Homework 5 Solutions

Problem 1 : (Srednicki problem 32.1)
(a)Follow the lagrangian given in (32.1), we can easily calculate the U(1) current:

j* =ikl — it et (1)
so that the U(1) charge becomes:
Qt) = /jo(x, t)d’x = —z‘/ (T + T 1) (x, t)d3a. (2)

Based on [p(x,t),(y,t)] = [of(x,t),I(y,t)] = i63(x — y), one easy to find
[p(x,1), Q(t)] = p(x,t). Exponentiate the U(1) charge, we find that:
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(b)Since [H,Q] = 0, He™*Q|0) = 0, so e~**?|#) must be a linear combina-
tion of vacua. By e "*Qpei®? = '@, we have:
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then we have e~**?|0) = |0 + «).
(c)Expand e~**@|0) to linear order in o, we have (1—iaQ)|0) = (1+a5)[6),
the second term of right hand side is not zero. Thus, Q|#) # 0.

Problem 2 : (Srednicki problem 83.1)
(a) Since a single Dirac field involves 2 Weyl fields (one left and one right), we
can denote all left hand Weyl fermions as x§*, where oo = 1, 2, 3 are color indices,
and i = 1,2,...np are flavor indices.
In massless case, the kinetic lagrangian is Lx = i(x?)fo”aﬂxf‘, and invariants
under U(2np) rotation mixing x¢, thus the flavor symmetry is SU(2ng).
(b) The color group is SO(3), and the corresponding invariant tensor is d,g.
The fermionic condensate becomes 6&B<X§XX§> = (X{'x}) = —v®d;;, where we
have §;; for rhs because ¢ and j are symmetric. The transformation rule for Weyl
fields was x§& — M, jx?ﬂ and now the condition becomes M; i/Mj gl = 517"
Thus, the unbroken symmetry group is SO(2np).
(¢c) When np = 2, we have #goldstones = #SU (4)generators—#S0(4)generators =
15-6=09.
(d)When the color group is SU(2) rather than SO(3), we have the same fla-
vor symmetry SU(2np). However, the condensate condition now becomes
5a5<xfxf) = —v3Q;;, where €44 is the invariant e-tensor for SU(2), thus Q;; =



—Q(ji), and the unbroken symmetry is Sp(2np). For SU(4) — Sp(4), thus we

have #goldstones = #SU (4)generators — #Sp(4)generators = 15 — 10 = 5.

Problem 3 : (Srednicki problem 83.3)

From 1
L=—7 21orUto,U,
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we have
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By using Tr(T%T"%) = §9° /2, we shall directly calculate the result:
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Problem 4 : (Srednicki problem 83.6)
a) From (83.19) one can easily get
mis = 20" 7% (my +ma)
mies = 20° f%(my, + my)

m%@ = 2v3f;2(md +ms)
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b) Expanding for small m,, q/ms we get
Am%,, = m2e —mZ, = 0.00138GeV?

1
Mo f72 = Z(+ms — mio +m20 — AmZ,,) = 0.00288GeV 2
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mav® % = 2 (=mie +mio +mio + Amiyy) = 0.00624GeV?
1

meo® f* = 2 (Fmies +mio —mio — Amiy) = 0.11777GeV?

c) My /mg = 0.46 and mg/mg = 19.
d) Using equations (83.50)-(83.52) in (83.48), we find m,, = 0.566GeV which is
3% larger than its observed value, 0.548GeV .

Problem 5: (Srednicki problem 83.7)
a) Requiring the coefficient of 9,720 7 to be % yields

P = (25 - 312). Q

b) Only the mass terms for 7, 7, and 7° are different and one can easily get

v® 8 o 3, 91z
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