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1 Lecture 1 (January 29)

The subject of Field Theory is the dynamical systems (classical or quantum) with
continuously many degrees of freedom. Typically, there is some number of degrees
of freedom associated with each point of space x ∈ R3. Examples are:

i) Electromagnetic Theory

Degrees of Freedom : E(x, t), H(x, t) .

ii) Gravitation (general Relativity)

Degrees of Freedom = Spacetime metric gµν(x, t) .

iii) More exotic example: Dirac (electron-positron) field

Degrees of Freedom = Four− component (complex) Lorentz spinor ψa(x, t) .

Main subject of this course is Quantum Theory of Fields. The states of quan-
tum fields with local interaction admit interpretation in terms of propagating and
interacting particles. Thus the theory of quantum fields is the basis of particle
theory.

Classical Field Theory

We start with a brief review of basic aspects of classical field theory. Fundamental
object in classical mechanics is the action,

S =

∫
L
(
q(t), q̇(t)

)
dt ;

the equations of motion are derived from the extremal action principle δS = 0. In
field theory the coordinates are replaced by the field degrees of freedom,

q(t) → Φ(x, t) ,

and the action is written as a space-time integral

S =

∫
L
(
Φ(x, t), Φ̇(x, t),∇Φ(x, t)

)
d3x dt .
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Here Φ = Φ(x, t) stands for a collection of fields (functions of x, t, representing
local degrees of freedom), which may include scalar fields, components of vectors,
tensors, spinors, etc. It is conventionally assumed that Φ has finitely many individual
components. The function L is called the Lagrangian density, it depends on
Φ(x, t) and its derivatives over x and t, taken at the same space-time point

(
x, t
)
.

Two remarks are in order.

1. The above expression is suitable for imposing conditions of the special rela-
tivity. The integration is over the 4-dimensional Minkowskian space-time,

d3x dt = d4x .

Recall that in relativistic theory one deals with the 4-dimensional space-time with
the coordinates

xµ = (x0, x1, x2, x3) = (t,x) ,

equipped with the “pseudo-metric”

dτ 2 = c2 dt2 − (dx1)2 − (dx2)2 − (dx3)2 .

The Lorentz transformations are those linear transformations of the coordinates xµ

which preserve dτ 2. In what follows I will use the units in which1

c = 1 , ~ = 1 .

Then

dτ 2 = dxµ dxµ , where xµ = (t,x) , and xµ = (t,−x) .

To ensure the relativistic invariance of the classical field theory it suffices to choose
L to be a Lorentz scalar.

2. In writing the above action I already accepted severe restrictions, namely,

S =

∫
dt L , with

1These conditions are simply the convention to measure spatial distances and energy in the
units

[unit of length] = c× [unit of time] , [unit of energy] = ~/ [unit of time] .
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L =

∫
d3xL

(
Φ(x, t), Φ̇(x, t),∇Φ(x, t)

)
,

i.e. L is a d3x integral of a spatial density L, which depends on Φ, Φ̇, and ∇Φ,
all taken at the same point x. This means that the field degrees of freedom Φ(x)
at some point x do not have a direct interaction with Φ(x′) located at some other
point x′, with |x − x′| greater then zero. Allowing such interactions would lead to
possible terms in L like

Lnonlocal =

∫
F
(
Φ(x, t),Φ(x′, t)

)
d3x d3x′

(“nonlocal interactions”). Nonlocal interactions do not go well along with the rel-
ativistic invariance. For if S includes, say, double integrals over x (as above), rel-
ativistic invariance of S forces one to include the terms which are nonlocal in time
as well, like ∫

F ′(Φ(t),Φ(t′)) dt dt′ ,
which evidently violate causality: The state in the future affects the dynamics now.
Locality and causality are deeply connected.

The above local form, L =
∫
L(Φ(x, t), Φ̇(x, t),∇Φ(x, t)) d3x, describes the dy-

namics in which the interaction occurs only between the degrees of freedom associ-
ated with “infinitely close” spatial points (through the ∇Φ in L).

Also, I did not include higher spatial derivatives of Φ as the arguments in L. Al-
though such dependence would not violate locality (on a superficial level), including
such dependencies in a relativistic theory would require to add higher time deriva-
tives, like Φ̈, as well. Such dependence is not allowed in conventional Lagrangian
dynamics, which requires that the time evolution φ(x, t) is completely determined
by the initial values of Φ(x) and Φ̇(x) at t = t0.

Anyhow, we start with the above local form of the action. In classical field theory
the field equations of motion follow from the action principle

δS = 0 .

Let us combine the spatial and time variable into the 4-coordinate x = (xµ) =
(x0,x), with x0 = t, and write Φ(x) instead of Φ(x, t); the Lagrangian density then
is written as

L
(
Φ(x), ∂µΦ(x)

)
,
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where

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)
.

A simple exercise in functional analysis (look up the textbook, page 15 in PS)
yields the classical field equations of motion

∂µ

(
∂L

∂
(
∂µΦ(x)

))− ∂L
∂Φ(x)

= 0 . (1.1)

Remark: Essential step in deriving (1.1) is integrating by parts. The total
derivative term ∫

d4x
∂

∂xµ

(
δΦ(x)

∂L
∂(∂µΦ(x))

)
can be reduced to the integral over the boundary (Gauss theorem), which depends
only on the variations δΦ(x) at the boundary; this term does not affect the ”bulk”
equations of motion (1.1), which hold at each point x of the space-time. But if
the field dynamics is considered in a space-time domain D, with the boundary ∂D,
the above term contributes to the variation of S via the variations of the boundary
values δΦ(x) |x∈∂D of the fields,∫

D

d4x ∂µ (...) =

∫
∂D

δΦ(x)
∂L

∂∂µΦ(x)
dΣµ(x)

where dΣµ(x) is the normal2 element of the boundary hypersurface ∂D. In this
situation the total derivative term contributes to the boundary conditions (see the
homework Problem 1). The default setup is D = full infinite space-time, with
the condition that Φ(x) decays sufficiently fast at both space and time infinities
(”scattering asymptotic conditions”); in this setup the above derivative term can be
ignored.

The task of the classical field theory is to find solutions of these equations with
such and such initial or boundary conditions.

One of the most important general results about classical field theory is the
relation between symmetries and conservation laws known as the

2”Normal” means that dΣµ(x)T
µ(x) = 0 for any Tµ(x) tangent to the boundary ∂D, at any

point x ∈ ∂D.
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Noether’s theorem (pp 17-18 of PS)

What is a symmetry? Suppose we have a family of continuous transformations of
the field variables

Φ(x) → Φ′(x) = F
(
x,Φ(x)

)
such that the action S does not change

S[Φ] = S[Φ′] .

The term continuous transformations means here that they depend on some contin-
uous parameter(s), F = Fs, in such a way that

F0(x,Φ(x)) = Φ(x) − no transformation .

(discrete symmetries is a separate story). Then we can take an infinitesimal trans-
formation

Φ(x) → Φ′(x) = Φ(x) + ϵE
(
x,Φ(x)

)
,

where

E =
d

ds
F
∣∣
s=0

,

with an infinitesimal ϵ. Substituting in the Lagrangian density, one finds

L
(
Φ′, ∂µΦ

′) = L
(
Φ, ∂µΦ

)
+ ϵ

[
∂L
∂Φ

E
(
x,Φ

)
+

∂L
∂
(
∂µΦ

) ∂µE(x,Φ)]+O(ϵ2) .

The invariance (i.e. the requirement that the action S =
∫
L d4x does not

change) implies [
· · ·
]
= ∂µJ̃

µ
(
Φ, ∂µΦ, x

)
,

with some J̃µ which depend on our field variables in a local way (it may also have
separate dependence on x if E does). Transforming the left-hand side by parts one
finds

∂µ

(
∂L

∂
(
∂µΦ

) E(x,Φ))+

[
∂L
∂Φ

− ∂µ

(
∂L

∂
(
∂µΦ

))]E(x,Φ) = ∂µJ̃
µ .

Now, suppose that Φ = Φc, a solution of the classical field equations of motion.
Then the second term vanishes, and we obtain the continuity equation

∂µJ
µ = 0 ,
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where

Jµ
(
Φ, ∂Φ, x

)
=

∂L
∂
(
∂µΦ

) E(x,Φ)− J̃µ
(
Φ, ∂Φ, x

)
,

which holds as long as Φ solves the classical field equations.

The continuity equation then implies a conservation law. Indeed, by the Gauss
theorem ∮

Σ

Jµ dΣµ =

∫
D

∂µJ
µ d4x = 0 .

Here Σ = ∂D is any closed 3-dimensional hypersurface in the 4-dimensional space-
time, and dΣµ is the normal element of eµνλρdx

νdxλdxρ of this hypersurface. Taking
the hypersurface to be a big slab between two equal-time hyperplanes and bringing
the spatial boundary to to the spatial infinity,

t 1
Q

2tQ

t

and also assuming that all fields decay at x → ∞, one finds

Qt1 = Qt2 ,

where

Qt =

∫
J0 d3x ,

that is Q is an integral of motion for the classical field equations. Let me stress
again that both the continuity equation ∂µJ

µ = 0 and the conservation law d
dt
Q = 0

are satisfied only if we take Φ = Φc (in terminology of QFT they are said to hold
“on shell”).
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Energy-Momentum

The most common symmetry we encounter in field theory is the translational sym-
metry. Assume that the Lagrangian density L(Φ, ∂Φ) has no x dependence except
for that coming through the field variable φ(x). It means that the dynamics looks
the same if we shift the space-time coordinates

x→ x′ = x+ a

by a constant 4-vector a. This can be viewed as the symmetry with respect to the
following transformation of the field variables

Φ(x) → Φ′(x) = Φ(x+ a) ,

which leaves the action invariant. This field transformation has the infinitesimal
form

Φ′(x) = Φ(x) + daµ ∂µΦ(x) ,

i.e. in this example E(Φ, ∂Φ) = ∂µΦ. When we do this transformation the action is
going to stay invariant, but the Lagrangian density changes by the total derivative

L′ = L+ daν ∂νL ,

where the derivative in the last term can be written as ∂µ
(
δµν L

)
, and has the same

meaning as ∂µJ̃
µ in the general argument above.

Note that there are four independent symmetries associated with four compo-
nents of aµ. Correspondingly, there are four Noether’s currents

T µ
ν =

∂L
∂
(
∂µΦ

) ∂νΦ− δµν L ,

which therefore satisfies the continuity equations

∂µT
µ
ν = 0 on shell .

This object is known as the energy-momentum tensor. It leads to four conserved
charges

E =

∫
T 0
0 d

3x ,

and

P i = −
∫

T 0
i d

3x , with i = 1, 2, 3 .
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Of these, E is interpreted as the energy of the field configuration Φ(x, t), and P is
interpreted as its momentum. Therefore one may take

T 0 0 = T 0
0 = E for the energy density ,

and
T 0 i = −T 0

i = P i for the momentum density .

The spatial components T i j constitute the (spatial) stress tensor. It is interpreted
as usual: Consider any domain D = D3 in the 3-dimensional space (at a given time).
The momentum of the field inside this domain is

P i
D =

∫
D

P i(x) d3x .

According to the pulse-momentum theorem,

d

dt
P i
D = F i

D , the net force applied to the field inside D .

Since the interaction is local, this force must come from the surface forces,

F i
D = −

∫
∂D

T i j(x) dσj = −
∫
D

∂jT
i j(x) d3x .

Thus, dF i = T ij(x)dσj is the force exerted by the field on the surface element dσj.

Klein-Gordon Field

Let us consider a simple field theory known as the Klein-Gordon theory (it will
be our main example for some time). It involves a single-component scalar field
Φ(x) = φ(x, t), and the action is

S =

∫
d4x

[
1

2
∂µφ∂

µφ− m2

2
φ2

]
≡

∫
dt d3x

[
1

2
φ̇2 − 1

2

(
∇φ
)2 − m2

2
φ2

]
.

This form of the action shows that the theory is Lorentz-invariant, and the field φ
is a scalar (i.e. φ(x) has definite value at each space-time point x, independent of
the choice of the inertial frame). Variation yields the Klein-Gordon field equation

∂µ∂
µφ+m2 φ = ∂2t φ−∇2φ+m2 φ = 0 .
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Applying the above equations one finds for the energy-momentum tensor

Tµ ν = ∂µφ∂νφ− 1

2
gµ ν

(
∂λφ∂

λφ−m2 φ2
)
,

where
gµ ν = diag

(
1,−1,−1,−1

)
is the usual Minkowski metric. Thus,

E =
1

2

(
φ̇2 +

(
∇φ
)2

+m2 φ2

)
,

and
P = φ̇∇φ .

We see in this example that the energy-momentum tensor Tµ ν is symmetric,

Tµ ν = Tν µ .

Exercise

Show that in any Lorentz-invariant theory involving only a scalar field φ(x) the
energy-momentum tensor always comes out symmetric, Tµ ν = Tν µ. Check that in
such theory all components of the antisymmetric tensor

Mµ ν =

∫ [
xµ T ν 0 − xν T µ 0

]
d3x

are conserved on-shell.

The equations of motion of the Klein-Gordon theory

∂µ∂
µφ+m2 φ = ∂2t φ−∇2φ+m2 φ = 0 .

are linear. That is, any linear combination of solutions are again the solutions. (In
general, this property defines the free field theory). Therefore, general solution is a
superposition of ”elementary solutions”. In the infinite space-time, one can take the
plane waves

e−ipx = e−ip0x0+ipx with p0 = ωp :=
√
p2 +m2
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as well as the complex-conjugate waves3

φ(x) =

∫
d3p

2ωp (2π)3
(
Ap e

−ipx + A∗
p e

ipx
)
. (1.2)

This form represents general solution of the Klein-Gordon equation, which is bounded
at the spatial infinity.

3As usual
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2 Lecture 2 (January 31)

Before going to quantum theory, let us recall the Hamiltonian formalism of classical
mechanics and see how it looks for fields.

Hamiltonian Formalism

In Lagrangian dynamics with the generalized coordinates qi one passes to the Hamil-
tonian formalism through introducing the conjugate momenta

pi =
∂L(q, q̇)

q̇i
,

and then excluding q̇ in favor of p, by solving these equations. The Hamiltonian
function H appears as the Legendre transform

H(p, q) =
∑
i

pi q̇
i − L .

The equations of motion then take the canonical form

ṗi =
{
H, pi

}
= −∂H

∂qi
,

q̇i =
{
H, qi

}
=
∂H

∂pi
,

in terms of the Poisson brackets{
f, g
}
:=
∑
i

∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
.

In a field theory we have continuously many generalized coordinates φ(x) (I assume
here a scalar field, for simplicity), labeled by the spatial coordinates x. In this case
the conjugated momenta are defined as

π(x) =
δL

δφ̇(x)
,

with the basic Poisson brackets{
π(x), φ(x′)

}
= δ(x− x′) .
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In the Klein-Gordon theory
π(x) = φ̇(x) ,

and the Hamiltonian is

H =

∫
d3x

[
1

2
π2(x) +

1

2

(
∇φ
)2
(x) +

m2

2
φ2(x)

]
. (2.1)

Of course, it coincides with the above expression for the energy, E =
∫
T 00 d3x,

expressed through π rather then φ̇.

Quantum Klein-Gordon field

We can try now to develop quantum theory of the Klein-Gordon field, following the
usual rules of canonical quantization. One starts with the correspondence

Classical Theory Quantum Theory

Phase space Hilbert space H
pi, q

i Hermitian operators p̂i, q̂
i : H → H

H(p, q) Ĥ(p̂, q̂) : H → H

where the Hermitian operators q̂, p̂ must obey the canonical commutation rela-
tions [

q̂i, p̂j
]
= i δij .

Remark: In QM with finitely many degrees of freedom, in the Schroedinger’s quantization
one can take the space of square-integrable functions Ψ(q) for H, and define the corresponding
representation

q̂i Ψ(q) = qi Ψ(q) ,

p̂i Ψ(q) = −i
∂

∂qi
Ψ(q) ,

and Ĥ = H(p̂, q̂). The time evolution of the state Ψ(q) is governed by the Schroedinger equation

i
∂

∂t
Ψ(q) = Ĥ Ψ(q) .

In principle, one can follow this prescription and introduce the operators

φ̂(x) , π̂(x)

and demand that they satisfy the canonical commutators in the form[
φ̂(x), π̂(x′)

]
= i δ(x− x′) .
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Furthermore, one can take the space of functionals Ψ[φ(x)] as the Hilbert space H; it provides a
formal representation of the above canonical commutation relations through the identifications

φ̂(x)Ψ[φ] = φ(x)Ψ[φ] ,

π̂(x)Ψ[φ] = −i
δ

δφ(x)
Ψ[φ] .

The Hamiltonian then is

Ĥ =

∫
d3x

[
− 1

2

δ2

δφ(x)2
+

1

2

(
∇φ
)2

+
m2

2
φ2

]
.

and it remains to find all solutions of the stationary Schroedinger equation

ĤΨ[φ] = EΨ[φ] .

Exercise: Show that this Schroedinger equation admits formal solution of the form

Ψ0[φ] = Const exp
{∫

φ(x)G(x− x′)φ(x′) d3x d3x′}
Find the kernel G(x − x′). (At this point, do not worry when you discover divergent integrals).
Try to look for further solutions in the form

Ψn[φ] ∼
∫

F (x1, ...,xn)φ(x1)...φ(xn) exp
{∫

φ(x)G(x− x′)φ(x′) d3x d3x′} .
Although this straightforward approach, with certain refinements, would work in the Klein-

Gordon theory, it has a number of unpleasant features. One is that the scalar product in H has
to be defined through the functional integral(

Ψ1,Ψ2

)
∼
∫

Ψ∗
1[φ] Ψ2[φ]D[φ] ,

and certain care must be taken to give it a satisfactory definition (We are going to use functional
integrals, in somewhat different context, though). This and other features of the above represen-
tation in terms of the variational derivatives makes this approach somewhat cumbersome. Much
shorter route is based on explicit separation of variables, as we discuss below.

One observes that the Hamiltonian functionalH[φ] of the Klein-Gordon theory is
quadratic in the field variables φ(x) and their conjugate momenta π(x); this means
that the theory can be understood as the collection of harmonic oscillators (this
observation actually suggests the Gaussian form of Ψ0[φ] in the above Exercise).
It is then straightforward to make linear transformation of the canonical variables
φ(x), π(x) which separates the variables into a system of non-interacting harmonic
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oscillators, and then quantize the individual oscillators. This transformations are
described in details in PS, and I refer to Sect 2.3 there for the detailed calculation.

Instead, here I will follow equivalent routine based on special symmetries of the
KG theory. Recall that the Lagrangian density is

L =
1

2
∂µφ∂

µφ− m2

2
φ2 ,

and observe that the transformation of the field

φ(x) → φ′(x) = φ(x) + f(x) ,

where f(x) is an arbitrary solution of the KG equation

∂µ∂
µ f(x) +m2 f(x) = 0

changes the Lagrangian density changes by a total derivative term

L(φ′, ∂φ′) = L(φ, ∂φ) + ∂µJ̃
µ
f ,

where
J̃µ
f (x) = φ(x)∂µf(x)

(In writing this equation I have assumed that f is infinitesimal and neglected the
terms ∼ f 2). The situation meets the conditions of the Noether’s theorem. It follows
that every solution f of the KG equation generates a conserved current Jµ

f , such
that

∂µJ
µ
f = 0 on shell.

Explicitly

Jµ
f =

∂L
∂(∂µφ)

f − J̃µ
f = ∂µφ f − φ ∂µf .

The corresponding Integrals of Motion are (at a time t)

Af =

∫
d3x

(
φ̇(x) f(x)− φ(x) ḟ(x)

)
=

∫
d3x

(
π(x) f(x)− φ(x) ḟ(x)

)
, (2.1)

where π(x) = φ̇(x) is the canonical momentum conjugate to φ(x). The integrals Af

are Lorentz scalars. This becomes explicit if one rewrites their definition in covariant
form

Af =

∫
Σ

dΣµ

(
∂µφ f − φ ∂µf

)
,
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where Σ is any space-like 3-surface; because of the continuity equation the currents
Jµ
f obey, the above integrals do not depend on specific choice of Σ.

t

In classical theory one straightforwardly evaluates the Poisson brackets

{Af , Ag} =

∫
d3x

(
ḟ(x) g(x)− f(x) ġ(x)

)
(This expression also can be written in the covariant form, in terms of the integral
over arbitrary Σ).

In quantum theory we should replace, as usual,

{A,B} → i [Â, B̂] ,

so that

[Âf , Âg] = − i

∫
d3x

(
ḟ(x) g(x)− f(x) ġ(x)

)
.

It is convenient to use standard plane-wave solutions of the Klein-Gordon equa-
tion

fp = ei ωp t−ipx , f ∗
p = e−i ωp t+ipx ,

where
ωp =

√
p2 +m2 .

Denoting
Âp = Âfp , Â†

p = Âf∗
p
,

we find the commutation relations

[Âp, Â
†
p′ ] = (2π)3 2ωp δ

(3)(p− p′) ;
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[Âp, Âp′ ] = 0 ; [Â†
p, Â

†
p′ ] = 0 .

These are the creation and annihilation operators. The above operators Âp and Â†
p

differ in normalization from ap and a†p used in PS (see Sect.2.3)

Âp =
√
2ωp ap ;

Â†
p =

√
2ωp a

†
p .

Advantage of A,A† is their Lorentz invariance.

The Hamiltonian can be expressed through the creation and annihilation oper-
ators as

Ĥ =

∫
d3p

(2π)3
1

4

(
Â†

p Âp + Âp Â
†
p

)
, (2.2)

which indeed is the Hamiltonian of a collection of harmonic oscillators, one oscillator
per each wave-vector p, the associated frequency being ωp. It is straightforward to

check that Â†
p rises (and Âp lowers) the energy by the amount ωp, namely

[Ĥ, Â†
p] = ωp Â

†
p ,

[Ĥ, Âp] = −ωp Âp .

Similarly, for the momentum

P̂ = −
∫

d3x π̂(x)∇φ̂(x)

we have

P̂ =

∫
d3p

(2π)3
p

4ωp

(
Â†

p Âp + ÂpÂ
†
p

)
.

Hence
[P̂, Â†

p] = p Â†
p ,

[P̂, Âp] = −p Âp ,

i.e. Â†
p adds p to the total momentum.

To find a physically acceptable solution of quantum KG theory it remains to find
appropriate representation of the above commutation relations in a Hilbert space
H. Classically, the Hamiltonian (2.1) is non-negative defined. Correspondingly,
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under physically meaningful quantization the quantum Hamiltonian (2.2) must be
bounded from below. Recall from the theory of harmonic oscillator that in order to
satisfy this property one has to assume that H contains the ground state |0⟩ such
that

Âp | 0⟩ = 0 for all p .

Just as in the harmonic oscillator, by applying the operators A†
p to | 0⟩ one generates

the complete space of normalizable states. In QFT this is referred as the Fock space,

HKG = Fock space = Span
{
Â†

p1
Â†

p2
· · · Â†

pN
| 0⟩
}
.

The state | 0⟩ is called vacuum state, or Fock vacuum. Note that the above basis
already solves the diagonalization problem for Ĥ: these vectors are the eigenstates
of both Ĥ and P̂, with the eigenvalues

E = ωp1 + ωp2 + . . .+ ωpN
+ E0 ,

P = p1 + p2 + . . .+ pN +P0 ,

where E0 and P0 are the eigenvalues associated with the vacuum state | 0⟩,

Ĥ | 0⟩ = E0 | 0⟩ , P̂ | 0⟩ = P0 | 0⟩ .

The basic vectors Â†
p1
Â†

p2
· · · Â†

pN
| 0⟩ are interpreted as the states of N identical

(Bose) free particles, with the momenta p1, ...,pN.

The above expressions for the Hamiltonian can be rewritten as

Ĥ = E0 +

∫
d3p

(2π)3
1

2
Â†

p Âp ,

with

E0 =

∫
d3p

(2π)3
1

4
[Âp, Â

†
p] ,

which of course is the sum of the zero-point energies of all the constituent oscillators.

There are two evident problems with the last expression:

(i) It is not zero, and moreover it contains seemingly meaningless factor δ(3)(0)
(recall that [Âp, Â

†
p′ ] = 2ωp (2π)

3 δ(3)(p− p′)).

(ii) The remaining integral over p diverges at large p.

17



Note that these problem don’t seem to be as bad for P0, where we have

P0 =

∫
d3p

(2π)3
p

4ωp

[Âp, Â
†
p] = 0 ,

since the contributions of p and −p cancel pairwise. This is good, as we do not want
the vacuum to have any net momentum. But this seems to create another problem,
if one thinks that the energy and momentum should be the components of 4-vector
(E0,P0). If P0 = 0 and E0 ̸= 0, it seems the Lorentz invariance is broken.

To sort this part of the problem out, let us recall that we are dealing with a
system in which the degrees of freedom φ(x) are attached to all points of the space.
For such system one expects that its vacuum energy E0, whatever it is, must be
proportional to the volume of the space,

E0 = ε V (3) ,

where ε is the vacuum energy density. This answers the question how to interpret
the δ(3)(0) factor: Recall that

(2π)3 δ(3)(p− p′) =

∫
d3x ei (p−p′)x ,

and so the above nonsense factor in fact is

(2π)3 δ(3)(0) =

∫
d3x → V (3) .

This also solves the problem of Lorentz invariance. The energy density ε transforms
as 00 component of 4-tensor (the energy-momentum tensor),

ε = ⟨0 | T 00 | 0⟩ .

The Lorentz-invariance of the vacuum state | 0⟩ only requires that

⟨0 | T µν | 0⟩ = ε0 η
µν , ηµν = diag(+1,−1,−1,−1) ,

and we soon will have techniques to check that this equation indeed holds in the
KG theory. It is OK for a Lorentz-invariant state to have nonzero energy density.

Still, something has to be done about the badly divergent integral for this energy
density,

ε0 =
1

2

∫
d3p

(2π)3
ωp .
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The integral diverges at large momenta, i.e. the divergent contribution comes from
small length scales. This is not too surprising, since our idea of the field theory was
to associate a degree of freedom with every point of the space, and there are contin-
uously many points in each finite part of it. One could assume that perhaps some
microscopic physics takes care of the problem, replacing the above mathematically
meaningless expression by the “cutoff” integral

ε0 =
1

2

∫
d3p

(2π)3
ωpΦ

(
p2

Λ2

)
.

where the “cutoff” factor Φ(ξ) is close to 1 when ξ << 1 and decays fast at large ξ,
and Λ represents the energy scale beyond which the unknown microscopic physics
becomes essential.

Whereas introducing the cutoff rids us of mathematically meaningless expression,
needless to say it does not solve the problem of vacuum energy density, which now is
finite but completely undetermined. In many practical cases one can simply ignore
the problem. Large class of physical quantities are only sensitive to differences of
energies, and in such problems the vacuum energy is invisible. But in fact the
vacuum energy is measurable, in principle. Generally, if we want to be able to apply
QFT to physics, we need to know what happens when we couple it to gravity, and
gravity is very sensitive to the energy density. Even without gravity, suppose we
can confine our system to finite part of the space, say inside a box. Then we want
to know what forces it exerts upon the wall of that box. The last situation can
actually be realized in laboratory, and it leads to a measurable effect - the so called
Casimir effect. We are going to discuss it next, but let me make one more remark,
in order to clarify the nature of the problem.

When a divergent integral appears in otherwise sensible calculations, it usually
signals some ambiguity in the theory. Indeed, there is an ambiguity in the definition
of the KG theory. One can add a constant term to the Lagrangian density,

L → L+ Const .

This extra term is fully consistent with both relativistic symmetry and locality. Of
course this modification is completely irrelevant in the classical theory, since it does
not affect the equations of motion. But the Lagrangian density will pass this term
to the energy-momentum tensor, and finally to the Hamiltonian,

Ĥ → Ĥ − Const

∫
d3x .
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One can now “absorb” the vacuum energy divergence into this constant. We write

Const = ε0 − ε ,

where ε0 is the above ugly integral, and ϵ is a finite constant (of the dimension
[Mass]4). The result is that the divergent integral disappears, but at the same time
we learn that the quantum KG theory in fact has not one but two parameters, m2

and ε. This extra term we added to the action is the simplest example of what we
will call the counterterms.
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3 Lecture 3

Casimir Effect

To understand possible manifestations of the vacuum energy, let us now briefly
discuss the Casimir Effect. Originally, the Casimir effect refers to the situation
where we have two parallel conducting plates, of large size L × L, separated by a
distance a.

a

L

L

Due to the quantum nature of the electromagnetic field in between the plates, more
precisely, due to the effect of the plates on the zero-point energy of quantum elec-
tromagnetic field, the plates are attracted with the force

Force

L2
= −~c

π2

240 a4
,

where it is assumed that

L >> a >> atomic distances.

Casimir effect in KG theory

Let us study the nature of this effect using our scalar field theory, the KG the-
ory, instead of the electrodynamics; the result is not going to be very different.
Since the real photons are massless (and to make calculations simpler), we will
assume that m2 = 0. In macroscopic electromagnetic theory (valid at the scales
>> atomic distances) the presence of the conducting plates is taken into account by
imposing the boundary conditions E∥ = 0, B = 0 at the surface of the conductor.
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To mimic this situation we consider instead the KG field in the presence of two
plates with the boundary condition

φ(x) = 0 at the surface.

Let us concentrate attention on the field between the plates. In order to take into
account the boundary conditions, in this case we must use, instead of the functions
fp(x) and f

∗
p(x) above, the following complete set of solutions

fp∥,n(x, t) =

√
2

a
eiωp,n t−ip∥ x∥ sin

(
π n

a
x⊥

)
,

and the corresponding complex-conjugated functions f ∗
p∥,n

. Here x∥ and x⊥ are the

components of x parallel and perpendicular to the plates, x = (x∥, x⊥) , and

ωp∥,n =

√
p2
∥ +

π2 n2

a2

with positive integer and n,
n = 1, 2, 3, ... .

These functions solve the KG equation with m2 = 0 as well as the boundary condi-
tions

fp∥,n

∣∣
x⊥=0

= 0 , and fp∥,n

∣∣
x⊥=a

= 0 .

Exactly as we did in the infinite-volume case, we now introduce the operators

Âp∥,n =

∫ a

0

dx⊥

∫
d2x∥

[
π̂ fp∥,n − φ̂ ḟp∥,n

]
,

and similarly for Â†
p∥,n

, with f ∗
p∥,n

replacing fp∥,n. It is not difficult then to show

that
[Âp∥,n, Â

†
p′
∥,n

′ ] = 2ωp∥,n δnn′ (2π)2 δ(p∥ − p′
∥) ,

and to compute the Hamiltonian of the part of the system residing between the
plates,

Ĥ =
∞∑
n=1

∫
d2p∥

(2π)2
1

4

(
Â†

p∥,n
Âp∥,n + Âp∥,n Â

†
p∥,n

)
+ aL2 (ε− ε0) ,
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where the last term comes from vacuum energy counterterm

(ε− ε0)

∫ a

0

dx⊥

∫
d2x∥ = aL2 (ε− ε0) .

We still have to demand that all the operators Âp∥,n nullify the ground state, since

otherwise Ĥ is unbounded from below. Therefore the vacuum eigenvalue of this
Hamiltonian is

Evac =
L2

2

∞∑
n=1

∫
d2p∥

(2π)2

√
p2
∥ +

π2 n2

a2
Φ

(
p2
∥ + π2n2/a2

Λ2

)
− aL2 ε0 + aL2 ε ,

where I have introduced again the cutoff factor Φ - without it this expression is as
divergent as it was in the absence of the boundaries.

Now, the term −aL2 ε0 is the divergent part of the vacuum energy counterterm.
It is

−aL2 ε0 = −L
2

2
a

∫
dp⊥
(2π)

∫
dp∥

(2π)2

√
p2
∥ + p2⊥ Φ

(
p2
∥ + p2⊥

Λ2

)
,

where I have separated the dp⊥ and d2p∥ parts of the integral over d3p. After the
change of variables

p⊥ = π τ/a

it takes the form

−L
2

2

∫ ∞

0

dτ

∫
d2p∥

(2π)2

√
p2
∥ +

π2 τ 2

a2
Φ

(
p2
∥ + π2 τ 2/a2

Λ2

)
.

We see that the interesting part of the ground-state energy (rather, of the energy
per unit area of the plates) can be written as

E

L2
− a ε =

∫
d2p∥

(2π)2

[ ∞∑
n=1

Fp∥(n)−
∫ ∞

0

Fp∥(τ) dτ

]
,

where

Fp∥(τ) =
1

2

√
p2
∥ + π2 τ 2/a2 Φ

(
p2
∥ + π2 τ 2/a2

Λ2

)
.

The
∑
F (n) −

∫
F (τ) expression above can be handled with the help of the

Euler-McLaurin summation formula (see Appendix)

∞∑
n=1

F (n)−
∫ ∞

0

F (τ) dτ = −1

2
F (0) + i

∫ ∞

0

F (it+ 0)− F (−it+ 0)

e2πt − 1
dt . (3.1)
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which is valid provides F (τ) is analytic in the right half-plane of complex τ . The
first term

−1

2
Fp∥(0) = −1

4

∫
d2p∥

(2π)2

√
p2
∥ Φ

(
p2
∥/Λ

2
)
.

does not depend on the separation a; it is interpreted as the surface energy. It
diverges, again signaling ambiguity. When there is a surface, a constant surface
term can be added to the action. We ignore this term since, being independent of a
it does not contribute to the force.

The interesting contribution is extracted from the second term, which involves

i

∫ ∞

0

F (it+ 0)− F (−it+ 0)

e2πt − 1
dt

The the shift ”+0” in the arguments in (EM) is important since the function Fp∥(τ)
has square-root brunching points at the imaginary axis. Note that if it was regular,
the integral would vanish in view of the obvious τ → −τ symmetry of Fp∥(τ). In
fact, one can take advantage of this symmetry to write the integrand as

i

∫ ∞

0

F (it+ 0)− F (it− 0)

e2πt − 1
dt = −2

∫ ∞

|p∥| a/π

ℑmF (it+ 0)

e2πt − 1
dt ,

where the last form reflects the fact that the function Fp∥(τ) has the branch cut
from i|p|a/π to i∞ (and from −i|p|a/π to −i∞). We have, at |t| > a|p|/π

ℑmFp∥(it+ 0) =
1

2

√
πt2

a2
− p2

∥ Φ

(
p2
∥ − π2t2/a2

Λ2

)
:=

1

2
Gp∥(t) .

Note that the factor (e2πt − 1)−1 makes this integral fast convergent at large t, even
without the cutoff factor Φ. At large Λ >> a−1 this factor has no effect, and can
be dropped,

Gp∥(t) →
√
π2t2

a2
− p2

∥ .

The interesting contribution to the vacuum energy then is

−
∫

dt

e2πt − 1

∫
|p∥|≤πt/a

d2p∥

(2π)2

√
π2t2

a2
− p2

∥ .

where I have interchanged the order in which the integrals are taken. The integral
over p∥ is evaluated in closed form∫ π2t2

a2

0

dp2

4π

√
π2t2

a2
− p2 =

1

6π

(
πt

a

)3

,
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The contribution to the energy is

− π2

6 a3

∫ ∞

0

t3 dt

e2πt − 1
= − π2

6 a3
Γ(4) ζ(4)

(2π)4

where I have used ∫ ∞

0

xs−1 dx

ex − 1
dx = Γ(s) ζ(s) .

(ζ(4) = π4/90). Thus we find

E

L2
= a ε− 1

2
F (0)− π2

1440 a3

The contribution a ε is not too interesting - there is the same term in the vacuum
energy density outside the space between the plates, and hence this term does not
lead to any force. The interesting term −π2/1440 a3 shows that the plates attract;
the force (per unit plate area) is

Force

L2
=

π2 ~c
480 a4

.

Let me stress that this result is completely independent of the form of auxiliary
cutoff factor Φ - this is exactly what we want from quantum field theory. Another
useful observation is that in order to obtain this result we don’t really need to send
Λ to Planck’s energies or something, it suffices to have a2 >> 1/Λ2.

In the real case of electromagnetic field the calculations can be done in very
similar way. The resulting force is twice as large, due to the fact that photon field
has two degrees of freedom for each p, as the photon has two polarization states.

Few words about the a-independent term

−1

2
F (0) = − 1

16π

∫ ∞

0

dξ
√
ξ Φ
(
ξ/Λ2

)
.

It does not contribute to the force, but still needs some interpretation. It is divergent,
and it is easy to design special counter-term to absorb this divergence. But it is
instructive to think about real case of electromagnetic field and real conducting
pates made of atoms, conducting electrons, and all that. In this case the cutoff
represents the limit of validity of the macroscopic electrodynamics, and the cutoff
energy Λ in this expression should be taken around atomic energy scale. Having
sufficient knowledge about the microscopic structure of the conductor we could in
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principle calculate the cutoff factor and hence this contribution in terms of the
atomic parameters. The nice feature of the above result is in that it predicts some
attractive force between the plates which is completely independent of all these
microscopic details. This points to another area where quantum field theory applies,
when it is not that we can’t know the short-distance physics, rather we don’t want
to know. In this area the quantum field theory describes universal, i.e. not too
sensitive to microscopic details, properties of matter.

Appendix: Euler-Maclaurin formula

Let F (τ) be a function analytic in the right half-plane, and decaying at ℜe τ → +∞
sufficiently fast, so that the integral

∫∞
0
f(τ) dτ converges.

Start with the integral

I =

∫
C0

F (τ) dτ

e2πiτ − 1
,

where the integration is over the contour C which encloses all positive integer points
τ = 1, 2, 3, ..., as shown in the left figure.

1 2 3 4 5 Re τ

Im τ

Re τ

Im τ

The integrand has poles at the integer points τ = n, with the residues F (n)/2πi.
Therefore

I =
∞∑
n=1

F (n) .

On the other hand, the integral can be split into two parts

I =

∫
C0

=

∫
C+

+

∫
C−

= I+ + I− ,
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where C+ is the part of the contour C0 that lays above the real axis, and C− is the
part below the real axis. Note that the factor

1

e2πiτ − 1

decays fast into the lower half-plane, hence the contour C− can be rotated into the
lower half-plane to go along the contour C̃−,

I− =

∫
C̃−

F (τ) dτ

e2πiτ − 1
= −i

∫ ∞

ϵ

F (−it+ 0) dt

e2πt − 1
+

∫
C′

−

F (τ) dτ

e2πiτ − 1
,

where for the straight part of C− I have changed

τ = −it ,

and C ′
− is the small quarter-circle below the real axis, seen in the right part of the

figure. It is easy to check that in the limit ϵ → 0 this part of the integral yields
−F (0)/4.

On the other hand the factor (e2πiτ − 1)−1 does not decay into the upper half
plane, but one can write

1

e2πiτ − 1
= −1− 1

e−2πiτ − 1
,

where the second term do decay into the upper half-plane, so that

I+ = −
∫
C+

F (τ) dτ +

∫
C̃+

F (τ) dτ

e−2πiτ − 1
=

∫ ∞

ϵ

F (τ) dτ + i

∫ ∞

ϵ

F (it+ 0) dt

e2πt − 1
+

∫
C′

+

,

where the second term in the last form represents the contribution of the straight
part of C+ (with τ = it + 0), and the last term is the contribution of the small
quarter-circle above the real axis; again, it is easy to check that this last contribution
is −F (0)/4 in the limit ϵ → 0. Adding I+ to I−, and taking the limit ϵ = 0, yields
(3.1).
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4 Lecture 4

Quantum Klein-Gordon theory (Continued)

The space of states H of the quantum KG theory is the Fock space, defined as the
linear envelope of the basic states

|p1, ...,pN⟩ = Â†
p1
...Â†

pN
| 0⟩ ,

where the vacuum |0⟩ satisfies
Âp | 0⟩ = 0 for all p .

Here I have returned to the default case of the infinite Minkowski space-time, so
that the 3-momenta pi may take continuous unrestricted values.

The states |p1, ...,pN⟩ are interpreted as N -particle states. Their scalar prod-
ucts follow from the commutation relations [Âp, Â

†
p′ ] = 2ωp (2π)

3 δ(3)(p − p′). In
particular, for the one-particle states

⟨p | p′⟩ = 2ωp (2π)
3 δ(3)(p− p′) .

Since the operators Â†
p are Lorentz invariant (only the momentum p transforms

under the Lorentz transformations), the particle have zero spin. Since the creation
operators Â†

p commute, the N -particle states are symmetric with respect to permu-
tations of the momenta pi - the particles are bosons.

The spectrum of the energy-momentum operator
(
Ĥ−E0, P̂

)
is the composition

of spectra of the N -particle states. In the space of vectors (E − E0,P) the vacuum
resides at the origin of coordinates, the one particle states form the mass-shell hyper-
boloid (E−E0)

2−P2 = m2, the two-particle states fill the inside of the hyperboloid
(E − E0)

2 −P2 = 4m2, etc.

| p  p  p  >1 2 3

| p  p >1 2

E−E0

| p >

|p|
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Correspondingly, the spectrum of the operator M̂2 = (Ĥ−E0)
2−P̂2 has two discrete

components, 0 and m2, and continuous part from 4m2 to infinity.

Klein-Gordon propagator

By their definition, the creation and annihilation operators Â†
p, Âp are the Fourier

components of the local field operators φ̂(x) and π̂(x),

φ̂(x) =

∫
dµ(p)

[
Âp + Â†

−p

]
eipx ,

π̂(x) =

∫
dµ(p) iωp

[
− Âp + Â†

−p

]
eipx ,

where I have introduced special notation for the Lorentz-invariant measure on the
mass shell,

dµ(p) =
1

2ωp

d3p

(2π)3
.

Exercise: Check that the measure dµ(p) is Lorentz-invariant. An instructive way to
do that is to check the identity

dµ(p) =

∫
p0>0

dp0 δ(pµpµ −m2) ,

i.e. we have ∫
dµ(p)F (p, ωp) =

∫
p0>0

d4p

(2π)4
2π δ(pµpµ −m2)F (p, p0) .

The operators φ(x) and π(x) are the ”Schroedinger”, or the “equal time” field
operators. As defined, they obey the canonical commutation relations

[π̂(x), φ̂(x′)] = −i δ(3)(x− x′) .

As is common in quantum mechanics, it is often useful to trade the time evolution of
the states for the time evolution of the operators. This is known as the Heisenberg
picture. In our case, introduce the Heisenberg field operator

φ̂(x) = φ̂(x, t) = eiĤt φ̂(x) e−iĤt , x = (x, t).
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In terms of the creation and annihilation operators it is

φ̂(x) =

∫
dµ(p)

[
Âp f

∗
p(x) + Â†

p fp(x)
]
,

where as before fp(x) = eiωpt−ipx. Let us compute the commutator [φ̂(x), φ̂(x′)].
Then

φ̂(x) = φ̂(x, t = 0) , π̂(x) = ∂tφ̂(x, t) |t=0 .

Commutators

It is interesting and instructive to see how the canonical commutators of the ”Schroedinger”
operators extend to the Heisenberg field operators φ̂(x). For this calculation, it is
useful to write

φ̂(x) = φ̂−(x) + φ̂+(x) ,

where

φ̂−(x) =

∫
dµ(p) Âp f

∗
p(x) , φ̂+(x) =

∫
dµ(p) Â†

p fp(x) ,

The operator φ̂+(x) contains only the creation operators Â†
p; it can be interpreted as

an operator creating particle at the space-time point x; likewise, φ̂−(x) absorbs the
particle at the space-time point x. Since φ̂−(x) obviously commutes with φ̂−(x

′),
and the same is true for the φ̂+ component, we have

[φ̂(x), φ̂(x′)] = D−(x− x′)−D+(x− x′) ,

where
D−(x− x′) = [φ̂−(x), φ̂+(x

′)] ,

D+(x− x′) = [φ̂−(x
′), φ̂+(x)] ≡ D−(x

′ − x) .

Explicitly

D−(x, t) =

∫
dµ(p) e−iωp t+ipx ,

D+(x, t) =

∫
dµ(p) eiωp t−ipx ,

Some properties of these integrals are worth mentioning.

i) The integrals for D−(x) and D+(x) are Lorentz-invariant, i.e. if two 4-vectors
x and x′ are related by a Lorentz transformation, x′ = Λx, then D(x) = D(x′).
Indeed, the integrals can be written in explicitly covariant form, say

D−(x) =

∫
p0>0

d4p

(2π)4
2π δ(pµpµ −m2) e−i pµ xµ

.
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Then the change of the integration variables p = Λ−1p′ verifies that D−(x) =
D−(Λx). Similar representation exists for D+(x).

ii) The integrals are not absolutely convergent. It is usually convenient to com-
pute such integrals as some limiting values of absolutely convergent integrals. In
our case it can be done by considering the integrals at complex values of the time
variable t. For instance, the above integral defining D−(x, t) converges absolutely
if t has negative imaginary part (remember that ωp is positive), therefore this
integral defines the function D−(x, t) of complex variable t which is analytic in the
lower half-plane of the complex t-plane. Then, for real t we need to take the limit
limϵ→−0D−(x, t+ iϵ) (this is usually written as D−(x, t− i0)). Likewise, the integral
for D+ defines the function D+(x, t) of complex t, analytic in the upper half-plane,
and for real t we take D+(x, t+ i0).

Let us consider the case of real t such that the 4-vector xµ = (t,x) is space-like,

xµxµ = t2 − x2 < 0

(in this consideration we assume that x is real). In the complex t-plane we are
looking at the segment

−|x| < t < |x|

of the real axis. It is easy to show that at this segment the we have

D+(x, t) = D−(x, t) for − |x| < t < |x|

It suffices to verify this identity at t = 0, since one can always transform to the
frame where t = 0, as long as xµ is space-like. For t = 0 we have

D−(x, 0) = lim
ϵ→+0

∫
e−ωp ϵ+ipx dµ(p) and D+(x, 0) = lim

ϵ→+0

∫
e−ωp ϵ−ipx dµ(p) ,

and the identity is established by the change of the integration variables p → −p.
Note that this argument also shows that D±(x, t) return real values when t takes
values within the above segment of the real axis.

It follows that the function D−(x, t), which was originally defined (by out inte-
gral) in the lower half-plane of t, in fact can be analytically continued, through the
above segment of the real axis, to the upper half-plane, and there it coincides with
D+(x, t) (defined, again, through its integral representation written above).
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x−|  | x+|  |

D (  ,t)x+

D (  ,t)x_

Re t

Im t

In other words, in fact there is a single function of complex t (I will denote it
as D(x, t)), analytic in both the upper and lower half-planes, including the segment
−|x| < t < |x| of the real axis, and D+(x, t) (D−(x, t)) is is given by its values in
the upper (lower) half-plane. In particular, for real t

D+(x, t) = D(x, t+ i0) ,

D−(x, t) = D(x, t− i0) .

As we have seen, these two limits coincide when −|x| < t < |x|, but outside this
segment they don’t. That means the function D(x, t) has two branch cuts in the
complex t-plane, from −∞ to −|x|, and from |x| to +∞.

It is not difficult to identify the geometric meaning of the branching points
t = ±|x|. They represent points on the future and past components of the light
cone associated with the space-time point 0, that is the geometric place of all points
which can be connected to 0 by light rays. At fixed x the real t line intersects
the light cone at two points ±|x|. When t regarded as the complex variable, the
intersection points become exactly the branching points in the complex t plane. At
real t, when crossing the light cone one needs to choose the branch of the analytic
function (similar to choosing a branch of

√
z at negative z). The functions D+

and D− the two branches corresponding to two ways of going around the branching
points in the complex t-plane.

Figure
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Let us come back to the commutator [φ̂(x), φ̂(0)] = D−(x)−D+(x). Here I have
set x′ = 0; in general case x has to be replaced by the difference x−x′. We see that
the commutator is equal to the discontinuity

[φ̂(x, t), φ̂(0, 0)] = D(x, t− i0)−D(x, t+ i0) .

When the separation x = (t,x) is space-like the discontinuity vanishes, and we
conclude that

[φ̂(x), φ̂(x′)] = 0 for all space− like separations x− x′ .

This is important conclusion. Recall that in quantum mechanics commutator
of two operators allows one to determine how, in a given state, the measurement
of one observable can affects results of the measurements of another observable.
Our calculation shows that the measurement at some space-time point x can not
affect measurements at the point x′ as long as the separation x− x′ is space-like. It
expresses the causality of the quantum field theory. This is general requirement of
quantum field theory called the local commutativity. It states that for any local
fields O1(x), O2(x

′) we must have

[Ô1(x), Ô2(x
′)] = 0 for all space− like separations x− x′ .

The discontinuities across the brunch cuts |t| > |x| do not vanish, so when
the separation is time-like the commutator takes non-zero values. We see that the
commutator has its support inside the light cone.

Consider now the expectation value ⟨0 | φ̂(x) φ̂(x′) | 0⟩ of the product of two
field operators. In the KG theory this expectation value can be expressed through
the same analytic function D(x, t). Indeed, since φ̂−(x) | 0⟩ = 0 and ⟨0 | φ̂+(x) = 0,
we have

⟨0 | φ̂(x) φ̂(x′) | 0⟩ = ⟨0 | φ̂−(x) φ̂+(x
′) | 0⟩ = D−(x− x′) = D(x− x′, t− t′ − i0) .

If we interchange the positions of the operators, by similar calculation

⟨0 | φ̂(x′) φ̂(x) | 0⟩ = D+(x− x′) = D(x− x′, t− t′ + i0)

Thus, these expectation values are described by the function D(x, t) taken at the
upper or lower edges of the light-cone branch cuts
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⟨0 | φ̂(0, 0) φ̂(x, t) | 0⟩

x−|  | x+|  |

C+

C _

CT

⟨0 | φ̂(x, t) φ̂(0, 0) | 0⟩

Important role in our future studies will belong to the time ordered expectation
values

DF(x− x′) = DF(x− x′, t− t′) = ⟨0 | T
(
φ̂(x, t) φ̂(x′, t′)

)
| 0⟩ ,

where the symbol T signifies the time ordered product of the operators,

T
(
φ̂(x, t) φ̂(x′, t′)

)
=

{
φ̂(x, t) φ̂(x′, t′) for t > t′

φ̂(x′, t′) φ̂(x, t) for t < t′

This expectation value is also called the Feynman propagator. One can visualize
it in the above drawing by first considering complex values of t along the contour
CF, and then taking the limit when this contour is brought to the real axis; DF

corresponds to the values of D along CF.

The Feynman propagator can be written as

DF(x, t) =

{
D−(x, t) =

∫
dµ(p) e−iωp t+ipx for t > 0

D+(x, t) =
∫
dµ(p) e i ωp t−ipx for t < 0

,

but the most convenient representation is given by the 4-dimensional integral

DF(x, t) =

∫
C̃F

dω

2π

∫
d3p

(2π)3
i e−i ω t+ipx

ω2 − p2 −m2
,

The integrand has two poles, at ω = ±ωp, and the integration contour C̃F for ω
goes around these poles like this
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If t > 0 the integrand decays exponentially into the lower half-plane of the
variable ω, and one can perform the integration over this variable by closing the
contour around ω = ωp. The integral reduces to the residue at this pole, which
yields D−(x, t). Similarly, when t < 0 the integration contour can be closed around
the pole ω = −ωp, and the residue calculation yields D+(x, t).

This integration prescription is usually expressed as

DF(x) =

∫
dω

2π

d3p

(2π)3
i e−i ω t+ipx

ω2 − p2 −m2 + i0
=

∫
d4p

(2π)2
i e−i pµ xµ

pµpµ −m2 + i0
.

This form of the Feynman propagator is explicitly covariant. It also shows that
DF(x) is the Green’s function of the KG equation,(

∂µ∂
µ +m2

)
DF(x) = −i δ(4)(x) .

Note that the functions D±(x) satisfy homogeneous KG equation(
∂µ∂

µ +m2
)
D±(x) = 0 ,

since in the KG theory the Heisenberg operator φ̂(x) itself satisfies homogeneous
KG equation.

Exercise. The Feynman propagator is defined as

DF(x, t) = θ(t) ⟨0 | φ̂(x, t) φ̂(0, 0) | 0⟩+ θ(−t) ⟨0 | φ̂(0, 0) φ̂(x, t) | 0⟩ .

Applying the differential operator ∂µ∂
µ +m2 and using the equal-time commutation relations

[π̂(x, t), φ̂(x′, t)] = −i δ(3)(x− x′) ,

confirm that (
∂µ∂

µ +m2
)
DF(x) = −i δ(4)(x) .
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Finally, let us consider the “euclidean”, or “imaginary time” correlation function.
It is defined in terms of the function D(x, t) taken at pure imaginary values of the
time variable. Namely, let

t = −i x4 ,

with real x4. Then
DE(x, x4) = D(x,−i x4) ,

i.e. DE is the function D with t taken along the contour CE in the complex t-plane.

x+|  |x−|  |

CE

Note that this contour can be obtained from CF by 90o rotation.

As is well known, by taking pure imaginary values of t one converts the Minkowski
space-time into 4-dimensional Euclidean space, since

−dτ 2 → ds2 = dx24 + dx2 ,

and the Lorentz symmetry becomes the orthogonal group O(4) of rotations of the
the Euclidean 4-vectors

xE = (x, x4)

The function DE(xE) is called the Euclidean correlation function of the KG
theory. We will discuss its significance later. For now, let us observe that since DE

is related to DF simply by rotating the time contour, it satisfies the Euclidean-space
version of the inhomogeneous KG equation

(
m2 − ∂2

∂x24
−∇2

)
DE(x, x4) = δ(x4) δ

(3)(x) ,

or in symmetric form (
m2 −∆E

)
DE(xE) = δ(4)(xE) ,
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where ∆E stands for the 4-dimensional Laplacian. This equation is easily solved by
Fourier transformation

DE(xE) =

∫
d4pE
(2π)4

ei pE xE

p2E +m2
,

where the integration is over the 4-dimensional Euclidean momentum space, pE =
(p, p4), and p

2
E = p2+p24. Note that now the integrand does not have singularities in

the integration domain. Also, unlike the Minkowski space version of this equation,
the solution is unique if we demand that DE(xE) decays at the Euclidean infinity
xE → ∞. By introducing auxiliary integration, one can write this function as

DE(xE) =

∫ ∞

0

dτ

∫
d4pE
(2π)4

e−τ (p2E+m2) ei pE xE , (4.1)

This form is known as the Schwinger’s proper-time representation.

Clearly, the above Euclidean momentum space integral for DE(xE) is related to
the covariant 4-momentum integral for the Feynman propagator. The correlation
function DE(x, x4) is the analytic continuation of DF(x, t) obtained by rotating the
time contour CF to CE. Correspondingly, the integration contour C̃F in the complex
ω-plane is rotated by 90o to the contour C̃E.
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This example suggests that some analytic characteristics of the KG theory, and
perhaps more general QFT, may take simpler and more symmetric form when con-
tinued to pure imaginary time. This idea can be refined with the help of the path
integral formulation of quantum mechanics, which we consider next.
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5 Lecture 5

Let me briefly review the method of path integral in ordinary quantum mechanics.
Here I will combine it with the idea of analytic continuation in the time variable.
We will start with the ”time evolution” in pure imaginary values of the time pa-
rameter. (Besides technical advantage of improving convergence of the integral, the
imaginary-time path integral makes evident remarkable relation to classical statisti-
cal mechanics.) The real-time transition amplitudes can be recovered by analyticity.
For derivation directly in real time see Sect.9.1 of PS.

Path integral in Quantum Mechanics

Given a quantum mechanical system, with the space of states H and the time-
independent Hamiltonian Ĥ, most problems can be reduced to the calculations of
appropriate matrix elements of its time-evolution operator,

⟨f | e−
i
~ Ĥ t | i⟩ .

In terms of the stationary states | n⟩ this can be written as∑
n

⟨f | n⟩ ⟨n | i⟩ e−
i
~ En t .

In a typical problem, the energy spectrum En is bounded from below, En ≥ E0, and
En grow to infinity with n. The above expression is a sum of oscillating terms, and
we would like to have an efficient mathematical tool to sort them out. It is useful
to consider this sum at complex values of t. If the number of states does not grow
exponentially with E (and in ordinary quantum system it never does), this sum
converges absolutely if t has negative imaginary part; thus it defines an analytic
function of t in the lower half-plane. The real-time matrix element is the limiting
value of this analytic function. One can start with pure imaginary t,

t = −i τ ,

and try to evaluate the matrix elements of the corresponding bounded Hermitian
operator

⟨f | e−
1
~ Ĥ τ | i⟩ ,

anticipating that the real-time answer will be then obtained by analytic continuation.
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Consider a system with one degree of freedom q, and assume that the Hamilto-
nian operator is “local” in the basis which diagonalizes q̂; this means that the matrix
elements

⟨q | Ĥ | q′⟩

have a support restricted to q = q′. Most typical Hamiltonian belong to this class,
for instance for H = 1

2
p2 + V (q) the above matrix element is (~ = 1 from now on)

−1

2
δ′′(q − q′) + V (q) δ(q − q′) .

In such cases it is possible to develop a path-integral representation for the matrix
element

⟨qf | e−Ĥ τ | qi⟩ .

The composition property

⟨qf | e−Ĥ (τ1+τ2) | qi⟩ =
∫

⟨qf | e−Ĥ τ1 | q⟩ ⟨q | e−Ĥ τ2 | qi⟩ dq

can be applied repeatedly to reduce the above matrix element to the composition
of the matrix elements with arbitrarily small “time” intervals ∆τ ,

⟨qf | e−Ĥ τ | qi⟩ =
∫ n−1∏

k=1

dqk

n∏
k=1

⟨qk | e−Ĥ ∆τ | qk−1⟩ ,

where q0 = qi, qn = qf , and ∆τ = τ/n. In the limit of small ∆τ , as the consequence

of the “locality” of Ĥ in the q-space, only the matrix elements ⟨q′ | exp(−Ĥ∆τ) | q⟩
with q′ close to q will bring significant contributions to the integral.

To see this, consider again the Hamiltonian of the form

Ĥ =
1

2
p̂2 + V (q̂) .

It is straightforward to show that in this case the matrix element

G(q, q′|τ) = ⟨q | e−Ĥτ | q′⟩

satisfy the differential equation of the diffusion type

− ∂

∂τ
G(q, q′|τ) =

(
−1

2

∂2

∂q2
+ V (q)

)
G(q, q′|τ) ,
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with the initial condition
G(q, q′|0) = δ(q − q′) .

For V (q) = 0 the problem is easily solved,

G(q, q′|τ) = 1√
2π τ

e−
(q−q′)2

2 τ .

This function indeed decays fast at |q− q′| >>
√
τ . In the case of nonzero potential

V the problem still can be examined in the limit of small τ . We write

G(q, q′|τ) = e−σ(q,q′|τ)

and look for σ of the form of the following small-τ expansion

σ(q, q′|τ) = σ0(q, q
′)

τ
+ a log τ + b+ τ σ1(q, q

′) + ... .

Substituting this ansatz into the above diffusion equation one finds (I suggest doing
it as an Exercise)

σ0(q, q
′) =

(q − q′)2

2
, a = 1/2 ,

σ1(q, q
′) =

1

q − q′

∫ q

q′
V (y) dy , etc .

The leading terms do not depend on V , and are the same as for the free case, and
σ1 is the potential V averaged over the interval [q′, q]. The constant b = 1

2
log 2π is

determined by the initial condition at τ = 0.
Because of the factor exp(−σ0(q, q′)/τ) the function G(q, q′|τ) at small τ is

sharply peaked around |q − q′| = 0 with the width
√
τ . This is typical for the

Brownian motion, where R̄ ∼
√
t (our equation is the diffusion equation). If the

potential V is differentiable (which we assume), we have

σ1(q, q
′) =

1

2
V (q) +

1

2
V (q′) +O(τ)

(I have used the fact that (q − q′)2 ∼ τ). Therefore, for finite τ but large n (i.e.
small ∆τ = τ/n) we can write

⟨qf | e−Ĥ τ | qi⟩ = lim
n→∞

(
1

2π∆τ

)n/2 ∫ ( n−1∏
k=1

dqk

)
e−A{qk} ,
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where

A
{
qk
}
=

n∑
k=1

[
(qk − qk−1)

2

2∆τ
+∆τ

V (qk) + V (qk−1)

2

]
,

and ∆τ = τ/n, and it is understood that

q0 = qi , and qn = qf .

Before the limit n → ∞ is taken, the integration in this formula can be un-
derstood as going over the piecewise linear “trajectories” q(τ) running from qi to
qf .

q i

q
1

q
2 q

f

τ 0 τ 1 τ 2

q n−1

τ n−1 τ n 
τ

When n→ ∞, ∆τ → 0, the function A
{
qk
}
in the exponential has formal limit

A[q(τ)] =

∫ τ

0

dτ

[
1

2

(
dq(τ)/dτ

)2
+ V

(
q(τ)

)]
.

It coincides with the “imaginary time action”, i.e. the action associated with our
system, with t replaced by −i τ ,

e
i
~ S[q(t)] : − (t→ −i τ) → e−A[q(τ)] .

It is conventional to write the n→ ∞ limit of the above n-fold integral as

⟨qf | e−Ĥ (τf−τi) | qi⟩ =
∫ [

Dq(τ)
]

q(τi)=qi
q(τf )=qf

e−A[q(τ)] ,

and to call it the (imaginary time) path integral, since the r.h.s involves the contin-
uous path q(τ) from qi to qf .

Few remarks.
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1. The path integral method makes the most explicit use of the superposition
principle of quantum theory. The latter states that if some process can go several
distinct ways, the full transition amplitude is the sum of the amplitudes associ-
ated with each possible way. Here (when returning back to real time) we sum the
amplitudes associated with all distinct paths from qi to qf .

2. What kind of paths enter the path integral in the limit n→ ∞? Although it is
correct to think of the limiting paths as continuous functions q(τ), absolute majority
of the paths entering the integral are not smooth curves. This can be observed
directly from the fact that for τ1 − τ2 → 0 we have |q(τ1) − q(τ2)| ∼

√
|τ1 − τ2|,

not ∼ |τ1 − τ2| as should be true for a continuously differentiable function. From
this point of view the two terms in the action play significantly different role. The
”kinetic” term 1/2

∫
(dq/dτ)2 dτ selects the class of the paths entering the integral,

i.e. those paths for which (q(τ +∆τ)− q(τ))2/∆τ remains finite as ∆τ → 0; in this
sense the factor exp

(
− 1/2

∫
(dq/dτ)2 dτ

)
should be considered as a part of the

functional measure. The factor exp
(
−
∫
V (q(τ)) dτ

)
weights the paths according

to their average potential energy.

3. Note that the symbol

[Dq(τ)] = lim
n→∞

(
1

2π∆τ

)n/2 n−1∏
k=1

dqk

contains divergent (in the limit) factor(
1

2π∆τ

)n/2

= e−
log(2π∆τ)

∆τ
L ,

where L = (τf − τi) = n∆τ is the “volume” of the imaginary time interval. This
factor is reminiscent of the irritating infinity we had for the vacuum energy in the
KG theory, and absorbing it into [Dq(τ)] is analogous to subtracting E0 from Ĥ.

4. We have derived the above path integral representation of the evolution
operator in the imaginary time τ . But one can repeat the above calculation step by
step, considering the paths in the real time t instead of τ (this is the form in which
the path integral is usually introduced in quantum mechanics, see for instance §9.1
of the textbook). In this way one arrives at the expression

⟨ qf | e−
i
~ H T | qi ⟩ =

∫
[Dq(t)] e

i
~ S[q(t)] ,
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with the phase e
i
~S replacing e−A., This of course is equivalent approach, although,

unlike the imaginary time scheme, the integrals involved are not absolutely conver-
gent. Usually, the most efficient way to handle such integrals is through analytic
continuation (in variables or parameters) which makes the integral absolutely con-
vergent, with subsequent taking the limiting values. The imaginary-time approach
simply makes this procedure explicit.

5. Generalization of the above construction to the systems with many degrees
of freedom qa is straightforward, if the Hamiltonian is of the form

H =
∑
a

1

2
p2a + V (qa) ;

one obtains ∫
[Dqa] e

−A[qa(τ)]

for the evolution operator. In more complicated cases the path integral in the phase
space can be useful; this is briefly discussed in Sect.9.1 of PS.

Relation to Classical Statistical Mechanics

At this point, let me deviate to discuss remarkable relation which exists between the
Path Integral in Quantum Mechanics (in its imaginary time version) and the Clas-
sical Statistical Mechanics. Let us recall some generalities of the classical statistical
mechanics.

Suppose we have a classical dynamical system with the phase-space coordinates
{Pi, Qi} (I will use capitals here because the relation between these Qi and qα ap-
pearing in the path integral is not going to be straightforward), and the Hamiltonian
H(Pi, Qi). In a thermal equilibrium state at a temperature T the probability distri-
bution of microscopic states is given by the Gibbs formula

P(Pi, Qi)
∏
i

dPidQi = Z−1 e−βH(Pi,Qi)
1

N !

∏
i

dPidQi ,

where β = 1/kT , and Z is the partition function

Z =

∫ ∏
i dPidQi

N !
e−βH(Pi,Qi) .
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Calculating the partition function is one of the main problems in statistical me-
chanics because the thermodynamic quantities are expressed through Z, say the
free energy is β F = − logZ. Again, a typical form of the Hamiltonian is

H(Pi, Qi) =
∑
i

1

2
P 2
i + U({Qi}) .

In this case the integration over Pi is easy to perform,

Z =
1

N !

(
2π

β

)N
2

Zconf ,

where N is the number of the degrees of freedom, i = 1, 2, · · · , N , and Zconf is the
configuration-space integral

Zconf =

∫ ∏
i

dQi e
−β U({Qi})

which contains most of interesting physics.

As a special example of such system, consider an elastic string whose configura-
tion is described by a function q(τ), τ ∈ [0, L]; the values q(τ) for all τ within this
interval play the role of the configuration-space coordinates,

{Qi} → q(τ) .

q
i  q f

0 L

We also assume that the string lays in a potential well V (q), so that the potential
energy of the string is

U [q(τ)] =

∫ L

0

dτ

[
V
(
q(τ)

)
+

1

2

(
dq(τ)

dτ

)2 ]
,
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where the last term accounts for the elastic energy; to simplify the equations I have
assumed that the elastic string tension equals 1.

To evaluate the configuration part of the partition function, we must integrate
over the functions q(τ) satisfying given boundary conditions at the ends of the
interval [0, L], say

q(0) = qi , q(L) = qf ,

with the statistical weights exp(−β U [q(τ)]). Thus

Zconf =

∫
[Dq(τ)] e−β U [q(τ)] .

With the above form of U [q(τ)] = A[q(τ)], this expression is identical to the path
integral for the imaginary time transition amplitude,

Zconf ∼ ⟨qf | e−
1
~ Ĥ L | qi⟩ ,

provided we also identify
β = 1/~ .

We see that quantum mechanics with a single degree of freedom q, and the Hamil-
tonian operator

Ĥ =
1

2
p̂2 + V (q̂) ,

is related in this way to classical statistical theory of a system with continuously
many degrees of freedom q(τ).

Correlation functions

In statistical mechanics one may also be interested in correlation functions. In our
example one may ask how the string positions q(τ) at different points, say at τ1, τ2,
..., τN , are correlated in the thermal equilibrium state. In the drawing below I made
a trivial shift of the variable τ , so that from now on τ ∈ [−L/2, L/2].
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The correlations are described by the averaged products q(τ1)q(τ2)...q(τN), which
in turn are given by the integrals

⟨ q(τ1) q(τ2) ... q(τN) ⟩ = Z−1

∫
q(τ1)q(τ2) ... q(τN) e

−A[q(τ)] [Dq(τ)] ,

because Z−1 e−A[q(τ)] [Dq(τ)] is the statistical weight of the microstate q(τ). It is
instructive to find out how these correlation functions are interpreted in associated
quantum mechanical problem.

Without loss of generality we can assume that

−L/2 ≤ τ1 ≤ τ2 ≤ ... ≤ τN ≤ L/2 .

The integration over all microstates q(τ) can be performed in two steps: First, we
fix the values of q(τ) at the points τ1, τ2, ..., τN to be

q(τ1) = q1 , q(τ2) = q2 , ... q(τN) = qN ,

and integrate over all q(τ) subject to these constraints. After that, the integration
over q1, q1, ..., qN is performed to complete the integral. Comparing this with the
path integral representation for the evolution operator, say

⟨ q1 | e−Ĥ (τ2−τ1) | q2 ⟩ =
∫

[Dq(τ)] q(τ1)=q1
q(τ2)=q2

e−A[q(τ)]

we find

⟨ q(τ1)q(τ2)...q(τN) ⟩ = Z−1

∫ [ N∏
k=1

dqk

]
× q1q2...qN ×
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⟨qf | e−Ĥ(L/2−τN ) | qN⟩⟨qN | e−Ĥ(τN−τN−1) | qN−1⟩...⟨q1 | e−Ĥ(τ1+L/2) | qi⟩

Recall that in the coordinate representation the operator q̂ acts by multiplication

q̂Ψ(q) = qΨ(q) ,

so that in this expression we can replace∫
dq | q⟩ q ⟨q | = q̂ .

Then the above expression can be written as

⟨qf | e−Ĥ(L/2−τN ) q̂ e−Ĥ(τN−τN−1) q̂ ... q̂ e−Ĥ(τ1+L/2) | qi⟩

which is best expressed in terms of the (imaginary time version of) Heisenberg
operators

q̂E(τ) = eĤτ q̂ e−Ĥτ

(τ = it), allowing one to write the above formula as

⟨ qf | e−Ĥ L
2 q̂E(τN) q̂E(τN−1) ... q̂E(τ1) e

−Ĥ L
2 | qi ⟩

To simplify things further, let’s take the limit L→ ∞, thus turning to the correlation
functions of the infinite string. In this limit the exact boundary conditions, e.g. the
values qi and qf , become unimportant. Indeed, the states | qi⟩ and | qf⟩ can be

expanded in the stationary states | n⟩ of the Hamiltonian Ĥ, say

| qi⟩ =
∑
n

| n⟩ ⟨n | qi⟩ =
∑
n

| n⟩Ψ∗
n(qi) ,

where it is assumed that
⟨n | m⟩ = δn,m .

In the limit L → ∞ the contribution of the ground state | 0⟩ dominates, since all

other states are suppressed by the factor ∼ e−(En−E0)
L
2 . Thus we have

⟨ q(τ1)q(τ2)...q(τN) ⟩ =
⟨qf | 0⟩⟨0 | qi⟩

Z
e−E0 L ⟨0 | q̂E(τN) q̂E(τN−1) ... q̂E(τ1) | 0⟩

Furthermore, note that

Z = ⟨qf | e−Ĥ L | qi⟩
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hence the first factor in the above equation equals 1 (in the limit L = ∞), and we
have

⟨ q(τ1)...q(τN) ⟩ = ⟨0 | q̂E(τN) q̂E(τN−1)...q̂E(τ1) | 0⟩ .

Note that the operators here are arranged in the order of τ increasing from the
left to the right. Let me stress that the Euclidean Heisenberg operators can not be
arranged any other way, as otherwise the product of the operators (the sum over
the intermediate states) does not converge. More generally, if we consider complex
values of τi (which we will), the above product of the operators makes direct sense
in the domain

ℜe τ1 ≤ ℜe τ2 ≤ ... ≤ ℜe τN
where the sums over the intermediate states converge (hence the sums yield analytic
function).

To relate the above Euclidean correlation function to the real-time ones one
analytically continues to pure imaginary values of τ ,

τk = itk + 0 ,

where ”+0” shift indicates that if there is a branch cut along the imaginary axis the
values at the right edge are to be taken.
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6 Lecture 6

Previously, we have discussed the path integral representation in ordinary quantum
mechanics. The real-time transition amplitude is represented as a suitably defined
integral

⟨ qf | e−
i
~ H T | qi ⟩ =

∫
[Dq(t)] q(0)=qi

q(T )=qf

e
i
~ S[q(t)] ,

over all ”paths” q(t) from qi to qf . Now I want to discuss how the idea of the path
integral can be applied to a relativistic particle.

Path integral for a relativistic particle

We have seen that the KG theory is the theory of spinless Bose particles, and we
expect that the Feynman propagator DF(xi−xf ) (and related Euclidean correlation
function DE) admit an interpretation in terms of amplitude associated with the
particle propagation from xi to xf . Can we write such amplitude as an integral over
the “paths”?

In classical mechanics the action of a relativistic particle travelling from xi to xf
is

S = −m
∫ xf

xi

√
dxµ dxµ = −m

∫ (tf ,xf )

(ti,xi)

√
dt2 − dx2 ,

where the integration is performed along a given path (generally described by a
parametric curve xµ(s)) from xi to xf . In classical theory it is assumed that (dx0)2 ≥
dx2 along the whole path (the particle velocity never exceeds the speed of light) the
time component t = x0 of xµ can serve as the parameter of the path, and we can
write

S[x(t)] = −m
∫ tf

ti

dt
√
1− ẋ2 .

In quantum theory we may attempt to write for the transition amplitude∫
paths(i→f)

e
i
~ S [Dx(t)] ,

where the integration is over “all paths” from xi to xf .
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x i

x f

dx
µ

The problems appear when we want to give a precise meaning to this expression.
On the formal side, we observe that the Hamiltonian associated with the problem,

H =
√
m2 + p2

(where p is the momentum conjugated to x), is not “local” in the sense we discussed
the last time; the matrix elements ⟨x | H | x′⟩ do not vanish when x ̸= x′ (check
it against your solution of the Problem 1’). More fundamentally, the problem is
about the class of the paths which we need to include into the path integral. The
expression dxµ dx

µ in the square root in S can be either positive or negative, de-
pending on whether dxµ is time-like or space-like. One can try to exclude from
the integration the paths having space-like dxµ anywhere, but it does not seem to
be right idea if we want to describe the propagator DF this way. Indeed, unlike
the commutator, the function DF(x, t) does not vanish outside the light cone (at
|t| < |x|). It is exponentially small if you go far outside the light cone, but it is not
zero. This is similar to a nonrelativistic particle in the classically unaccessible region
of its configuration space - the wave function is exponentially small but does not
vanish (”quantum tunneling”). Thus we have to admit the paths having space-like
dxµ somewhere along them. Ones such paths are admitted, the Lorentz invariance
requires that paths in which dx0 is allowed to take negative values (i.e. the paths
with the folds going “backward in time”) are admitted as well:
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x i

x f

For such paths x(t) is not a function, and the integral over [Dx(t)] does not apply.
Besides, whereas for the case of space-like dxµ there is a natural choice of the branch
of the square root

√
dxµdxµ in the action (eiS must receive exponentially small

contributions from the space-like parts of the path), we have no clear intuition
which sign to choose in the case of the time-like “backward in time” paths.

All these ambiguities are resolved by adopting the Euclidean (= imaginary time)
formulation of the path integral. Replacing as before

t = −i x4 ,

we have iS → −A, where the Euclidean action is

A = m

∫ √
(dxE)2 ,

with explicitly positive expression

dx2E = dx24 + dx2

under the square root. In the subsequent discussion I will often omit the subscript
E for the Euclidean 4-vectors. With this, one can define the Euclidean amplitude
as the integral ∫

paths(xi→xf )

e−A[path]

over all paths connecting two Euclidean points xi and xf ; one expects that the real-
time propagator will be accessible through analytic continuation, as we previously
discussed.
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Note that
A[path] = m0 L[path] ,

where L[path] is just the Euclidean length of the path. I have replaced m by the
“bare mass” m0; we will see that this parameter does not necessarily coincide with
the physical mass but requires “renormalization”.

By analogy with our definition of the path integral in ordinary quantum mechan-
ics, let us define this path integral as a limit of finite-dimensional integrals. Namely,
for given (large) number n, let us consider the piecewise linear paths from xi = 0 to
xf = x, each linear piece having fixed length ∆.

0

x

The overall length of such path is

Ln = n∆ .

Let νk be the unit 4-vector in the direction of the k-th piece; |νk| = 1. In this
discrete approximation the path integral can be written as

∞∑
n=0

e−m0 ∆n

∫ ( n∏
k=1

dµ(νk)

)
δ(4)
(
∆

n∑
k=1

νk − x
)
.

Here dµ(νk) stands for the usual measure on S3, and the delta-function ensures that
the vectors ∆ νk add up to x, i.e. the path indeed is from 0 to x = xf − xi. Finally,
the sum over n must be performed since we want to include all paths, with arbitrary
length L.

The delta-function can be represented as

δ(4)
(
∆
∑

νk − x
)
=

∫
d4P

(2π)4
ei P (x−∆

∑
νk) .
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For fixed P the integration over
∏

dµ(νk) splits into n identical integrals I(P∆) =∫
dµ(ν) e−i∆ ν P ,

n∏
k=1

∫
dµ(νk) e

−i∆ νk P =
[
I(P ∆)

]n
.

Certainly, the integral I can be evaluated explicitly in terms of the Bessel’s function.
However, there is no need in its explicit form. We are going to send ∆ → 0 (in which
limit a significant contribution comes from large n). Therefore only the behavior of
I at small values of its argument is important. We find

I(P ∆) = A− Aξ P 2∆2 +O(∆4) ,

where exact value of the constants A =
∫
S3 dµ(ν) = 4π2 and ξ = 1/8 are not

important. We have
In ∼ An e−∆2 n ξ P 2

.

Now the integration over P can be performed, and we obtain for given n(
4π n∆2ξ

)−2
e
− x2

4ξ n∆2 .

Note that ∆ enters here in the combination n∆2, not n∆ as one could naively
expect. Attempting to take the naive limit

∆ → 0 , n→ ∞ with L = n∆ = finite

would lead to the propagation amplitude which vanishes at any finite |x|. This result
is not surprising. Our calculation was nearly identical to the well known probability
calculation for a Brownian particle. We know that a Brownian particle with typical
microscopic velocity v̄ will be found, after the elapsed time T , at the distance

x̄ = v̄
√
T ∆t

away from its initial position. Here ∆t is the typical time between collisions. In this
analogy

∆ ∼ v̄∆t , n ∼ T/∆t .

Thus we expect to have
x̄2 = n∆2 ,

in agreement with our calculation.
We conclude that the right continuous limit is achieved by taking

∆ → 0 , n→ ∞ with s = ξ n∆2 = finite ,
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and it is the parameter s that characterizes the geometry of the typical path; the
microscopic length L = n∆ becomes infinitely large in this limit. The absolute
majority of the paths contributing to the functional integral are extremely crumpled
at all scales, as the drawing illustrates:

The parameter s has the dimension of the [length]2; it is said that the typical path
has the fractal dimension 2.

Finally, there are two unpleasant factors to be dealt with before we can take the
limit ∆ → 0. These are

An e−m0 n∆ = e−n (m0 ∆−logA) .

Consider m0 as a parameter which can carry some dependence on ∆, and is free to
be adjusted (in the limit ∆ → 0) so that

∆m0(∆)− logA → ξ m2∆2 as ∆ → 0 ,

where it is m2, not m0, which remains constant in this limit. Then the above two
factors combine into

e−m2 ξ n∆2 → e−m2 s .

For large n the sum is replaced by the integral over s, and one obtains∫ ∞

0

ds e−m2 s

∫
d4P

(2π)4
e−s P 2

eiPx ,

which is exactly the Schwinger’s proper-time representation of the Euclidean cor-
relation function DE(x) of the KG theory. Thus this correlation function admits
interpretation as the integral over the paths in Euclidean space-time. As we know,
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the Feynman propagator DF coincides with the analytic continuation of this corre-
lation function back to the real time, x4 = it.

Remark: In our calculation above we have assumed that the linear pieces of
the discretized paths have equal lengths ∆. This is not essential, and is done for
simplicity only. One can change details of the finite-dimensional approximations,
but in the limit the same correlation function DE comes out (though the relation
between the “bare” and “renormalized” mass parameters m0 and m does depend on
the details of the approximation). This is an elementary example of universality.

In principle, it is possible to develop a theory of interacting relativistic particles
based on the idea of integrating over all the particles paths, including the paths of
many particles, with interaction events - ”vertices”. But much more universal and
powerful approach is based on quantization of the field variables. In the associated
path integral, one integrates not over the paths of the particles, but over the paths
of the field variables, i.e. over all the ”trajectories” Φ(x, t) of the fields. Let us
elaborate this idea in the KG theory.

Path integral in Klein-Gordon Theory

Let us now apply the idea of the (Euclidean) path integral to the KG field theory.
In this case the role of the generalized coordinates q is taken by the field degrees of
freedom φ(x), thus we have to replace

q → φ(x) , q(τ) → φ(x, τ) = φ(xE) ,

where τ is the “imaginary time” which I will denote x4 below, and xE = (x, x4).
The euclidean action is obtained by substituting t = −i x4 in the KG action, i.e.

A =

∫
dx4 dx

1

2

[
(∂4φ)

2 + (∇φ)2 +m2 φ2

]
=

∫
d4xE

[
1

2
(∂µφ)

2 +
m2

2
φ2

]
,

where µ = 1, 2, 3, 4. We are interested in the path integral

Z =

∫
[Dφ(x)] e−A[φ(x)] .
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More generally, we may be interested in the correlation functions defined as the
ratios

⟨φ(x1)φ(x2) . . . φ(xN)⟩ =
1

Z

∫
[Dφ]φ(x1)φ(x2) . . . φ(xN) e

−A[φ] . (6.1)

Here and below I drop the subscript E and use the notation xi for the Euclidean
vectors, unless stated otherwise. As we discussed before, when continued to complex
values of (xi)4 and specialized to (xi)4 = iti, these correlation functions yield the
time-ordered expectation values

⟨0 | T (φ̂(x1, t1) . . . φ̂(xN , tN)) | 0⟩ ,

where φ̂(x, t) denotes the real-time Heisenberg field operator.

Few words about the definition of the path integral in the case of fields. For the
path integral in quantum mechanics we had a definition in terms of a limit ∆τ → 0
of a finite-dimensional integral with discretized “time” τ . There are many ways to
build finite-dimensional approximations in quantum field theory. For example, the
4-dimensional space can be replaced by, say, the hypercubic lattice, in which xµ take
discrete values

xµ = nµ∆ , nµ ∈ Z .

The derivatives and the integration in the action can be replaced by finite differences
and summations, i.e.

∂µφ(x) →
1

∆
(φ(x+ eµ∆)− φ(x)) ;

∫
d4x→ ∆4

∑
eµ

(eµ is the unit vector in the direction µ); with this one can set

[Dφ] = lim
∆→0

∏
x

dφ(x) .

In the Klein-Gordon theory such definition works more or less straightforwardly.
In more interesting cases defining the integral over [Dφ] can become highly non-
trivial problem, which is closely related to the problem of critical behavior; many
subsequent lectures will be devoted to this subject. Let me also note here that in
the context of field theory the integrals like those above are usually referred to as
functional integrals (the term “path integral” is also used).

The action A of the KG is quadratic in φ. This makes it possible to evaluate the
above path integrals explicitly. I am not going to explain how these integrals are
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actually evaluated; this calculation is presented in § 9.2 in the textbook. Instead I
will derive the above correlation functions using formal properties of the functional
integral. The resulting formula is known as the

Wick’s Theorem:

• The correlation function of any odd number of fields vanishes,

⟨φ(x1) . . . φ(x2N+1)⟩ = 0 .

This follows from the fact that the action A is an even functional of φ, while in this
case the product of an odd factors φ in the integrand is odd.

• The two-point correlation function is

⟨φ(x1)φ(x2)⟩ = DE(x1 − x2) ,

where DE(x) is the familiar function

DE(x) =

∫
d4p

(2π)4
1

p2 +m2
eipx .

From now on I will usually drop the subscript E, so that D(x) will stand for this
function.

• The 2N -point correlation function

⟨φ(x1) . . . φ(x2N)⟩

is a sum of (2N −1)!! ≡ 1 ·3 · . . . · (2N −1) terms, each term corresponding to one of
(2N − 1)!! distinct ways of “pairing” (or “contracting”) between 2N field insertions
φ(x1) . . . φ(x2N). A pairing of the insertions φ(xi) with φ(xj) is usually denoted by
an overbrace

. . . φ(xi) . . . φ(xj) . . . .

Every contraction gives rise to the factor D(x− x′),

φ(x)φ(x′) = D(x− x′)

The last rule of pairing can be expressed in a compact form, in terms of the
following
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Wick’s Recursion Relation:

⟨φ(x1)φ(x2) · · ·φ(xN)⟩ =
N∑
k=2

D(x1 − xk) ⟨φ(x2) · · ·����φ(xk) · · ·φ(xN)⟩ , (6.2)

where the “cancel” slash indicates that this insertion is dropped. This relation
expresses N -point correlation function in terms of the N − 2-point ones. When
supplemented with the condition ⟨φ(x)⟩ = 0, it contains all the statements of the
Wick’s theorem (⟨1⟩ = 1 by definition). Let us derive this relation.

Consider the functional integral representing theN−1-point correlation function,

Z−1

∫
[Dφ]φ(x2) · · ·φ(xN) e−A[φ] .

Note that the product of the insertions starts with φ(x2), and involves N − 1 terms.
Make the following change of the integration variables

φ(x) → φ′(x) = φ(x) + ϵ(x) ,

where ϵ(x) is an arbitrary infinitesimal function. The action changes as follows

A[φ+ ϵ] = A[φ] +

∫
d4x1 ϵ(x1)

[
m2 −∆x1

]
φ(x1) +O(ϵ2) ,

where I have assumed that the function ϵ(x) decays sufficiently fast making the
integration by parts possible. Here

∆x :=
4∑

µ=1

(
∂

∂xµ

)2

is 4D Laplace operator. Since the change of integration variables does not change
the value of the integral, we have the identity

0 =
N∑
k=2

ϵ(xk)

∫
[Dφ]φ(x2) · · ·����φ(xk) · · ·φ(xN) e−A −

−
∫

d4x1 ϵ(x1)
(
m2 −∆x1

) ∫
[Dφ]φ(x1)φ(x2) · · ·φ(xN) e−A .
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As the function ϵ(x) is arbitrary, we must have

(
m2 −∆x1

)
⟨φ(x1)φ(x2) · · ·φ(xN)⟩ =

N∑
k=2

δ(4)(x1 − xk) ⟨φ(x2) · · ·����φ(xk) · · ·φ(xN)⟩ .

Assuming that the N − 2-point correlation functions in the right hand side are
known, we can think of this identity as of the equation for the N -point correlation
function in the left hand side. The solution has the form of our recursion relation
(6.2), where the function D(x− x′) solves the equation(

m2 −∆x

)
D(x− x′) = δ(4)(x− x′) .

The Wick’s theorem can be derived in many other ways. Direct evaluation of
the Gaussian functional integral is performed in the Section 9.2 of PS. Derivation
of equivalent rules in the operator formalism is explained in Sect.4.3 of PS.

The rules of the Wick’s theorem are conveniently represented in terms of dia-
grams. With every factor D(x − x′) one associates a line connecting the points x
and x′,

D(x− x′) = x x′

The diagram consists of the lines representing the contractions. For example

⟨φ(x1)φ(x2)φ(x3)φ(x4)⟩ = φ(x1)φ(x2) φ(x3)φ(x4) +

+ two other ways of contractions =

x1 x2 x1 x2 x1 x2

+ +

x3 x4 x3 x4 x3 x4
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