That analysis - as well as the Noether’s theorem itself - was discussed in the
context of classical field theory. It is possible make modifications suitable for QFT
defined in terms of a functional integral.

Symmetries and conserved currents

First, lat us clarify the meaning of Noether’s theorem in QFT. As in the classi-
cal version, assume that the action A[®] (now ®(z) stands for any collection of
”fundamental fields” which play role of functional integration variables in the path
integral, and may include grassmann-valued as well as c-number fields) is invariant
w.r.t. infinitesimal transformations of the form

d(z) = B(z) = O(z) + ¢ Bz, d(x)), (17.3)

where E(x,®(x)) is a specific local function of ®(z) and possibly the derivatives
@ﬂf(x)m, which may separately depend on x. The term ”invariant” implies that

A[®] expressed through ®(z) has the same functional form as A[®], up to terms
O(e?). The transformations (17.3) represent infinitesimal form of the continuous

20Remark on higher derivatives

185



symmetry group of the theory, with the function E(z, ®(x)) defining the action of
the group?!

Regarding (17.3) as the change of the functional integration variables in the
functional integral defining a correlation function

(®(21)..0(xy)) = 271 /D[cb] O(xy)...0(zy) e~ AP (17.4)

and remembering that change of integration variables does not change the value of
the functional integral over D[®], one finds the equation

N E(xy, ®(z1))

O (x1)... 047 .. O(xn)) = 0

k=1

which expresses the invariance of the correlation functions under the symmetry
group. I wrote this equation for the correlation function of the ”fundamental fields”
®, but clearly similar relation extends to correlation functions involving any local
composite fields O;(x),

ilel W5 me%

where 0pO) are variations of Og(x) under the transformation (17.3), Ok(z) —
But there is also more interesting relation which follows from the invariance of
the action under (17.3). Consider a similar transformation

d(z) — ®(x) = &) + e(x) E(z, D(z)), (17.5)

with the same E(z, ®(z)) as in (17.3), but now with the parameter € replaced by an
arbitrary (infinitesimal) function ¢(z), and again regard it as the change of variables
in the functional integral. Now the action is not exactly invariant, but its variation
must vanish at constant e(x) = e. Therefore, under (17.5)

0A = / d*z Oye(z) Jh(x), (17.6)

where J&(z) is some local field, function of ®(z) and its derivatives taken at x,

Jip(x) = Jg(z, (x), 00(x), ...),

2lGiven E(z,®(x)) generates a family of finite transformations ®(x) — ®.(z) by solving
(d/de)®.(z) = E(x ,<I>e( )) which represent a one-parameter continuous group.
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which is determined by the transformation F. Alternatively, integrating by parts,
one can write

SA = —/ 4z e(2) DT ()

Again, since the transformation of the integration variables doe not change the value
of the functional integral defining the correlation function (17.4), the identity

9 N E(xg, ®(zr))
/d4x e(x) %(Jg(x) O(zq)..0(xN)) + Z (zy) <@($1)M@($N» =0

must hold for any function €(x), i.c. the correlation functions must satisfy

5 N E(xr, ®(a))
o (T () B(a)..B(n)) + > 0@ — 2i) (B(21)... Bhar) B (2y)) = 0. (17.7)

k=1

Relations of this type which follow from symmetries is generally known as the Ward
Identities.

Simple and most important conclusion which follow from (17.7) is that the cor-
relation functions involving Jj(z) vanishes at all « different from the other insertion
points zy, ..., xy. This property of course extends to correlation functions with any
local composite fields,

%(Jg(x) O1(21)..0x(zN)) =0  for x#xq,...,2N, (17.8)

although of course exact form of delta-like terms at supported at = zq,...,zn
depends on the transformation properties of the fields O; under (17.3).

Integrals of Motion

According to Gauss theorem

/D d'z %Jg(x) = /aD d*n,(z) Jig(z), (17.9)

where D is any domain D in R* (Euclidean or Minkowski, the metric does not
matter here), 9D is the boundary of D, and d®n,(z) is a normal element of 9D,
d3ny = ey dz?’ A dz* A dzP. Then, as the consequence of (17.8), the integral

/E d*n,, (@) (J4(x) Or(21)...On (xx)
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over 3-hypersurface ¥ does not change under topologically trivial deformations of
Y. We call

Qe(S) = [ dno) (o)
b
the Integral of Motion, which means precisely that the expectation values

(Qe(X) O1(21)...0n(2N))

depend only on the topological class of ¥, but not on the details of its shape.
In the special case when ¥ is chosen to be an ”equal-time slice” in space-time

(t7 X)?
T=3 (t,x) = (to,x)

with a given ty, that means that

(Qp(t) O1(t1,x1)...0ONn(tN, X))

is a piecewise constant function of ¢, with the jumps at t = t, ..., tn.

Suppose ti,...ty >t > {1, ...,tn. It is natural to signify this arrangement by
placing the insertion Qg(t) in between the corresponding local insertions, i.e. to
denote the expectation value with this arrangement as

<01(t1, Xl)...Ok(tk, Xk) QE Ok+1(tk+1, Xk+1)...ON(tN, XN)>

With this convention, the integral of motion Qg does not commute with the lo-
cal insertions O;(z;), even in the Euclidean QFT. (The commutator [Qg, O(x)] is
determined by the variation 6;O(z) under the transformation (17.3).)

Likewise, if there are more then one symmetry of the type (17.3), say F; and
Es, the expectation values

(Qe, (1)Qp, (') O1(t1,x1)...0n(tn, XN)) (17.10)

is a piecewise constant function on both ¢ and ¢, whose value depends on whether
t >t ort <t (as well as the on how ¢ and t’ relate are arranged with respect to
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to ty,...,ty along the t-axis. And again, it is natural to associate the order in which
the insertions Qp, and g, are placed inside the expectation value symbol with the
order of ¢ and t’ relative to ¢y, ..., ty, as well as relative to each other. Thus,

(O1(t1, %1)---Ox(th, X1) @, QE, Opv1(trst, Xpy1) - On(En, XN))
corresponds to (17.10) at
Ly > 0> 1 > lgy1, ooy Ly

Then the insertions "operators” (Jg, and (g, generally do not commute with each
other. It is easy to see that the commutator [Qg,, Qg,] (anti-commutator, if both
Qp, and Qp, are fermionic) is another integral of motion, which is determined by
the singularity of the correlation function

(J8 ()5, (") Or(71)...0n(2N))
at v — ’. Indeed,
Qe Qu] = Qo ) 1= /E &'y (x) Iy, g, (@), (17.11)
where

i, () = g &P, (z") I, (2")J5, (2) (17.12)

with the integration in the r.h.s. performed over a small 3-surface ¥, enclosing the
point z. This transformation is illustrated in Fig.17.2.

P

Sy

Since this surface ¥, can be deformed to be arbitrary close to the point x, the
integral in (17.12) returns a local field.
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Dirac Field Theory (Cont’d)

It is straightforward to verify that the Dirac action

Aomcltr 0] = [ dada) (<70, + m) (o)
is invariant with respect to the the change of functional variables

ADiraC[w(fL‘) + EX(I‘% 1/_}(1') + E)Z(CL‘)] = -ADirac[{Q/)(a:)a ’(/_)(I‘)]
where € and € are infinitesimal grassmann numbers, and x(x) and x(x) are c-number
solutions of the Dirac equations
—iv*0,x(x) + mx(z) =0, (17.13)
10, X(x)y" +mx(z) =0. (17.14)

The (fermionic) conserved currents associated with these two symmetries (analogous
to the current (17.1) in the KG theory) have the form

Ty (@) = (@)y"x(x), (17.15)
Ji (@) = X(@)7" (). (17.16)

It is important therefore to understand c-number solutions of the equations (17.13).
It is not difficult to find anti-commutators of the fermionic integrals of motion
associated with the currents (17.15), (17.16). Denote

A= [ @, A= [ En) ).

Then, for example, according to the anti-commutator version of (17.11)

{Ags Ay} = / Praz) It (),

where Jig, v} is given by

@ = § Ene) ) I (0) = § o) xale! 1y o(a') G o)

x x

The singularity at 2’ = x in the last expression appears from the contraction

Y(@)P(x) = P)(r) =Gl —2),
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and we obtain

xana (@) = 74 dn, (") Ro(a")7” 2" — 2y xa(2).-

x

The integral can be evaluated using the Gauss theorem (17.9), yielding

/ a — N\ AV /
[ ol et G o)
Dy XL

where D, is a small domain including the point x. The nonzero contribution comes
from the term involving

0
8x/1/

VG —x) = 15(4)(:10' —x)

and we have
sy (@) = X2(2)7" X1 (2) -

Finally, we obtain

{A% Av} = / dny, () X2(2)7"x1(2) - (17.17)
)
It is easy to see that

{An, At =0,  {A;,Ax} =0, (17.18)

M L
since the contractions ¥ and ) vanish.

To find a convenient form of the full algebra of the fermionic operators A, and
Ay, it is useful to introduce plane-wave solutions of the Dirac equations (17.13),
(17.14).

Plane wave solutions of the Dirac equation (PS §3.3)

Let us look for solution of (17.13) in the form of a plane wave
() = ulp) e
where u(p) is some bi-spinor amplitude. The equation (17.13) then implies

(v'py —m)u(p) =0. (17.19)
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Multiplying by (7*p, +m) and using {v*,7"} = 2g,,, one finds that all components
of u(p) = uy,(p) satisty

(p* —m*)u(p) =0, (17.20)

i.c. u(p) are non-zero only on the "mass shell” p? 1= w? — p? = m?

Assume that p = (p") = (wp, p) with positive wp. Let us write

=)

where &p, 7p are two-component spinor amplitudes. Then (17.19) reads

yle. at w =wp =

(0’ —op)&p =mip, (17.21)
(P’ +op)np =m&y. (17.22)

where p° = wp, > 0. In principle, it is not difficult to solve this linear system directly,
but more simple way is to start with the case p = 0, p" = m, in which case we find

5}) - 7]1) = 507

u(m,0) = < gg )
with arbitrary &.

Let us consider the action of the spatial rotations on this solution. The generic
Lorentz transformation (Minkowski space-time!) we have

that is

£ Af, n—Bp with B l1=Af

The spatial rotations correspond to A € SU(2), so that both £ and n transform as
usual SU(2) spinors. In other words, &y describes the spin 1/2 state. We will assume
normalization

e =m.

A real Lorentz boost is represented by (A, B) with hermitian A and B, B = A~".
One can identify

192



where 3 is the boost parameter: The momentum p,, in the boosted frame is (p°, p)
with

me” = p’+|pl,
me™? =p’ —|pl,

where 5 = |3|. Then

o 1
Ep = et g = 3 [eg (1+no)+e2(1-— na’)] &),
_Be Tre _8
Np =€ 2 5025 [62 (I1-—no)+e > (1—|-na')] &,
where n = p/|p|. The operators
1
Ie(p) = 5 (1 £ no)
acting on &y are just the projectors onto the states with definite helicity
1
h(p) = 2 no)

which is the projection of the spin on n. We have then the solutions

. s) — [ (VP ILe(p) + /b= T (p)) €
= (o o e o)) (17.23)
where & = \/Lm &, and

pe=p"£1p|.

Here ¢ = £ is an arbitrary amplitude describing the spin state. One can check
that this gives the general plane-wave solution of (17.19) with p° > 0.
In many cases it is convenient to use the basis of the helicity states

1
h(p)f(s) =3 35(5) , s=4.
Then we have

u(p, +) = ( ﬁ;g:i) ,



It is then easy to verify that

u'(p, s)u(p, s) = 2wp wp = \/m? + p?
and
u(p, s)u(p, s') = 2mdss,
where % = uf7°, and I assumed the normalization ¢7¢ = 1.
The above solution corresponds to p° > 0. The mass-shell condition (17.20)

admits also negative p® = —y/m? + p2. The corresponding solutions can be obtained
the same way, starting with the rest-frame solution

ono=(5),

and then making a Lorentz boost. One finds

v(p,+) = < _\/\/i:t ?(i))) :

/p_ g(—) >
v(p,—) = -
which satisfy
o(p, s)v(p,s’) = —2m sy .
It is straightforward to check
o(p, s)u(p, s') = u(p, s)v(p,s’) = 0.
In what follows we denote
Ups(z) = u(p,s)e (p° >0), (17.24)
Vps(z) =v(p,s)e " (p° < 0) (17.25)

the plane-wave solutions of (17.13).

—ipT

The plane-wave solutions of the equation (17.14) can be obtained in a similar
way; basic solutions have the form

ps(@) =u(p,s)e™™  (p" >0), (17.26)
Vps(2) = B(p,s) e (p° <0) (17.27)

where, again. %(p, s) = uf(p. )", 5(p, s) = vf(p, )7 *.

*2The amplitudes @(p, s) and 5(p, s) both satisfy p,@(p)y* — mu(p), which is obtained by her-

mitian conjugation of (17.19), with the use of ’yOT =70 4t = —~, and Y%y = —1°.
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Fermion creation and annihilation operators (cf PS §3.5)

Let

AUPA’S = /2wp aps, AVp,s = \/2wp bps, (17.28)
AUP«,S =/ 2wp aL,sv A\_/pys =/ 2wp bL,sv (17.29)

where ' |
Up,s = u(p. s)e "™, Vps(®) = v(p,s)e ",
and ) ' . |
Ups = a(p,s) e, Vps(r) =0(p,s)e™.
They obey

{aI),Sf ai)',s'} = {ap,sv a:;gy} = (277)3 58,5’ 5(3)(1) - pl) )

while the rest of the anti-commutators vanish.

U(1) charge

The Dirac theory has an important symmetry with respect to the phase rotations
of the field variables: the transformation

U(z) — e¥y(x), U(z) — e o(x) (17.30)

leaves the action A[)irac['g/),'l/_)] invariant. Let us use this example to demonstrate
once again how this leads to the conserved current j#(z) and associated integral of
motion - the ”charge”.

Consider the same transformation (17.30) but this time with the phase 6 = (x)
being an arbitrary function of x, and regard it as the functional variable transfor-
mation in the functional integral

z! / Dy, 1/_1] (). () Lz(yl)z/_)(ym) e~ Airac[t,¥]

defining the correlation function (¢(x1)...00(2,) ¥(y1)...0(ym)). Simple calculation
yields

Abiracle”(w), e ") (x)] = Abirac[t(w), ()] + / d'z9,0(x) j"(x), (17.31)

where



Eq.(17.31) is a special case of (17.6), and repeating the arguments we have

) 0w ) Bl ) +
S 6 )~ 3 6 x—yJ (W (@2) () 1) B ()} = 0
k=1 =1

Charge

Q) - [ oo ).

We say that the field ¢ carries the U(1) charge +1, while ¢) has the charge —1.
Commutators

o [Qbh ] =—bh,,
[Qa ap,s] = —Qps) [Qv bp,s] = +bp,s?

Energy and momentum

[waw PO — 0y — Py

)~ [ o))

Pt = (H,—P)

Commutators with the energy-momentum

T,, =

YIS

[H. aL,s} = Wp aI),s 5 [H, ap,s] = —wp ap,s .

[H, bI) o = wp bL 59 [H,bps] = —wpbps s

and similar commutators with the spatial momentum

P, (IL,S] =P aL,s ) [P, ap,s] = —Pap,s,
[H, bp o = wp bL,s ) [H,bps] = —wpbps
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Fermionic Fock space

Vacuum:
aps | 0) =0, bps [ 0) =0

The states
af, o ..al bl b ] 0)

P1,51"" "' Pn,Sn TPy,s| PS5

span the space of states of quantum Dirac theory
The operators

aLVS and b;f),s

are referred to as the ” creation operators” for fermion and anti-fermion, respectively,
while
aps and bpg

are called the corresponding ”annihilation operators”.
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18 Lecture 18

Electromagnetic Field
Classical Maxwell Theory

Electromagnetic field strength is described by anti-symmetric tensor
FH(x) = —F"(x)
which satisfies the Bianci identity (the first pair of Maxwell equations)
O\Fu + 0y F\ + 0,1, =0, (18.1)
and the equations of motion (second pair)
8, = jr (18.2)

with the electric current in the right-hand side. The constraint is solved by intro-
ducing the 4-vector potential

Fo = 0,A, — 9,4,

There is a price to pay. Physical ficld F),,(x) does not correspond to a unique A*(x)
-there is a whole family of fields A*(x) which lead to the same F),,; members of the
family differ by a gauge transfirmation

Au(z) — Au(z) + d,0(x)
whth arbitrary scalar a(z). Then the equation of motion reads
0,0MAY — 0,0" A" 4 j¥ = 0.

It can be derived using variational principle from the Lagrangian density
L= L FMF, A
) o )5 Ay

Covariant path integral quantization

As in the case of scalar and the Dirac field it is most straightforward to define the
theory in terms of the Euclidean functional integral, and then obtain the Green'’s
functions of Minkowski theory by analytic continuation.
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In the Euclidean theory we introduce
z, = (24,%x) = (it,x)
and the Euclidean vector potential
A, = (Ag, A) = (iA°, A)

and
Fab - aaAb - abAa .

The Euclidean action is then
1 1 1
Apy = /d4$ Z (Fab)2 = by parts = /d4IL‘ [5(8(1146)2 - 5(8aAa)2i| )

where some integrations by parts are performed.
In terms of this action one writes the functional integral

/D[A] (...) e Amu

where, intuitively, D[A] = [], [T:_, dA4(z). Proceeding as before we find that the
two-point function

Dap( —y) = (Aa(2) As(y))

must satisfy the equation
(=04c0? + 040;) Dep(x — y) = 84 6P (z — ) ,
or, making a Fourier transform
(K Oac — kake) Dep(k) = Oap - (18.3)
There is a problem here. The matrix
k*0ge — kake

is not invertible, and therefore D satisfying this equation does not exist. It is not
invertible because it has a zero eigenvalue associated with the eigenvector

1, = const k, .
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This property is related to the gauge invariance of the EM theory the action
does not change under the variable transformations

Ay(z) = Au(z) 4 0s()

where a(z) is an arbitrary function. Let us fix some A (2) and consider the family
of field configurations

AW (z) = A9V (z) + d,a(x) .
As Apy[AD] = Apy[A©®] does not depend on «, the integral

over just these configuration diverges, because the action does not provide Gaussian
damping. The above difficulty with the propagator is related to this property. On
the other hand, in EM theories the configurations which are different by the gauge
transformation are regarded as physically identical. The gauge transformations con-
stitute the gauge group. (Because this transformations have the group property —
the result of two successive gauge transformations with aq(z) and as(z) is equiva-
lent to a single gauge transformation with a1 + «g; in EM theory the gauge group
is Abelian). The set of configurations

AW (z) + d,a(x)

constitute what is called the orbit of the gauge group associated with AP Two
configuration belonging to the same orbit are physically indistinguishable. Thus we
would like to write our functional integral in such a way that integration would go
over not all fields A,(z), but rather over the orbits. In other words we would like to
integrate over the orbits.

The way to do this it is known as gauge fizing. The idea is to select exactly one
representative of each orbit by imposing gauge fixing condition, i.c. some additional
constraint on A, having the form

x(4) =0

such that there is exactly one representative of each orbit ALY which satisfies this
condition.

Typically, x(A) is chosen to be local, i.e. x(A) depends on A,(x) and its deriva-
tives at x, so in fact x(A) = 0 represents one constraint for every point z. This is
natural because of the gauge invariance is local symmetry.
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Some example’s of the gauge condition. We have already discussed the gauge
condition

X(A4) =V A

This condition is known as Coulomb gauge. Note that this is not a Lorentz invariant
condition. Another choice

X(A) = aaAa(x) =0

is known as Lorentz gauge. T'wo configurations A () and AP (x) both satisfying
the gauge condition cannot be related by gauge transformation since this would
imply

AP (@) = AP (2) = Baa(z)

with 9,0,a(x) = 0; in Euclidean space this means a(x) = 0. There are many others
interesting choices. Let me write generic gauge-fixing condition as

x(4) =0

where y can depend on A, and it derivatives.

Once the gauge condition is chosen, one can write the integral as separate inte-
grals over the gauge-fixed configurations, and integral over the gauge group. This
is done by so called Faddeev-Popov transformation. Consider the identity

1= / Dla(x)] §(x(A™)) det(%fm))

where A(® stands for the elements of the gauge orbit. This identity is continuous
version of simple identity for n-dimensional integral

ox;
1 :/ [Hdai] [H5(Xj(a)) det(%@) .
i j !
Let us insert this 1 into the integral

/ DIA] (...) e~ AenlAl = / DIAIDa] (...) e~ A=ull (5 (A©@)) A(A)

where I denoted A = det (%). The brackets (...) represent any gauge invariant

insertions. Now we change variables

Ag = A = A, + 0,0
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This is a shift, so D[A] = D[A®)], and also
ApmlA] = Apu[A9)] .

Now that A(® became the integration variable we can rename it back as A. Thus
/DA (...) e = /Da /DA (...) e s ALA] 6(x(A)

where A[A] = det(‘;‘gf:) ) |a:0' Thus we achieved our goal: the functional integral is
factorize to the integral [ Da, which is of course infinite, but should be understood
as the integral over the gauge group, i.e. the volume of gauge group. The second
part is the physically distinct gauge configurations, as the gauge field A there is
constrained by the gauge-fixing condition y(A) = 0. Further transformations can
be made once we select particular gauge-fixing condition. For example once we chose
the Coulomb gauge the variational derivative 5‘2;0‘) — V2 does not depend on A (this

is concerns any linear gauge in which G is linear in A), and we have

A[A] = det(V?) .

Of course, one needs a cutoff to define this determinant, and it is divergent as the
cutoff distance goes to zero. But in this simple situation this is not really a problem
because the determinant is an A-independent (see below). Similarly, for Lorentz
gauge

A[A] = det(9,?) .

Consider simple generalization of the Lorentz gauge
X(A) = 0,A4(7) — w(2) .

The determinant A[A] remains the same, one still needs regularization (cutoff) to
define this object, but it still does not depend on A and hence cancels out in

%/DA(...)e““EM.

In further calculations here we can ignore the factor A.

/DA (... )eAsu = /Da /DA () e §(9,A, —w) .
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This holds for any w, so it will remain valid if we integrate both sides over w with
arbitrary functional of w, as long as the integral

[ Do) pluta)

converges. Convenient choice is

with real parameter £. Denoting Z; = [ Dw(z) pelw(x)] we get

/Da /DwDA e Asm exp /d4:c w (8 Ag —w) .
The integration over w amounts to elimination of the d-function:
= const / DA e

where

1 1 1 1
Aé Apn + E d'z (aaAa)2 = / d*z {5(&1"46)2 - 5(1 - g) (aaAa)Q] :

So, effectively, we have added the extra term o f d*x 2 to the action, where
£ is an arbitrary number.

So far we considered only the integral [ DA e~AeM_ The above transformations
will go through for the integral

L/DA@“%(.H)

as long as ( o ) is a gauge invariant insertion. Therefore, if ... is a gauge invariant
object we have
[DAeHs (..)

()= e

all factors cancel out like Z " det(9?) [ Da cancels out. The expectations values of
the gauge-invariant quantities do not depend on the choice of the gauge condition
and, in particular, the dependence of the parameter £ must disappear.
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Now we can come back to the propagator. With the new action A, it satisfies

[kQ Spe — (1 - %) kk] Day(k) = dup

and so

Dt = D+ Pyt = & (1 )
We see that D depend on ¢ which is not surprising because it is ( A, Ay ) which is not
gauge invariant. But Dy, splits into transversal part, D+, which is € independent,
and D, containing £. Obviously the correlation functions of the gauge invariant
quantities, i..e the field strength Fy, involves only D

In calculations some particular choices of £ can be more convenient. One is the

Landau gauge £ =0
~ 1 ko ky
o~ a5
Note that & = 0 corresponds to plw] = d(w), i.e. we integrate over A,(x) which

satisfies the Lorentz gauge d,A, = 0. Indeed, the coefficients in front of the extra
term 2—15 [ d*z (0,4,)* — o0, so

exp ( 1 /d4:£ (an,AaV) ~0(0,A.) ., €—0.

2€
Even more convenient choice is € =1
Das(k) = 22 F
(k) = 5 eynman gauge

Adding a source term [ d*zJ,(x)A,(z) with arbitrary 4-vector functions J,(z)
which satisfies

Ouda(x) =0

one finds the generating functionals

WJ =27 / DIA] exp ( ~ Apu]A] - / d'z J,(z) Aa(x))

which is gauge invariant. Again, fixing the gauge as above, one finds

1 d*k ~

Wl =exp (5 [ atedy e Date =9 0) ) =exp (5[ s DB LA
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Finally, by continuation back to real-time picture (Wick rotation) k4 it the last
integral in bring the result to form previously obtained

2020 = esp{ — 3 [aedty D - s |

where

v L R Cel) B k'E
De :/(%)46 e (-0 5)

205



19 Lecture 19
Quantum Electrodynamics (QED)

We can describe now the interaction between EM field and Dirac field of electrons
and positrons. The action is (in Euclidean space)

AQED[A, 'l,D,’l/;] = Agm[A] + fd4$ [ —E€ 1.5%1!! Aa] + .AD,',-nc[",b, J’] =

Apm(A] + f d*z [$(~i7a Do+ me¥], (19.1)
where Ag)s is the EM action we have considered previously, and
Du = aa - iE Aa

is so called "covariant derivative”, and e is the unit of charge?®®. The covariant
derivative is constructed in such a way that under a gauge transformation

W(z) = @ Y(z), P(z) = e~ ohi(x), Al(z) = Aa(z) + Bacx(z)
it transforms exactly as 9 itself,
Doy — € Dy,

with the transformation of A, compensating for 8,& term appearing when J, acts
on ef*(@ Therefore this action is gauge invariant

P(z) = @ y(z) | P(z) » e @ P(z), A= A+

Therefore, the functional integral

fD[A:‘/’: 1/;] (.) E_AQED{AJ/’-"]_J]

again involves redundant integration over the gauge equivalent configurations of all
fields, i.e. integration along the orbits of the gauge group. In this case the orbits is
a family

PN z) = 2@ pO(z) , PN z) = 4@ O (x) , Al = AD 4 8,0

214 is related to the sc-called fine structure constant
oo L e 1
4w he 137
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Therefore we need the gauge fixing, which can be done exactly as before, by imposing
the gauge-fixing condition x[A] = 0. We can use the same condition 8,4, —w =0,
with subsequent integration over w(z), as in the previous analysis of the free theory.
As the result, the part Agp gets replaced by A; and integration De factorizes.
Finally, we get the gauge -fixed action

Aqep = [ 4% [ 5 @)= 3 (1= 7) @A +B(-ia00 4 m)Y — e 4, ]

where I have deliberately separated the term containing the electron charge e as it
is only term which is not quadratic in the fields.

Feynman Rules for QED

In the absence of the interaction term —e A, ¥7.3 we have free EM field combined
with the Dirac field of electrons and positrons. In the free theory the correlation

functions ~ _
{(¥(@1). () (1) % (20) Aay(11)--Agr (Ym) )

are expressed as the sum of all possible Wick contractions, with the elementary
contractions

¥(z) P(z') = G(z - ),
—
Aa(y) Au(y) = Das(y — v/')

where, as before

d'p oy M =P
= | —e y I -
G(x) o= (27'_)4 el mZ + p? ) TP = YaPa,

(where (pz) = poza = —puo* = —p + PE, P* = pape = —p*p,) and

dik itkzy 1 kaky koky
Dale) = [ Gae® 5 (((fn-5) +6 52

are called electron and photon propagators, respectively. These propagators are
represented by lines
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Dab = D AVAUAUAUAN

The interaction term —e A, 17,3 can be treated as the perturbation. It generates
the vertex

€%a

More generally, if we are interested in the matrix elements between states with
particles - electrons, positrons, and photons -, in particular in the scattering ampli-
tudes, additional contractions must be added which connect initial and final particles
with the field insertions. Thus, for electrons and positrons we have

, 1 .
u(p, s) '™ bps¥(z) = —=—=1u(p,s)e” """, (19.2)

1

v/ 2wp
1

v 2wp

'—_lf _ 1
¢(m)a 8 \/2_01;

—
P(z)bl,, = —\/;ﬁﬁ(p.s) €7 hpa(s) =

i(p,s)e”", (19.3)

and

Tt

o Bl = (27 6P = P) by,

| |
bp,s by o = (27)2 6@ (p = p') .00

For the photons we have

b By = (2)? Nlar 60 (k — ),

B =it kT i 1 #“ —~ikz
Cra A (z) = EG(K) €™,  A(z)e o = eh(k)e™™.

Here €%, a = 1,2 describe the polarization states of a photon. Generally, these
vectors can be written as

el :=(0,eq4) + f k¥, (19.4)

with pure transversal e,, and the coefficient f representing the gauge ambiguity in
of the vector potential A#(x) (the photon states are gauge invariant).
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Remark 1: The gauge ambiguity represented by of the f term in (19.4) should
not affect the gauge invariance of amplitudes of emission and absorbtion of physi-
cal photons. In perturbation theory, the insertion of the gauge field A#(x) enters
through the interaction term, which (in Minkowski ST) has the form

—ie [ diz M (z) A),  JH(z) = Bl D).

Contraction of A*(z) with an external photon | (k, e,)(...)) ~ cLa (..-) ] 0) generates

the factor
—ie ef'(k) f diz e J,(x)
so that the photon absorbtion amplitude is expressed as
—ie eh(k) M,(k,...), Myu(k,..) = L (Ju(2)...)

The gauge invariance of the absorbtion amplitude follows from the so-called Ward-
Takahashi (WT) identity

k" M, (k, ...) 0.

kvk,=0 —

which we will derive soon.

Remark 2: The scattering may also involve electrons and positrons, which carry
charge. Here the problem is more difficult. The electrons/positrons are created by
the fields ¥ and %), which are not gauge invariant, and there is no simple (local)
way to remove the gauge dependence. The local gauge-invariant operators like 9
or $7,% are charge neutral and thus can not create one-electron, or one-positron
states. On the other hand, the operators ¥(z), v¥(z) which carry charge, are not
gauge invariant. The correlation functions involving these fields will depend on the
choice of the gauge. In particular, the electron and positron states constructed us-
ing the operators defined as suggested by (17.28), (17.29) carry gauge dependence.
In principle, one can construct operators which are both gauge invariant and carry
nonzero charge, but such operators are necessarily nonlocal. To have an idea, con-
sider expression

Ye(x,2) = P(x, 1) exp [- e [ dreex). A(r,t)] ,

where £(r, x) satisfies the equation

V. E(r, x)=8%(r-x) .
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It is easy to check that such operators are gauge invariant. The meaning is that the
gauge-invariant state must contain, beside the charged particles themselves, the EM
field surrounding them, like a Coulomb field of a static charge.

The scattering theory based on such gauge-invariant operators can be developed,
but it is not simple. At this point we will adopt simple-minded approach: we
postulate that the scattering amplitudes of electrons and positrons are given by the
matrix elements between the states

| af at o, b, ) :i=al ,..ab b ..bL;n

P1:81° " Y Prydn " pl,8) PhnoSin P1,81°"“'Pnidn pj,5)°

10},

with the operators a' and bt defined in terms of the fields 1/(z) and ¥(z) according to
(17.28), (17.29). Then we will show that the resulting physical scattering amplitudes
are gauge invariant order by order in the perturbation theory. We will also see that
there is a price to pay for this simple-minded approach. Namely, we will discover that
when charged particles are present in the initial and/or final states of the scattering,
the diagrams beyond the leading order exhibit infrared divergences. They appear
because we ignore the “EM dressing”, surrounding the charged particles. We will
see, however, how to incorporate the contributions of these “dressings” into physical
quantities {(using the perturbation theory) and obtain infrared-finite results.

’
W

Gauge invariance at the tree level

Let us first consider simple tree-level amplitudes to see how the dependence on the
gauge cancels out. Consider, for example, the electron-electron scattering in the
leading order

out (P’n s1), (Pa, 5} | (1, 51), (P2, 82) Yin

where I used the short-hand | (py, 51), (P2, 52) } for the state al,_, al, . | 0) with two
electrons. In the leading order we have the diagram

/7
P\ii‘\ P Sy
o
K= Pr—1

IS’
b = P Sa

and similar diagram with interchanged legs, p1, 51 < p2, s2. There is no momentum
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integrations. We can compute the diagram directly in Minkowski space-time, using

_ kuky (—i) 2 _ 12 _ 2
Dulk) = (9*"’_(1'5) 2 ) mro Fohok
The £-dependent term involves the factor 5‘,“1"3 This factor is accompanied by the
factor @y (p}) ¥* u,, (P1) which comes from the upper vertex in the diagram. There-
fore, we have the combination

_ kyk
1y (B1) 7* ay (pr) 202

Since k&, = p),, — p1,, this involves

iy, (P1) Y*(Ph — Prys) us (1)

which can be written ns

Gy (p) @r—-m—pr+m)ulp)),  P=pr =peTa

It is equal to zero because

(p-m)u(p) =0, ap)(p—m)=0.

In fact, we will show later, using the Ward identities, that £-dependence disappears
from all diagrams (describing on-shell amplitudes) constructed with this rules.

I am not going to elaborate this scattering process in details. If you can never
done this type of calculations befpore, look up the leading order calculations of
various scattering amplitudes like e” e~ -+ e~ e~ or e" et — e~ e*, or Compton
scattering, please take a look at Ch.5 of PS.

Instead, let us consider higher-order contributions, which involve loops. To sim-
plify as much as possible, let me consider the scattering of an electron off a very
heavy particle, which can be considered as fixed external charge, generating external
EM field. In the order e? we have the following diagrams

(a) (&) (c) (d)
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The scattering amplitudes are defined in terms of "amputated” correlations func-
tions, with the full propagators associated with the external legs removed. Therefore
the diagrams (b) and (c), which correct the external legs, must be omitted.

The diagram (d) gives the correction to the photon propagator (the so called
vacuum polarization). The photon line is not external, and the diagram has to be
added. We will consider the vacuum polarization separately, and observe that its
role is to renormalize the charge. At this stage we ignore it.

Let us concentrate on the diagram (a), more precisely on the part of it

with all external legs amputated. This diagram is a representative of the class of
diagrams of the type

i - e

f _‘__%? N A

which give the corrections to the vertex

) é ) €% » @ = el

The sum of these diagrams is called the vertez function.

Let us first assume that neither the external photon line nor the external elections
line are on-shell. Then it is easy to understand that this vertex function can be
expressed through the correlation function

(Ja(z) Y(11)P(v2))
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where J,(z) = ¥(z)v.¥(z) is the electric current. Namely consider the Fourier
transform

]mm&w@ummeWﬂnr“mwmm=cmon@mm6@a

where G(p) = F.T. (¢¥(y1)¥(y2) ). It is easy to see that diagrams contributing to
Ta(p1, p2) are exactly those I listed above. I will use diagrammatic notation

CFu(PLPl) - o

Note also that this quantity is defined in terms of the operators ¥, 9, which are not
gauge invariant, and so in general I'; may not be gauge invariant. In particular, if
we calculate it in perturbation theory with A, it will depend on £.

However, we may consider the case when both p,, p; are on shell, i.e.

9 Do 2
Py =Py =—m, .

in the Euclidean notations. Consider the quantity
a(p, ') La(p', p) u(p, 5)

It can be interpreted as the scattering amplitude of an electron on weak external
EM field described by classical vector potential A$**(z). One can imagine a heavy
particle as a source of this external field. In effect, this external field corresponds to
adding a term

Azt = — f e Al (z)pyatp d'z

to the action, where AL™(z) is fixed function of z. If AX™ is small, in the leading
order in A" we have for the scattering amplitude of the electron off this potential

M = e A (k) a(p)) To(p', p) u(p) + O((AL)?)

where k = p' — p, and AS*! (k) is the Fourier transform AS™(x).
The gauge invariance suggests that if At i replaced by

A=) () 4 B,a(x) .
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the amplitude must remain unchanged. As
AL (k) = AL (k) +1i ko (k) ,
the requirement of the gauge invariance demands that
a(p, 5') kala(p',p) u(p,5) =0 (k=p'-p).
This follows from the Ward-Takahashi identity I mentioned before. Let me derive
it now.
‘Ward-Takahashi identity
Consider the following transformation of variables in the paths integral
W(z) = 9 (), W(z) = e %) oh(z) .

This looks exactly as gauge transformation of ¥, with 8(z) = e a(z). If one would

simultaneously gauge-transform A, and Alest) , the action Aggp would remain un-
changed. However, consider the above transformation of 1, ¥, but leave A,(z) ant

Alest) (z) unchanged. Then, the action changes by the amount

Agep — Agep + [ d'z 8.0(z) Pvat -

However, being just the transformation of the integration variables, it does not
change the value of the integral. Making this transformation in the paths integral
defining

((@)d() )
and remembering that it must leave the value of the integral unchanged, one derives
the identity

0=- / d*z 8u8(y) (Ja(y) ¥(@)b(2") )¢ +1(8(z) = 8(z)) (¥(2)P(2') )s -
As 8(z) is arbitrary, we must have

(Buda(y) P(2}P(a’) e =1 (8(y —z) = 6y — 2)) (P(=)d() )¢ -

Now make the Fourier transform of this to find (I leave this as an exercise)
(¢' = p)a G(') Ta(¥',p) G(p) = G(#) — G(p) -
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Multiplying by G~(p’) from the right and by G~}(p) from the left, we obtain

(@ = p)aTalp\p) =G (p) - G (P},

which itself is known as the Ward-Takahashi identity. For diagrammatic derivation
see Ch.7.4 of PS.

The physical mass of the particle (the electron, in our case) m, is determined by
the location of the pole in G(p) (if there is a pole):

. n — Me — YaPa
G(p) =Lt (Y(2)p(2')) = Zy P m + regular .
Equivalent, but more convenient definition is

G Hp)lpr=—mitlp) =0,  TUP)G ™} (P)lp2=—m2 = 0.

Assuming that the pole at p?> = —m? is present, we would arrive at the identity
(#' = p)a @WF)Ta(¥, P) ulP) | ja_pae s =0

which expresses gauge invariance of the scattering amplitude.

The problem is that since v, 9 are not gauge invariant, the propagator G(p) does
not have a simple pole at the electron mass shell. Instead, it has more complicated
singularity, which also depends on the gauge choice. Formally, this singularity is
interpreted as in terms of creation of non-physical longitudinal ” photons”, which
is allowed when non-gauge invariant quantities are present. This problem will be
considered later.
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20 Lecture 20

Vertex Function

Now let us consider the general structure of the quantity
i(p') Ta(p', P) w(P) 2 mprm - m2

i.e. in the case when both p? and p? are both on-shell. The quantity Ty(p,p) is a
4 x 4 matrix, and as such it can be written as a combination of 16 independent 4 x 4
matrices. However, it is possible to reduce to just two scalar function.

Indeed, any 4x4 matrix is a linear combination of identity matrix I, and matrices
generated by «,; there are 16 (=1 + 4 + 6 + 4 + 1) independent matrices

i
I, %, ow=gheml, e*wrr~%s, ¥=nnwmn.
Symmetrized products of the y-matrices are all reducible in view of

Ya¥o + V6Ye = — 2005 -

The vertex function I'y(p/, p) also is a vector with the components labelled by a, and
it depends on two on-shell vectors p), and p,. Therefore the most general form of I,
is

a(p')Ta(#, p)ulp) = Up') [va AW, p) + (' +p)a B, p) + (¢ = p)e C(¢,p)] ulp) ,

where A, B, C are scalar functions of possible scalar quantities built from p and
p’. Since we assume p, p’' to be on shell, all are expressed in terms of masses and
k? = (p—p')2. Possible terms like p,(py) are reduce to the above structures by using

(m —yp)u(p) = (m —¥'pu)u(p) =0.

Terms involving s never appear from the diagrams (there is no source of the parity
odd object egpe¢ in diagram calculations).

The Ward- Takahashi identity put further restrictions. The terms with A and B
satisfy WT identity automatically, but

ku(p’ - p)n = koks # 0

in general, so C = 0.
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It is convenient to rewrite the expression in slightly different form, using the
identity (Homework problem 11)

~ika G(p') o u(p) = —2ma(p ) wulp) + (p + Pl 2(p)u(p) ,

where og = % (YaYs — WYe). With this we can write

ﬁ(P’)Fa(P’:P) U(P)|pz=pfz=_m3 = ﬁ(p') ('Ya Fl (k2) + 2;777'& kbaba F2(k2)) 'U.(p)

where it is assumed that p? = p’2 = —m2.

The quantities | and F, are known as electromagnetic form-factors of the elec-
tron. They concentrate most important data about the electromagnetic properties
of the electron. In particular, its electrostatic characteristic, like charge and mag-
netic moment can be extracted as follows. Consider slow varying external vector
potential, A¥™(z). Its Fourier transform A% (k) is concentrated at k close to 0.
Then the quantity

M = e i(p) Tu(p, p) u(p) AL (k)

(taken at Minkowski ST momenta) coincides with the elastic scattering amplitude
in the external potential. Continuation amounts in setting k& = (k4, k) — (iko, k)

and substituting
T, = (il%T); A; — (iAq, A).

~TaA, = T#A,=T94°-TA

so that ) }
M =—e (al®u) AT (k) +e (T w) AV (k)

We will assume that p, p’ ~ k are small.
_ Consider first the case A®®) = 0, and concentrate attention on the potential
AL (k) = ®(k). As ®(k) concentrates around k = 0 we have

M = —e (aT%k = 0)u) B(k) = —e (a7"u) F1(0) B(k) .
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When k goes to zero, @y7’u, — 2méLE, %, and
M = —e F,(0) (k) - 2mELe,.
This coincides with the Born scattering amplitude in the potential
U(z) = e Fi(0) ®(z).
Therefore measured value of the electric charge
ephysical = € F1(0).

In what follows we will develop renormalized perturbation theory, where on of the
normalization conditions requires that e coincides the physical value of electron
charge, as measured in electrostatic experiments. In this scheme

R(0)=1.

Since f1{0) = 1 already in zeroth approximation, all higher corrections to F(0)
will vanish (i.e. the diagram contributions will be cancelled by suitably chosen
counterterms, as we will discuss in more details shortly).

Now, set instead AF™ = 0. Then
M=ed [»,J‘ Fy(k?) + ﬁ K o Fz(kﬁ)] u ACi(k) (20.1)
where I have assumed that k% = 0 {by choice of the Lorentz frame) . At k — 0 the

expression 4. . .Ju here vanishes. We need the term linear in k. For small momenta
p, p', from we explicit expressions for u(p), @(p)

_ (cosh /2 — no sinh 3/2) &Y _ (R
ulp) = v x ( (cosh /2 + o' sinh §/2) es) e ( (1+82
25We remind that

= () -7 (G sm s md)e)

and .
woe=(3 ) = (D Q) pmwmht), A=l

-

Yo =17, {Ya) 1} = —200p-
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one hnds

—f 1yt = t p’ i 1 1 pro
a(p' )y'u(p) = 2m €, (—2m g +o 5 ) £s (20.2)
The identity
o'o? = 6% +i ¢F ot (20.3)

leads to two terms. The first term - from &% - gives the following contribution to
(20.1)

e Fi(0) [p-AC(k) + /- A=k | e, . (20.4)

This is just the non-relativistic interaction with external vector potential A %, Again
we need Fy(0) = 1 to give e interpretation of the physical charge. The second term,
from i €¥* o* in (20.3), gives the following the contribution to (20.2),

-1 gl (7 Ko*)g, .
Term of the same structure appears from the F; term in (20.1) after using
oy = 2m ei* ;‘ o 3
and we finally find the magnetic interaction term
M = (204) —ie [Fi(0) + F2(0)] €% k7 (€], ok £,) A=k,

But i ¥*k9 Alest)i(k) = B*(k), the fourier transform of the external magnetic field.
Therefore

1
M = 2me [ Fy(0) + Fa(0)] 5—2‘:-15 B(k) .
From this we can identify the magnetic moment of the electron

p= o= [Fi(0)+ F(0)] elo¢.

Writing this in standard form

[ o
W ——— S S=—— in .
B=om I 5 ~ SPH
26
y_(P—eA) (B)? e . .
H= - —2m—;-n'(PA.—AP)+....
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Thus, the electron g-factor is expressed as follows
g = Fy(0) + F5(0) = 1 + Fy(0) .

In the zeroth approximation, F5(0) = 0 and g = 2. The contribution 2F3(0) is called
anomalous magnetic moment of the electron.

Electron Propagator

As I mentioned before, in QED the statement that the electron propagator has a
simple pole at p* = —m? is not exactly valid. Generally, the momentum-space cor-
relation function is singular on-shell, but instead of a simple pole it has a branching
point singularity whose nature depends on the gauge condition. One can see this
evaluating higher order corrections to the propagator. There are two sources of this
complication. One is that the electron propagator is not gauge invariant, and usual
argument based on the spectral decomposition do not work. The state

¥(z) |0)

is not gauge invariant and therefore, besides the physical states, i.e. electrons and
transverse photons, it contains nonphysical "photons” with longitudinal polariza-
tions e#(k) ~ k*. These non-physical states enter the intermediate state decompo-

sition ) ) |
WO)P()) = > (0(0)le) (@lF(0)]0) e™51= gPex

24

Their contributions depend on the gauge fixing condition and can not be easily
separated from the one-electron state.

It is interesting to see how this happens using solvable limit, the case whene — 0
but e%¢ is not necessarily small. Considering our action Aggp ¢ let us make rescaling
of A,

eA,=a,

Then
1 1 - .
Agepg = f diz yl (fab)2+gé (Byas)* +P(~iMO—as+m) ¥ ; fab = Batp—34Ga .

This transformation is instructive in general because it shows that the parameter e?
controls the fuctuations of fu5. Let us denote

A=e2¢
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and take limit €2 — 0. In this limit fluctuations of f,, are completely suppressed,
so integration effectively takes into account only a, of the form of pure gauge:

a = 8aX -
Neglecting f;, we rewrite the action as
/d"a: [% (8°%)* + ¥( — 1720 — YaBax + m) ¢]
Now changing variables
v=eXp, Po=cX
we get
/d4$ [% (8*x)* + Po( — 17202 + m) 1110] 5
In these variable the action splits into non-interacting parts. Therefore
WP emy, eno = (o)) (X o)
The first term is the usual free propagator
(Yo(z}h(z")) = Gol(z - 2')

The second term involves integration over x. This scalar theory contains second-
order derivatives, so this theory is certainly non-unitary. (We should not worry
about this because contributions of x are not going to show up in gauge invariant
quantities). The y-propagator is

4
e = [ G e

ikz

This integral contains bad infrared divergence. Assuming L is the size of the universe
we get

2

(X(@X(O) = =5 log (55) = D) (205)

Exercise: Let x be a free boson field with the propagator,
(x(z) x(z')) = D(z — 2} .
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Show that . .
(eX®) g~ — exp {D(z — 2’} — D(0)} .

Introducing short distance cutoff ¢ = i we obtain from (20.5)
A
(@) g=ixO)y = A2 xz] Tox?

The divergent factor (1\2)'117’::'I can be eliminated by renormalization. What pro-
duces the effect we are after is the power-like dependence on (z%). We obtain

W(@)PO)e=s, eso = Gole) (z2) 77 .

It is not easy to Fourier transform this exactly, but it is possible to show that for
A # 0 the Fourier transform does not have a pole at p? = —mZ, instead it has
branch-cut singularity

(m +vp) A

mrs STl e

Another source of the problem is in the massless nature of the physical photons.
Even if we take into account only physical states in the sum

W(O0)P(z)) = Y (0%(0)|a) {lip(0)|0) e=Zol=sl g*iPax

there is no gap between the one electron state

I(p,s)), E=vp*+mi
and the states with one or more physical transverse photons added,
l(p,s),(k,ea)) , E=+/p*+mi+[k|.

So
PPF=FE*-P*=mZ+2uw, k.

There is no lower bound on the |k|, so |k| can be arbitrary small (“soft photons”},
2

and as the result the eigenvalue m? is not an isolated point of the spectrum of P, P*
but rather a part (endpoint) of the continuous spectrum

PPt >m?.
This is why instead of a pole at p? = —m? we expect to have a brunch cut

-p 2 -m;

in G(p), even irrespective to the presence of the gauge non-invariant states.
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Electron Propagator: Renormalization

To familiarize ourselves with the situation, and refresh our memories of the basics of
renormalized perturbation theory, let us study the leading correction to the electron
self energy. Denoting G(p) the momentum-space two-point function (1%, we have
as usual

G™(p) =m+7p + Z(p)

Here
3= —[ sum of one — particle irreducible diagrams]

This quantity is gauge dependent. For simplicity, we will do the calculations in the

Feynman gauge £ = 1, i.e. F
ab

Dub= 'k_2

(when £-dependence is needed, we have already seen that it is easy to collect con-
tributions from the £-terms). The diagram which contributes to I(p) is

k
/"M/‘:/L%L\ .
p—k

Its contribution is

2 [ d% Ya(—v(p— k) +m)y,
(2m)t ((p — k)? + m?) k2

We need to evaluate y,v, = —4,

YaVbYa = —VYaVa — 2éab Yo = (4 = 2) Yo = 2

Therefore?”

S 2(p+ k) +4m
2 ) L
e / (2m) /; dr (k% + 2pk = + p?z + m2z)? (k + pkz = q)

e? : 29(g+p(1 — 1)) +4dm
()t f d4qfu W+ Pe(l = ) + )

27 TR [ dz
Feynman parametrization: 45 = [ mamites
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The rest of calculation is done as usual. Integral with g vanishes as the result of
angle integration, and the integration over g reduces to®®

d'q 1 [*¢dd, e L A?
f )3 (@ + A)? _[0 ez d A= 5 [k’gi"l]

and we obtain

+§€7-:,—2 /:dm [vp (1 - ) +2m] [log(é\;z)-1—10g(:5(1—m)—:1—2+2:)]

where I have introduced the ultraviolet cutoff A. We see the divergent term

2 2
g (3w +om) (o8 (3) 1)
We already know how to handle this. The divergence appears if we do unrenormal-
ized perturbation theory, where m = mg stands for the “bare mass”, i.e. the mass
parameter in the action, and we calculate G = (¢ ¢ ) with ¢ = ¢y is unrenormalized
field. Instead we can transform to renormalized perturbation theory. Introduce the
renormalized field

-1 - -1 -
Yvr=2," %, Yr=2y,"t.
In QED the constant Z, is conventionally called Z;

Zy=12,.

We then write the Dirac part of the action as

ADirac = /. d4z 7;50 (—1:"76 + mO) 'QDU = fd4$ [Tl;R(_i'Ya'*'me )¢R+62 ﬁn(—i73)¢n+5m @R‘!’R]

where of course
52=Zg—1, 5m=mo—22m,,.

This gives the counterterms, and, correspondingly, the diagrams must be supple-
mented by the counterterm vertices

—<—®=< = = —(6n+d27p) .

The counterterms 6,,, d2 depend on the coupling constants e?, so that

80y = 2n%2 T (d/2) = 2x°
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— =

Then in order e? m
Z(p) = —< b e @i

with —®— = —(e2/872)(3® 1p + 52)).

The values of 65 and 6 must be chosen to satisfy the normalization conditions.
One can demand that singularity in Gg(p) is located at p? = —m2, with additional
condition fixing the normalization of the fields 1, .

As we already know, Gr(p) not a pole but branching point at p* = —m2. Cal-
culating the integrals over z, one obtains (m = m, 1)

2

0= i { o [ (gp) ¢ 1440+ 3(55-0) (1 55) -7 (147

[l

e
a

+] 2miog (5) +m+ 40] ~2m (14 55) g (1+ 25)

—

b

It is easy to adjust the constants a, b aso that G(p) has singularity at p? = —m?2,

l.e.
G (B)hpim=0 = 0.

One has to chose
b=ma.

However, this singularity is not a simple pole, as the terms with

log (1 + T—i;)

indicate. Rather, it is a weak brunching point. The reason for that is very physical.
As we discussed, the electron one-particle state |p, s} is a part of continuum states
of the form e(p) + v(k1) + ... + y(ky) with N “soft photons”, k; — 0. Therefore
we expect that the branch point is not an artifact of wrong perturbation theory,
and we can not make it into a pole by any renormalization. The nature of the

®Integrate{—(1-z) log (z(1-z)a®+x), {z,0, 1}, Assumptions — a > 0] = 1+1 (& -1) log(1+
a?) - gar. Integrate[— log (z(1-z) a®+z), {z,0, 1}, Assumptions — a > 0] = 2— (% +1) log(1+a?).
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singularity is not known in advance (in fact, it is gauge dependent) and any standard
normalization condition which refers to residue does not make sense.

To circumvent this difficulty (rather postpone its analysis!) it is conventional
to temporarily add a mass p to photon. If we do that, the singularity of G(p) at

p? = —m? would become a simple pole. So let us temporarily introduce such mass,
replacing 7 ;
ab ab
Dalk) =37 = @

We just want to make sure that all physical (gauge-invariant} quantities, like S-
matrix elements have well-defined limit g2 — 0. With this we obtain
2 2

€ 1 A2 1 (2) A )]
() = g2 { w (108 () — 5+ ) + (2mlog () —2m+ )
1 2 2
p H
_./o dz [vp(1 - z) — 2m ] [log(.r(l — 1) — +z+(1—2) m2] }
The propagator now has a simple pole, because at no value of x the argument of the

logarithm turns to zero. Now the renormalization conditions take the same form as
we had in the scalar theory°

Jar
B} e = DH?) = 2m? By () + 2m By -m) =0

where ) o(p?} are defined as
Z(p) = 1p T1(p°) + Ta(p®) -

From these equations one determine 6&2), 52, Substituting these back to £(p) above
cancels log(A?) terms. The dependence on z? however remains. We tolerate it here
only because G(p) itself is not something which is directly measurable.
For future references I quote the result for the counterterm 652)
2 gl 2 2
8P = ;? i dz [(:r— 1} log(A(Tln—zx)-) +(1—-12) log (a:2+-7% (1—:1:))
2z(1 — %) m?
z?m? + (1 — x) p? ]

30Since 4p is the only matrix quantity appearing in this calculation, we can treat it as & number,
Z(p) =(E(72p)- Also, since (vp)? = —p? we can write £(yp) = (1p) Z1(p?) + Z2(p?), and I1,2(p?) =
Z12(=(vp)?)
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21 Lecture 21

Vertex Function: Renormalization

Let us consider again the vertex function

Pa(p’: P) .

As we remember, this is defined in terms of the correlation function

(Ja(y) ¥(z)9(z'))

We want to develop renormalized theory, so we rather consider the correlation func-
tions which involve renormalized fields ¥ = g, ¥ = ¥ instead of the“bare” fields
o, ¥o which appear in the bare form action. The vertex function is defined in terms
of the correlation function involving the current J,(z). The current is a composite
field

Ja(m) = 'I,B(:L‘)"ya'qb(x) '

In QFT, defining composite fields often requires specific renormalizations. We
have seen that in ¢* theory. When defining a composite field, e.g. 2, it was not
sufficient to just replace po — g to absorb all UV divergences which appear in the
correlation functions. We needed to introduce additional renormalization constant
Z 2, and define (¢%)g = Z, ¢*.

In a similar manner, renormalization of the current J,(z) requires special renor-
malization constant, which is conventionally called Z,, namely

(J)r(@) = 21 Brvatbn, Yr=237 9

The factor Z; will absorbs specific divergencies which appear in {(Js)r(z) ...). As
in ¢? theory, we can write
Zl =1+ 51 (62)

where

e () 4
61=m61 +O(e ) .

Correspondingly, the renormalized perturbation theory for I'; involves the countert-

erm vertex
(J a)R : Ya < + Th
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The counterterm 4, i.e. the renormalization constant Z,, must be determined
from certain renormalization condition, which says exactly how the field (Ja)r is
normalized.

To understand the situation let us recall our derivation of the Ward-Takakhashi
identity. We made the phase transformation of ficld variables in the paths integral

P — e?C) gy, Yo — €792}

and defined the current by the variation of the full action under such transformation,
A=A+ fd"a: Ja(z) 8,0(x).

Note that this definition includes the canonical normalization of J,(z), under which
¥(z) (1(z)) creates (annihilates) a unit of charge, i.e. the charge operator

@= [ ¢xrw,

satisfies?! ) )
@, ¢(z)] =9(z), (@ %(z)) =—¥(z).
Note that these relations are unsensitive to normalization of 1, i.e. they apply

equally well to 9 = 9z and . It is natural to define the renormalized current
according to this normalization, i.e.

(Ja)r(z) = Jalz) .,
From the form of the action, we have
Ja(x) = (Jo)r(z) = 1».D-D(ﬂ:)".fc:;"bﬂ(:l:) =23 ﬁn(ﬂ?)%wn(m)
We see that this normalization of the current corresponds to the choice

Zy=2,.

3n terms of correlation functions, this normalization corresponds to coefficient 1 in the r.h.s.
of the Ward identity

8u{ Jal@) V(11 YB()) = i [69(z - 1) = 5V (z - )] ((a) (1))
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Alternatively (in fact, equivalently), this relation can be derived directly from
the WT identity for the vertex function,

(P’ - p)a Fa(P’sp) = G-l (P) - G-l(p’) '

Taking the limit
ke=( —p)a—0.

one finds 5
_ 2.9 A=l
Pa(psp) - +3pu G (p) .

Note that these relations are not sensitive to normalization of ,%. In particular,
we can take

G(p) = Gr(p) = ft. (Yr(z)Pr(z")),  Gr(P T, p)Ca(p) = f1{Ju(v)¥r(z)Pr(z’))

Write G5! (p) as
Gz (p) = m+yp+ 7 T1(p®) + a(p?) .

This gives
T, p) = 72+ 7a S1(F) + 2pa (1) T1(P°) + 2P Tp(p")
Sandwiching this between #(p) and u(p), and taking into account®?
a(phrau(p) = +22 a(p)ulp),

and that Gr(p) is normalized in a standard way, with the simple pole with canonical
residue {before sending y? to zero), i.e.

1(=m?) = 2m? T (~m?) + 2m By(-m?) =0

we find
@(p') TR (p, p)u(p)|pp=—mz = B(P')Yare(p) .
As '
TP, p) = Yo FK) + 5= Kadia Fo(K?)
it follows
RO)=1.

32Recall the Gordon identity: ik, @(p')oap u(p) = —2m &(p' )y u(p) + (¢ + pls u(p") u(p).
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Equivalently, if we want to normalize the composite field
Ja = Z1 YrYa¥rR
so that each electron contributes +1 to
Q= / d*z Jo(z)
we should chose
=4y & Fl(O)I].
The above relation Z; = Z; itself is sometimes referred to as the WT identity.

Now it is time to do some calculations. Consider the e? contribution to I‘E;R)

which I'll denote simply I';. There are two diagrams to this order

¥

p

q+k
k q-p

P
The second diagram represent the counterterm
=2 -1
in the order 2. For the first diagram we have

2 [ d'q &) 1(=7q + m)ya(~7q + m)yeu(p)
(2}t (g2 + m?)((¢")2 + m?)((qg — p)* + 1?)

Again, %Y = 2% YaVa = —4. With some ~y-matrix algebra, which involves
identities in Problem 11, one finds

1e? f d‘q &P ((v0) 7 (v¢') — 2m (g + ¢')a + m?7a) u(p)
(2m)* (g2 + m2)((¢')? + m2)((g — p)? + 1?)
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To handle the integral we need little generalization of the Feynman parameterization

we used before
6(:: +y— )
_[ dedy (zA+yB)?

_1__f 2
4B~ J, GA+(l-2)

This is a particular case of the general identity

0z +...+zp—1)
-1 f d
=l f S Y PRIy

AAy.. A, A2
which can be proven by induction with the use

1 dx ™!
B~ ) GA+ (=B

We need
fx+y+z-—1)

1
ABC = 2 fu dedydz o A yB+20)
Also, to keep the calculation somewhat symmetrical with respect p and p' we will
use

Q=q-p, Q@=4¢-7.
Using these we obtain®®

4e? /1dxdydz S(x+y-+z-1) d“Q
0 (2‘”)4

a(p) (v(Q +p)) 7 (Y (Q + p) — 2m(2Q + p + P')a + m*1a) u(p)
(Q? +2Q(pz + p'y) + z14%)? '

where I made use of p> = (p’)* = —m?. The object in the denominator can be
written as3!

(P*+ K2y + m¥(1-2)* + z,uz)3
where
P=Q+pz+py, (k=p-p).

(((?+p)2+m ) +y((Q + ) +m?) +2(Q* + %)
p')? = —m?

"’"P’ = @ + 2Qpz + py) + (pz + PYP? = Q@ + 20z + FY) -
m2£1'2+y +2xyl+£2(pp’)+2mi)my.

(l:z)’ -(F:P')’

Q% + 2Q(pz + p'y) + z p? as
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We now assume that P as the integration variable. The numerator becomes
a(@) [ ((1P) + (1= 2)(9p) + my )7 (+P) + (1 = p)(39) -+ mz)
—-2m (2P + (1 - 2z)p+ (1 - 2y)p')  + m2'ya] u(p)

where again (yp)u(p) = —mu(p), @(p')(vp) = —m @(p') are used. As the rest of
the integrand depends on P? only, the term linear in P disappear, and numerator
simplifies as

a(p) [ (PP)(vP) + (1 - 2)(1 = 5)(vp)r(1¥) + ma(1 - 2) (3p)va + my(1 = 4) val7P')
~2m{ (1 - 22)p, + (1 — 2)ph) +m*(1 + 34} % | u(p) .
While the denominator is
(PP+A¥, A=klzy+m?(1-2)?+242,
the numerator can be further simplified by reshuffling the y-matrices.

Exercise 2. Show that this expression can be transformed to®

ap) [ (1PY1a(vP) + (m? (1 =22 = 2%) = (1= 2)(1 = 9)k?) % — m 2(1 = 2) (p + ¥
-m(z-y)(2-2)( - P)n] u(p)
(Use vp v = —mu, a(p’)(vp') = —m a(p'),and z +y+2z=1)

Evaluation of the P integral is now straightforward. Angular part of the P-
integration replaces

66b 2
PP - T P,
3Ba(p") () V(™ y) u(p) = (= m? + 2(pp') ) u(p' )vau(p) + 2m(p’ + p)e @(p)u(p). Thus the terms

X Ya:

(1-z)(1-y)(2pp’ =m?}4+m?z(1—z)+m?y(1-p) +m*(1+xy) = —-(1-2)(1-y) K +m?(1~22-22) .
Also the terms
o (p' +p)a : 2m(l-z)(1 - y)+m(y(l =y} +z(l — 2)) - 2mz

and the terms < (p' — p)o i miz(1 -z} —y(l —y) - 2(z = 3))
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and we obtain for the diagram (I) contribution to the form-factors®

2 1 2 _ AV Pl - - 2
FO - e f X [log(ZA ) N (1-4z+22)m? - (1-z)(1 —y)k ]
0

82 A A
2 2m?z(1 — z)

o & / Ak S

2 82 Jy ax A ’

where dX = dzdydz d(z +y + 2z — 1), and A = k2zy + m%(1 — 2)* + 2u%. Note
that the term containing (p’ — p), will vanish as result of dX integration (z  ¥),
in agreement with WTL. Before doing this further, let us take a look at the second
diagram, (/1)

e
61 = gﬁ 61 +
To the order e? its contribution is just
€ 5@,
82

leading to P
b I
FiD = ﬂzaﬁz’, FM=o0.

The coefficient 6?) has to be determined from the normalization condition. As we
discussed before, if we want to interpret the current

ja(%) = 21 YrYar = (1 + 61) YRYa¥r

as the physical current (such that each electron contribute +1 to Q = [ d% jo(Z))
the constant Z; has to be chosen such that

F 1 (0) =1
which, in particular, implies Z) = Z5. As
Fy =1+ (Fy 4 0@

we must have

(F*O)0) =0

a6 _.(L,_)_‘L).g:r_ld“" IP)R(IP) _ Blewe [ 4P P2 N T 4pp? d4PP
f Pisa ] fiF’-q-Aj! fr'l—)'.fp Ta 2m? f(‘ﬁ:;m'r rp!m
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This determines the constant 6(2)

1 2 2 2
@ _ _ zA (1—4z+z)m
52 = /odX[log(Ao)-i- A

where Ap = m?(1 — 2)? + zu®. The integrand here depends on x, y only through
d-function, and we can integrate out

1 .
1 fy+z2<1
dzé(z+y+z-1)=
./o W ty+z-1) {0 fy+z>1
S0

1 1=z
fdmdy&(:z+y+z—1)=f dy=1-1z,
0 0

and

2y _ zA? (1—4z+22)m2
6" = fdz(z 1)[log(A)+ Ny

1 A? ! m?2? + p2(1—z)\  z(2® + 2z — I)m?
"§1°g(ﬁ)+/0 dz [I log( m2(l — z) )_m"’m?-l-p,z(l—:r:)]’

where I have changed z = 1 — z. Using the identity

1 miz? + p2(1-z)y _ [! a*(z - 2)
/O.da:(1-2:r:) log( w21 -7 )—A dmm2m2+,u2(1—:r)

which can be proven by integrating by parts, one can rewrite this as

@_ 1 m”fcz + a1 —z)y 221 — 2?)m’ @
&7 = log / dz [(1 —7) l°g m?(1 — 1) )+m2m2 +p3(l - 1) =0

which is exactly 652) we calculated the last time from renormalization condition for
G(p). This explicitely agrees with W-T identity

21 = Zg .
With the account of this counterterm the A-dependence of F1(2)(k2) disappears, but

it still depends on the “photon mass” 2. We will try to isolate and interprete this
dependence little later.
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Now let us take a look at the second form-factor, Fi2

2m?z(1 - z)

2 ql
d(2) — e_. - —
F; = .[o dzdydz §(z +y+2-1) A

This quantity does not contain ultraviolet divergence. Moreover, the integral over
the Feynman parameter remain finite if we set

p=0.
We thus have

2m?z(1 - z)
k2zy + m?(1 — z)?

2 1
FO R = 8"‘? fo dzdydz 8(z +y + 2 — 1)

As we discussed before, the quantity F,(0) is related to the magnetic moment of the
electron. We obtain

2 1
@ _ & 2m? Z(l - 2)? B /' i
F{ (O)-Sﬂzj;dz e 4z 2=
Remember, the factor g in
e g .
pc_g%S, S—E— spin
was related to Fy, Fo:
~;-’ = F1(0) + F»(0) = 1+ F3(0) .
Therefore s )
g—<c_ € 4
5 82 + O(e) .
The quantity
e?
4—1|’ =
is known as the “fine-structure constant”, its numerical value is
— 1 . 9-2 _« 2 :
= rossoss ¢ 3~ 2n tO@) (Schwinger,1948)

Numerically
& 0.0011614182...

Y
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This result is in reasonable agreement with the experimental value

(ﬂ) — 0.001159652188(4) ...
2 exp

The calculations of the form-factors in renormalized perturbation theory can
be continued to include higher corrections in a. For example, the next correction
involves the diagrams like shown in this Figure

<5 -4

The calculation was dome by Peterman and Sommerfeld in 50th

g-2 _ o ay? 4
7 gy ™ (11') + O(e’)
where
197 72 #2? 3 =z 1
as= T+ 15— loB2+73 ((3) = -0.328479. . (C(B)"Z?) .

n=1
The coefficient ag in
g-2 o (2 ? (2 ‘ (3)“ 10
3 —2w+a4 TI') =+ ag 11') + ag - +O(O.' )

still can not be found analytically. Contemporary numerical calculation yields
ag = 1.176...

combining these results one finds

-2
gT = 0.00115965216 . ..
Agreement with the above experimental value is quite remarkable.
Calculation of the anomalous magnetic moment of electron represents one of the
examples of remarkable success of QED. Other examples is the radiational correction

to the energy levels of Hydrogen atom (“Lamb shift").
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In principle, the theoretical calculation can be improved, by including
ag ~ 14

(which requires calculating of ~ 1000 diagrams!) At this level of accuracy one also
has to include corrections for the QED theory itself, like contribution of y-meson in
o? term

as well as hadronic corrections.
This success is definitely related to the fact that the fine-structure constant « is
relatively small. Higher order corrections are small. More importantly, it is possible

to show that the expansion is not convergent- the series is asymptotic. However,
since alpha is small, few leading terms give very accurate approximations.

240



22 Lecture 22

Vertex Function: Infrared Divergence

Let us now go back to the form-factor Fy(k2?). With the account of 6% (which

amounts to replacing
Fi(K*) = R (k%) - F(0)

1 2,2, 4,2
@ _ o B (1 —2)*m*+ f°z
Y = o '/0 dzdydz é(z +y+ 2z — 1) [log ((1 g Sy P
(1-4z+28)m? - (1 -2)(1 - y)k? _ (1-4z422m?
zyk? + (1 — z)?m? + zu? (1= 2)*m? + zu?

The first term, with the logarithm, is regular at 4 — 0, so we can set there p2 = 0.
Let us concentrate on the second and third terms. Here we can not just set u? = 0.
It is easy to see that if we do that the integrals over the Feynman parameters diverge
8as

z—=+1, z,y—0.

The singularity at > — 0 comes from this domain. If we want to extract this
singularity, we can set

z=y=0 2=1
in numerators, and z = 1 in zu? term in denominators. Denoting the singular part
F ps F*™9) we can write

_ 1 92 2 4 k2
Foin9) (52,,2) =%[) dmdydzé'(:t:+y+z—1)[ - m”+ ]

(1—22m? + 1 zyk? + (L — 2)2m2 + 12
Again, integrating over x just eliminates the é-function

1
/ drd(z+y+2-1)=01-y—-2).
0

We also change the variables as 1 — 2 = w, y = wf %"

1 1 2 2 2
(sing) 12y, 3y _ & 2m _ 2m* + k
R = o et [Caw [wfmﬁw2 WE(1 ~ OF + ) + 2

37Under this change | )
My, z
dydz = |—=
= Bw,g)
and integration domain becomes w € [0, 1] and £ € [0, 1] (the last is enforced by the theta-function
01 -y-z)=0(w—wf)

dwdf = |w|dwdf
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Integral over w is then straightforwardly evaluated

1 2 2 2 2 2
(sing) (120, 2y _ & miy  2m’+k m? + k(1 = §)
d g(k|”)_4vr/ode[2log(#2) m? + k2§(1 - §) log( p )]

We can rewrite this as the sum of two terms, one being the same integral with
u? = k% and the singular term

X ) 1 24 KB k2
Floing) (1.2, 2y — ploing) 22y _ & f mo g _ LA
) = PR ) - [ e | e — 1 s ()

The term (u? — k?) is of course p-independent. The integral over § there does not
cause any difficulties. We find therefore for F&™9(k2) 1= F{""9)(k2|u2),

(sing) (1.2 23 2 K? : 2
79 (k%) = ~5 J1r(k*) log (F) + finite at u* — 0,

where

1 m2 + K
k%) = f d 2 -1
1tk = [ | i 1|

How this y%-dependent term affects the differential cross-section for the scattering
of the electron off the external potential Al™(k)? Fi(k?) is just a factor that
multiplies 4, in the S-matrix element. Therefore the u2-dependent contribution to
the differential cross-section

do ( do

dQ ~ \dQ

(fl_?z)o [1 -% fir(k*) log (ﬁ—i) + nonsing. terms] ,

)0 1 - FI™9) (k) 4 nonsingular t;ermsl2 + O0(e?) =

where the first factor is just the Born approximation

do o ‘ 2
— ) == l%u . )
(dﬂ)o T | vt AT (k)| ’
So, the fictitious photon mass term seems to appear in the differential cross-section
e(p) — e(p) in the external potential. How to interpret it?

Remember, our reason for introducing the photon mass u? was the difficulty in
distinguishing between the electron state and the states where soft photons are also
present:

le(p)), le(p)v(k) ... v(kn))
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This difficulty is of physical nature: In experiment, a detector can not detect a
photon with arbitrarily low energy. Therefore it is not possible to isolate the elastic
electron scattering off the potential from process in which some soft photons (with
sufficiently low energy) are also created.

Therefore, with our scattering off A®®) we need to consider also the processes
e—=edvy, et+2y,...
These processes are described by the diagrams P

"-—\.\_xr

;{aﬂ( 1<) < = b

B P-F
¢ P’

Each external photon contributes e to the amplitude. So, the dominating process
of this kind is when just one soft photon is emitted (e is small). Let us consider this
amplitude. Two diagrams contribute to e(p) — e(p') + ¥(q) in the leading order.

P P
e P,'_‘t

P’ P
The amplitude is 7
Melp) = el ++(0) = 2(5) | Ao T T2 o, ity eslo) AL 4o ui

where
Ay = ey AW ~p-g),
and e,{(g) is the polarization vector of the emitted photon. We are going to consider
the case of soft photon,
gl € lp-Fl, 0.

In this case we can replace
Agezf.} (p; -p— q) -~ Agezt) (pr _ P) ’
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so that Ag essentially coincides with the Born amplitude of the elastic scattering

¢
Ao = eva ALY —p) = “< ’
P

For the same reason we can ignore g in the numerators of the electron propagator.
Then the numerators can be simplified as

(m ~ vp)v.up)ez(q) = +2pee;(q)u(p)

where I used (m + yp)u(p) = 0. The numerator in the second term transforms
similarly

#p')(m - vp')e;(q) = +2pae;(q)a(py) .

2 g% = 0 we can simplify the denominator

Taking into account p? = (p')? = —-m
m?+(p-a)ff==2pq; m’+(F +q)=+2pq
Therefore

M(e — e +7) = e a(p’) Ao u(p)

Peear(@) _ Pacia(q) }
('q) (pg) |-

where I explicitly indicated the polarization state A of the photon. This must be
continued to the Minkowski space by simple replacement

(Fex) = —Pex, (Ple) = —Pg, ete P =prqgl

The form of the expression does not change, only Euclidean scalar producte get
replaced by Minkowski ones, i.e. (pg) now stands for p*g,, etc. The differential
probability of this emission of the soft photon is therefore

2
o (e(p) — e(#) +7(a)) = do (e(p) + ) [ dulo) > )

where, as usual ,
1 d'q

Here w, = |q| is the photon energy. We need to perform the polarization sum.
The polarization sums over the photon polarizations can be simplified using the
following trick. As we have seen, the W-T identity has the following consequence.
If we consider arbitrary scattering amplitude involving an external photon line
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o = e Mue,.. )&

1

and replace ej — ¢*, the result is zero
q“ Mp(q--..) == 0 .

In our case this can be checked explicitly

(p'ex)  (pes) (r'e) _ (pg) _
2 ( (Fq)  (pg) ) M)

Suppose we want to evaluate

Zl Ag) M(g, .. |2-

Let us chose the frame where
¢" = (¢,0,0,q)

where one can choose
B‘{=(0,1,0,0) ) 6‘2‘:(0,0,1,0)

are two transverse polarizations
In 2 2 2
> [ebt@) Muta, )| = 1Ml + [ Ml
A

The W-T identity in this frame reads
gMo~gM3z=0 = Mo=M;.

Therefore

| 2 2 2 2
Ziﬁa(Q)Mu(Q:---) = [My]* + [Ma]* + [Ma]* -

A

i.e.

= g MM .
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In other words, the sum
Ze‘;e'; - —g* .
A
can be replaced by —g"¥. We formally include “longitudinal” and “time-like” pho-
tons in the sum, which do not change the answer because these two contributions
cancel each other.
Using this trick we obtain
2

Z —

A=1.2

2 2

(Pex) (per) __((P’)u_ Pu )(Uﬂ')"_ p* ) _App) o m?  m
(r'9) (pa) ®q) (pg)/\(Pq) (pg)/  (@a)lpe) ('9)? (pg)?"

With all these, we obtain for the cross section e — e + ¥(g)

_gi_"ii[ 2pp) = m: mz]
(2m)3 2w, [(P9)(pe) (P'9)? (P9)%)~

do(p’ = p+7(g)) = do(p' = p) x €
We write
d*q = |aj*d|q| d€,.

Let us evaluate the angular integral. The last two terms are calculated straightfor-
wardly

4

dQ, i 2 sin(f) 49 ! dcosf 4
"o T P

@a? ~ Jo ¢ - Iplialcos(d) 119 = Iplcosd ~ [P P mlaP
The first term can be done using the Feynman parameterization and®. One has
dQ, 1 dQ, ! dQ,
(P'a)(pa) /n g/ ((pa)€ + (Pg)(1 - §))? ./; E./ (g(p€ + /(1 - §))?

= fl df i = ﬁ- 1 dé
o ClaPEp+(1-6p)?  la Jo m?*+E(1-E)F

where for Euclidean &

K= (® - D)alp’ = P)a -
Combining all three terms we get

. _ , e [t m2+ & lqf*d|q)
do(e(p) = e(p) + (@) = do(p' +p) % 55 _/0 de [m2 TR 1] lalPw,

= dol =) (2) finth?) 2

q

B £p-+(1-€) p')? = mAE2+(1-€)?m2+26(1-)(pp') = m?* (€ +(1-6)*+2£(1-)) - k*6(1-¢) -
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Suppose that the laboratory detectors can detect a photon only if its energy is not
smaller then E;. Then the process

e(p) > e(p) +v(q) with |ql < B

is indistinguishable from the elastic process. We have to add the elastic cross-section
do(e(p’) — e(p)) and the above cross-sections with the emissions of a soft photons,
with the energy below E;. Note that at low |q| the soft photon energy dependence
of these cross-sections involves the factor d|q|/w,, so the energy integral is

L. dotels) > elp) +ota) ~z [ 9 =i (5L

Wy w2
For a photon w, = |q| and so the integral is infrared divergent. Adding again the

photon mass u?
wg = V/|q|* + p?

and assuming p® < Ej, we get log (Ef-) Adding this to what we obtained for the

elastic cross section

2
do(p’ — p + soft photons) = (da(p’ - P))u [1 - % f1r(k?) log (-EE) (22.1)

+% fra(k?) log (%{) +... ] = (de(p' — p)), [1 -I-% fir(k*) log (f—f) +... }

We see that in the measured cross-section the auxiliary photon mass cancels exactly,
and instead it involves the quantity E;, which depends on the exact setup of the
laboratory experiment (what photons can not be detected).

The higher-loop calculations of I'y(p', p) also lead to infrared divergences (singu-
larity at 42 — 0) which are canceled by the amplitudes with emissions of more then
soft photons. I am not going to demonstrate this. Look up Ch. 6.5. of the textbook
P.S.

247



