
Homework 2 Solutions

Problem 1 :
The calculations of the N flavor ϕ4 theory is very similar to what we did

in the usual ϕ4 theory, thus we will frequently use its result, which shall be
denoted with a subscript 0.

(a) The propagator from flavor i to j is:

∆̃ij(k) =
δij

k2 +m2 − iε
.

And the 4-pt vertex with labeling ijkl is:

iVijkl = −2iλ(δijδkl + δikδlj + δilδjk).

The correction to the propagator thus become:

iΠij(k
2) = 2(δijδkl + δikδlj + δilδjk)δkliΠ0(k2) = 2(N + 2)iΠ0(k2), (1)

where the extra factor of 2 coming from the absent of symmetric factor 2 com-
paring to N = 1 case. The Z-factors for propagators in MS scheme are:

Zϕ = 1 +O(λ2), Zm = 1 +
2(N + 2)λ

16π2ε
+O(λ2). (2)

Similarly, for the vertex labeling ijkl at s-channel, we have:

iV sijkl = 2(δijδmn + δimδjn + δinδjm)(δmnδkl + δmkδnj + δnkδml)iV
s
0 (3)

= 2[(N + 4)δijδkl + 2δikδlj + 2δilδjk]iV s0 . (4)

The extra factor of 2 also comes from the absent of symmetric factor 2 in the
loop comparing to N = 1 case. After summing the contribute from t- and
u-channed, the result for Z-factor is:

Zλ = 1 +
2(N + 8)λ

16π2ε
. (5)

The results of β and γm now are:

β(λ) =
(N + 8)λ2

8π2
, γm(λ) =

(N + 2)λ

16π2
. (6)

(b) At d = 4− ε, we find the equations for the WF fixed point is:

−ελ+ β(λ) = 0, µ
dm2

dµ
= 0,
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which give:

λ∗ =
8π2ε

(N + 8)
, m∗ = 0. (7)

(c) This scalar field theory may be viewed as an effective description of
some statistical model. The massive field ϕ gives rise to a Yukawa potential
−e−mr/r, which is corrected in interacting theories by the renormalization flow
d logm/d logµ = γm, ie. (m/m0) = (µ = mu0)γm = (r/r0)−γm , where we have
taken the mass scale to be µ = 1/r. Therefore, the corrected Yukawa potential

is −e(r/ξ)1/2ν , where ν = 1
2 (1− γm) is the critical exponent and ξ = m−2ν

0 r1−2ν
0

is the correlation length.
To obtain the critical exponent in d = 3 we can set ε = 1 (this is certainly not
small, but it seems to give good estimates in certain theories). Then:

ν =
1

2(1− γm(λ∗))
=

N + 8

N + 14
. (8)

Problem 2 : a) A term that respects the O(N) symmetry can be written

as dot-products of the vector ~φ and its derivatives. The only term that cannot
be written in this form is the last one. The other terms can be written as

S =

∫
ddx

(
1

2
(∂µ~φ) · (∂µ~φ) + t0~φ · ~φ+ u0(~φ · ~φ)2

)
. (9)

b)As usual

t0 = ZtZ
−1
φ µ2t (10)

u0 = ZuZ
−2
φ µεu (11)

v0 = ZtZ
−2
φ µεv (12)

In the second problem we saw that the linear term in the beta functions comes
from the powers of µ in the above equations. More specifically, the coefficient
in front of ε is equal to d minus the dimension of the corresponding operator.
Hence

c1 = 2, c2 = c3 = ε (13)

c) A fixed point is a solution of the set of equations

βt = 0, βu = 0, βv = 0. (14)

Using the expressions for the beta functions we find the following solutions

1. t = 0, u = 0, v = 0,

2



2. t = 0, u = 0, v = ε
72 ,

3. t = 0, u = ε
8(N+8) , v = 0,

4. t = 0, u = ε
24N , v = (N−4)ε

72N .

In principle there is mixing between operators with the sane scaling dimen-
sions. For this reason, the Z factor will be a matrix defined as

Oi0 = ZijOj . (15)

Let M be the matrix that diagonlize Zij . Then the interaction terms in the
Langranzian can be written as

Lint = giOi0 = giZ
ijOj = (gΛ−1)i(ΛZΛ−1)ij(ΛO)j = g′iZ ′iO′i (16)

where the primes denote the diagonalized quantities. The scaling dimensions of
the diagonalized operators minus the spacetime dimensions are then equal to
the derivative of the beta function at the fixed point (see Peskin & Schroeder
pages 428-435).

A priori we don’t know which combinations of operators appearing in the
Lagrangian diagonalize the Z matrix so instead we have to diagonalize the
matrix

Hij =
∂βi
∂gj

, (17)

whose eigenvalues hi satisfy

∆i = d+ hi (18)

The first fixed point corresponds to the free theory. There is no mixing
between the operators and their scaling dimensions are

∆m = c1 = d− 2, ∆u = ∆v = d− ε. (19)

For the other three fixed points there is mixing between the two quartic
operators and the scaling dimensions are

2)

∆m = d− 2 +
ε

3
, ∆1 = d+ ε, ∆2 = d− ε

3
, (20)

3)

∆m = d− 2 +
N + 2

N + 8
ε, ∆1 = d+ ε, ∆2 = d− N − 4

N + 8
ε. (21)

4)

∆m = d− 2 +
2

3

N − 1

N
ε, ∆1 = d+ ε, ∆2 = d+

N − 4

3N
ε, (22)
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Figure 1: These are the two RG-graphs depending on the value of N.

d) A fixed point is more stable is the there are no relevant operators at the
fixed point. That is because we have to tune less bare parameters in order to
end up at the fixed point at some lower energies. However, in problem we see
that the stability of the fixed points change for N = Nc = 4. For N < 4 the
most stable fixed point (apart from the trivial one) is the third one and for
N > 4 the most stable fixed point is the fourth one.

e) The RG flow are shown in figure (1).

Problem 3:
Srednicki 51.1:

Let’s focus on the fermion parts of the partition function. By L1 = gϕΨGΨ
(here G for either 1 or iγ5), we can write:

Z ∼ exp
[
ig

∫
d4xϕ(x)

δ

δη(x)
G

δ

δη̄(x)

]
exp

[
i

∫
d4xd4yη̄(x)S(x− y)η(y)

]
,

where we have replaced δ
iδJ(x) with ϕ(x), and suppressed all spinor indices.

Now, for the fermionic 1-loop correction to scalar propagator (check Fig. 51.1
for the corresponding Feynman diagram), we have (in position space):

〈ϕ(x1)ϕ(x2)〉1-loop = i4g2ϕ(x1)ϕ(x2)δ1Gδ̄1δ2Gδ̄2 ·
∏∫

d4xi η̄xSxyηy η̄zSzwηw

= −i4g2ϕ(x1)ϕ(x2)
∏∫

d4xiδ1Gδ̄1η̄xSxyδ2ηyGδ̄2η̄zSzwηw

= −g2ϕ(x1)ϕ(x2)Tr
(
GS12GS21

)
,

the minus sign coming from pulling δ2Gδ̄2 inside and acting on ηy η̄z. For high-
er order fermionic loops with more propagators, there are always a minus sign
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coming from the first δGδ̄, and all the rest δGδ̄ give plus signs. So we add an
overall minus sign for ever fermionic loop by hand when we do such calculations
directly from the Feynman diagrams.

Srednicki 52.2:
The method for calculating Z-factors are standard. First we focus on the scalar
propagator, the nominator of the fermionic loop integrand changes from Tr[S̃(/l+
/k)iγ5S̃(/l)iγ5] into Tr[S̃(/l + /k)S̃(/l)]. Also, an extra ϕ3 loop should be take into
consideration. Thus the results are:

Zϕ = 1− g2

4π2ε
, ZM = 1 +

1

16π2ε

(
λ− 24

g2m2

M2
+

κ2

M2

)
.

Next we turn to the fermionic propagator. The removal of iγ5 will change
the sign of mass at the nominator of loop integrand, after some calculations we
find the Z-factors are:

ZΨ = 1− g2

16π2ε
, Zm = 1 +

g2

8π2ε
.

Similar replacements take place for the calculations of Zλ and Zg. However,
changing iγ5 to 1 does not change the sign of the leading divergence in both
cases, and with the absent of any extra graphs, the results are:

Zg = 1 +
g2

8π2ε
, Zλ = 1 +

3

16π2ε

(
λ− 16g4

λ

)
.

One left Z-factor is from the loop correction to ϕ3 vertices. The result is:

Zκ = 1 +
3

16π2ε

(
λ− 16g3m

κ

)
.

Next, we turn to the calculations of beta functions and anomalous dimen-
sions. Since the result for ZΨ, Zϕ, Zλ and Zg are the same, the following cor-
responding beta function and anomalous dimension results follow from Sec.52
and Problem 52.1, as:

βg =
5g3

16π2
, βλ =

3λ2 + 8λg2 − 48g4

16π2
,

γϕ =
g2

8π2
, γΨ =

g2

32π2
.

Finally, using κ0 = ZκZ
−3/2
ϕ µ̃ε/2κ, we find:

βκ =
6g2κ+ 3λκ− 48g3m

16π2
,

and

γm =
3g2

16π2
, γM =

1

32π2

(
4g2 − 24

g2m2

M2
+

κ2

M2
+ λ
)
.
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