Homework 8 Solutions

Problem 1: Srednicki 75.1
For an anomaly-free theory we demand that

$$
\begin{equation*}
\operatorname{tr}\left\{T^{a}, T^{b}\right\} T^{c}=0 \tag{1}
\end{equation*}
$$

In this case, the matter fields carry $U(1)$ charge Q_{i} and belong to representations of the non abelian group G. The above requirement then translates to following conditions:

- $G \times G \times G: \quad \sum_{i} A\left(R_{i}\right) d^{a b c}=0$.
- $G \times G \times Q: \quad \sum_{i} T\left(R_{i}\right) Q_{i}=0$.
- $Q \times Q \times Q: \quad \sum_{i} d\left(R_{i}\right) q_{i}^{3}=0$.

Problem 2: Srednicki 76.1
Using the free field expansion (55.11) for the vector field one can easily prove

$$
\begin{equation*}
\epsilon^{\mu \nu \rho \sigma}\langle p, q| F_{\mu \nu}(z) F_{\rho \sigma}(z)|0\rangle=+8 \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu} e_{\nu}^{\prime} p_{\rho} q_{\sigma} e^{i(p+q) z} \tag{2}
\end{equation*}
$$

Multiplying both sides with $g_{2} / 16 \pi^{2}$ and using equation (76.14) yields equation (76.29).

Problem 3: Srednicki 77.1
We begin by noting the following useful identity

$$
\begin{equation*}
\operatorname{tr}\left(T^{a} T^{b} T^{c}\right)=\frac{1}{2} i T(R) f^{a b c}+A(R) d^{a b c} \tag{3}
\end{equation*}
$$

The first term in (77.35) becomes

$$
\begin{align*}
\epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(T^{a} \partial_{\mu}\left(A_{\nu} \partial_{\rho} A_{\sigma}\right)\right) & =\epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(T^{a} \partial_{\mu} A_{\nu} \partial_{\rho} A_{\sigma}\right) \tag{4}\\
& =\epsilon^{\mu \nu \rho \sigma} \partial_{\mu} A_{\nu}^{b} \partial_{\rho} A_{\sigma}^{c} \operatorname{tr}\left(T^{a} T^{b} T^{c}\right) \tag{5}\\
& =A(R) \epsilon^{\mu \nu \rho \sigma} \partial_{\mu} A_{\nu}^{b} \partial_{\rho} A_{\sigma}^{c} d^{a b c} \tag{6}
\end{align*}
$$

Here we used the previous identity and also the fact that the term with $f^{a b c}$ cancels because it is contracted with a symmetric quantity. Next, the second
term in (77.35) is the derivative of

$$
\begin{aligned}
\epsilon^{\mu \nu \rho \sigma} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} \operatorname{tr}\left(T^{a} T^{b} T^{c} T^{d}\right)= & \frac{1}{2} e^{\mu \nu \rho \sigma} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} \operatorname{tr}\left(T^{a} T^{b}\left[T^{c}, T^{d}\right]\right) \\
= & \frac{i}{2} e^{\mu \nu \rho \sigma} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} f^{c d e} \operatorname{tr}\left(T^{a} T^{b} T^{e}\right) \\
= & -\frac{1}{4} T(R) e^{\mu \nu \rho \sigma} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} f^{a b e} f^{c d e} \\
& +\frac{i}{2} A(R) e^{\mu \nu \rho \sigma} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} d^{a b e} f^{c d e}
\end{aligned}
$$

We observe that the first term can be completely antisymmetrized and therefore vanishes by the Jacobi identity. In conclusion, we see that both terms in (77.35) are proportional to $A(R)$.

Problem 4: Srednicki 77.2
Starting from equation (77.7) we can arrive at equation (77.36) by noting the following two identities

$$
\begin{equation*}
\epsilon^{\mu \nu \rho \sigma} \partial_{\mu} \operatorname{tr}\left(A_{\nu} A_{\rho} A_{\sigma}\right)=3 \epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(\partial_{\mu} A_{\nu} A_{\rho} A_{\sigma}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{tr}\left(\left[A_{\mu}, A_{\nu}\right]\left[A_{\rho}, A_{\sigma}\right]\right) & =A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} \operatorname{tr}\left(\left[T^{a}, T^{b}\right]\left[T^{c}, T^{d}\right]\right) \tag{8}\\
& =-A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} f^{a b e} f^{c d g} \operatorname{tr}\left\{T^{e} T^{g}\right\} \tag{9}\\
& =-T(R) A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} A_{\sigma}^{d} f^{a b e} f^{c d e} \tag{10}
\end{align*}
$$

Using that the structure constant are completely antisymmetric, the second identity implies that

$$
\begin{equation*}
\epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(\left[A_{\mu}, A_{\nu}\right]\left[A_{\rho}, A_{\sigma}\right]\right)=0 \tag{11}
\end{equation*}
$$

Hence we see that

$$
\begin{aligned}
\frac{1}{4} \epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(F_{\mu \nu} F_{\rho \sigma}\right) & =\frac{1}{4} \epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(\partial_{(\mu} A_{\nu)}-i g\left[A_{\mu}, A_{\nu}\right]\right)\left(\partial_{(\rho} A_{\sigma)}-i g\left[A_{\rho}, A_{\sigma}\right]\right) \\
& =\epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(\partial_{\mu} A_{\nu} \partial_{\rho} A_{\sigma}-\frac{2}{3} i g \partial_{\mu}\left(A_{\nu} A_{\rho} A_{\sigma}\right)\right) \\
& =\epsilon^{\mu \nu \rho \sigma} \partial_{\mu} \operatorname{tr}\left(A_{\nu} \partial_{\rho} A_{\sigma}-\frac{2}{3} i g A_{\nu} A_{\rho} A_{\sigma}\right)
\end{aligned}
$$

Problem 5: Srednicki 89.3
As we mentioned in the first problem, the left handed Weyl fermions of the Standard Model have the following quantum numbers

$$
\begin{equation*}
(1,2)_{-1 / 2} \oplus(1,1)_{1} \oplus(3,2)_{1 / 6} \oplus(\overline{3}, 1)_{-2 / 3} \oplus(\overline{3}, 1)_{1 / 3} \tag{12}
\end{equation*}
$$

We see that all the anomalies cancel

- 3-3-3:

$$
\begin{equation*}
0+0+2 A(\mathbf{3})+A(\overline{\mathbf{3}})+A(\overline{\mathbf{3}})=0 \tag{13}
\end{equation*}
$$

- 3-3-1:

$$
\begin{equation*}
0+0+2 \frac{1}{6} T(\mathbf{3})-\frac{2}{3} T(\overline{\mathbf{3}})+\frac{1}{3} T(\overline{\mathbf{3}})=0 \tag{14}
\end{equation*}
$$

- 2-2-1:

$$
\begin{equation*}
-\frac{1}{2} T(\mathbf{2})+0+3 \frac{1}{6} T(\mathbf{2})+0+0=0 \tag{15}
\end{equation*}
$$

- 1-1-1:

$$
\begin{equation*}
2\left(-\frac{1}{2}\right)^{3}+1+3 \times 2\left(\frac{1}{6}\right)^{3}+3\left(-\frac{2}{3}\right)^{3}+3\left(\frac{1}{3}\right)^{3}=0 \tag{16}
\end{equation*}
$$

- 2-2-2:

This anomaly is zero because the $\mathbf{2}$ is pseudoreal.

Problem 6:

One solution of axial anomaly of 2d QED can be found here. Also one can easily guess the result:

$$
\begin{equation*}
\partial_{\mu} j_{A}^{\mu} \propto \epsilon_{\mu \nu} F^{\mu \nu} \tag{17}
\end{equation*}
$$

