Homework 2

1. Consider the Euclidean field theory with N real scalar fields ϕ_i with Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_i \partial_{\mu} \phi_i + \frac{1}{2} m^2 \phi_i \phi_i + \frac{\lambda}{4} (\phi_i \phi_i)^2.$$

- (a) Calculate $\gamma_m(\lambda)$ and $\beta(\lambda)$ to lowest order in perturbation theory.
- (b) What is the location of the Wilson-Fisher fixed point in $4-\epsilon$ dimensions?
- (c) What is the value of the critical exponent ν in this theory in d=3, to lowest order in the epsilon expansion?
- 2. Questions abcde in Problem 1 from Silviu Pufu's lectures at the Sao Paulo bootstrap school, http://bootstrap.ictp-saifr.org/school
- 3. Srednicki problems 51.1 and 52.2 (loops in Yukawa theory).