
Homework 1 Solutions

Problem 1 :

Srednicki 27.1:
Using the definition of a beta function we can easily get (to linear order in α):

dα

dm
=

dα
lnµ

dm
lnµ

=
β(α)

mγm(α)
=
b1
c1

α

m
, (1)

which can be written as

dm

m
=
c1
b1

dα

a
. (2)

Integrating both sides we find

m1

m2
=

(
α1

α2

) c1
b1

. (3)

Srednicki 28.1:
Starting with the analog of equations (28.3)-(28.6)

ϕ0 =
√
Zϕϕ, (4)

m0 =

√
Zm
Zϕ

m, (5)

λ0 = Z−2
ϕ Zλµ̃

ελ, (6)

the strategy will be to repeat the same steps as in the ϕ3-theory. The 1-loop
results for Z-factors of the ϕ4-theory are (see Srednicki Sec. 31):

Zλ = 1 +
3λ

16π2

1

ε
+O(λ2), (7)

Zm = 1 +
λ

16π2

1

ε
+O(λ2), (8)

Zϕ = 1 +O(λ2). (9)
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As usual, all the bare quantities must be independent from the renormaliza-
tion scale µ since it is an auxiliary parameter. Proceeding as in the ϕ3 case we
define the analog of equation (28.14)

G(λ, ε) = lnZ−2
ϕ Zλ ≈

3λ

16π2

1

ε
. (10)

From (6) we get
lnλ0 = G+ ε lnµ+ lnλ, (11)

and requiting that λ0 is independent of µ, or in other words

d lnλ0

d lnµ
= 0, (12)

we obtain (keep λ/ε small)

dλ

d lnµ
= − ελ

1 + 3λ
16π2

1
ε

= −ελ
[
1− 3λ

16π2

1

ε
+O(λ2)

] ε→0
=

3λ2

16π2
, (13)

and therefore

β(λ) =
3λ2

16π2
+O(λ3). (14)

Similarly for the mass renormalization we define

M = ln

√
Zm
Zϕ

=
λ

32π2

1

ε
+O(λ2), (15)

and requiring that d lnm0

d lnm = 0 we find

γm =
λ

32π2
+O(λ2), (16)

Lastly, since Zϕ doesn’t have corrections at one loop order, equation (28.36)
implies that

γϕ =
1

2

d lnZϕ
d lnµ

= O(λ2). (17)

Note: here we use Srednicki’s convention that the term −ελ is not involved in
the definition of β-function. However, this term will play an important role in
finding the Wilson-Fisher fixed point in 4− ε dimensions.

Problem 2:
Generally, assume we are renormalizing operator O(x) involving n scalar field
φ and several derivatives. Setting O0(x) = ZOO(x). Using Wick’s contraction,
the lowest order non-divergent correlator is (in Fourier space):

G(n,O)(pi; k) = 〈φ̃(p1) · · · φ̃(pn)Õ(k)〉 = Z
−n/2
φ Z−1

O 〈φ̃0(p1) · · · φ̃0(pn)Õ0(k)〉;
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which satisfy the Callan-Symanzik equation:[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγφ(λ) + γO(λ)

]
G(n,O)(pi; k) = 0, (18)

where γO = d
d lnµ lnZO, and γφ = 1

2
d

d lnµ lnZφ (Note that here we use the

same definition as on p.430 of Peskin&Schroeder). From the Callan-Symanzik
equation, we obtain the formula for γO:

γO = ZO
∂

∂ lnµ

(
− δO +

n

2
δφ
)
, (19)

where ZO = 1 + δO and Zφ = 1 + δφ.

For pure φ4 theory in 4 − ε dimensions, we have Zφ = 1 + O(λ2), and
d

d lnµλ = −ελ + O(λ2). Thus we can read out γO directly from ZO (at linear

order in λ):

ZO = 1 +
aOλ

ε
+O(λ2), ⇒ γO = aOλ. (20)

These arguments about the renormalization of composite operators can be found
on Sec. 12.4 of Peskin&Schroeder.

a) The field strength renormalization for the composite operator φ2 can
be calculated from the divergent part of G(p1, p2, x). Normalize the tree level
contribution to be (we omitted some δ-function for momentum conservation):〈

φ̃(p1)φ̃(p2)φ̃2(q)
〉

tree
= − 2

p2
1p

2
2

. (21)

Then the 1-loop contribution:〈
φ̃(p1)φ̃(p2)φ̃2(q)

〉
1-loop

= −iλ 1

p2
1p

2
2

∫
d4l

(2π)4

1

l2
1

(l + p1 + p2)2
(22)

Following the standard procedure one finds that, in MS scheme, we have:

Zφ2 = 1 +
λ

16π2ε
+O(λ2). (23)

Hence, the anomalous dimension of φ2 is

γφ2 =
λ

16π2
(24)

The Callan-Symanzik equation is(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ 2γφ2(λ)

)〈
φ2(x)φ2(0)

〉
= 0. (25)
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Denote
〈
φ2(x)φ2(0)

〉
= f(µ|x|)/|x|2(d−2), the CS equation gives:

f(µ|x|) = f(µ0|x|) exp
[
− 2

∫ λ

λ0

dλ′
(
γφ2(λ(µ′))/β(λ′)

)]
(26)

= f(µ0|x|) exp
[
− 2

∫ µ

µ0

d lnµ′γφ2(λ(µ′))
]
. (27)

Change the integration argument into x′, we have:

f(µ|x|) = C(λ(|x|)) exp
[
− 2

∫ |x|
1/µ

d lnx′γφ2(λ(x′))
]
. (28)

In 4 − ε dimension at IR, the theory will be driven to the Wilson-Fisher fixed
point for large |x|, where the integration is dominated by the large value of
|x′|, and γφ2 can be approximate to take the value at the WF fixed point, thus

f ∼ |x|−2γφ2 (λ∗). Therefore〈
φ2(x)φ2(0)

〉
∼ 1

|x|2(d−2+γφ2 (λ∗))
=

1

|x|2∆φ2 (λ∗)
, (29)

where at the WF fixed point ∆φ2(λ∗) = 2− 2ε
3 .

b) Consider the mass term in the lagrangian as a 2-pt interaction. Any
Green’s function will be a power series in m2:

G(n)
m (x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉m (30)

=

∞∑
l=0

1

l!
(− i

2
m2)l

〈
φ(x1) . . . φ(xn)

(∫
ddx′φ2(x′)

)l〉
0

(31)

=

∞∑
l=0

1

l!
(− i

2
m2)l

∫ l∏
k=1

ddx′k G
(n,l)
0 (x1 . . . xn;x′1 . . . x

′
l) (32)

The above Green’s functions obey the following Callan-Symanzik equations(
µ
∂

∂µ
+ βλ

∂

∂λ
+ 2γmm

2 ∂

∂m2
+ nγφ

)
G(n)
m = 0 (33)

and (
µ
∂

∂µ
+ βλ

∂

∂λ
+ lγφ2 + nγφ

)
G

(n,l)
0 = 0 (34)

Now let’s act on equation (32) with the following operator
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(
µ
∂

∂µ
+ βλ

∂

∂λ
+ nγφ

)
G(n)
m =

∞∑
l=0

1

l!
(
−i
2
m2)l

(
µ
∂

∂µ
+ βλ

∂

∂λ
+ nγφ

)∫ l∏
k=1

ddx′k G
(n,l)
0

=

∞∑
l=0

1

l!
(
−i
2
m2)l

(
−lγφ2

) ∫ l∏
k=1

ddx′k G
(n,l)
0

=

(
−γφ2m2 ∂

∂m2

) ∞∑
l=0

1

l!
(
−i
2
m2)l

∫ l∏
k=1

ddx′k G
(n,l)
0

=

(
−γφ2m2 ∂

∂m2

)
G(n)
m (35)

Comparing this equation with (33) we see that

γφ2 = 2γm, (36)

which match the known result of γm = λ
32π2 to 1-loop order in φ4.

c) An is part (a) one can similarly evaluate〈
φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4)[φ̃4](q)

〉
. (37)

Normalize the tree level contribution as:〈
φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4)[φ̃4](q)

〉
tree

=
1

p2
1p

2
2p

2
3p

2
4

. (38)

And the 1-loop contribution is:〈
φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4)[φ̃4](q)

〉
1-loop

=
1

p2
1p

2
2p

2
3p

2
4

iλ

2

∫
d4k

(2π)4

1

k2

1

(k + p1 + p2)2

(39)

+ (other 5 terms).

Thus

Zφ4 = 1 +
3λ

8π2ε
+O(λ2), (40)

and

γφ4 =
3λ

8π2
. (41)

d) Use the similar method in a), we can calculate the scaling dimension of
φ4 operator at the WF fixed point:

∆φ4(λ∗) = 2d− 4 + γφ4(λ∗). (42)

At the WF fixed point, β(λ∗) = −ελ∗+
3λ2

∗
16π2 = 0, thus λ∗ = 16π2ε

3 and β′(λ∗) =
ε. In addition, we have γφ4(λ∗) = 2ε. Put all these together, we find:

∆φ4(λ∗) = d+ β′(λ∗) = 4. (43)
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Near the WF fixed point, a scale transformation µ → bµ will lead to the
scaling of composite operator as φ4 → b∆φ4φ4, and the interaction term s-
cales as λ0φ

4 = Li → bdLi. The bare coupling λ0 scales as λ0 → bd−∆φ4λ0

by dimensional counting. The dimensionless coupling should not scales, thus
λ ∼ µ∆φ4−dλ0, and β′(λ) = d

dλ
d

d lnµλ = ∆φ4 − d at the WF fixed point.

The argument can also be found on Sec.12.4 to Sec.12.5 on Peskin, or ”Space
of CFTs” by Silviu Pufu in 2017 bootstrap summer school.

e) The current associated to the global U(1) symmetry is

Jµ = i(φ∗∂µφ− φ∂µφ∗). (44)

The one loop contribution to the three-point function

〈φ(x1)φ(x2)Jµ(x)〉 (45)

is given by
λ

4

∫
d4y

〈
φ(x1)φ(x2)Jµ(x)φ4(y)

〉
. (46)

It is straightforward to show that both terms in Jµ(x) give

λ

∫
d4y D(x1 − y)D(x2 − y)D(x− y)∂µD(x− y), (47)

and therefore the above three point function vanishes.
We can prove that γJ = 0 to all orders in perturbation theory as follows.

Consider the Ward identity for this symmetry

〈φ(x1)φ∗(x2)∂µJ
µ(x)〉 = −iδ(4)(x− x1) 〈δφ(x1)φ(x2)〉 − iδ(4)(x− x2) 〈φ(x1)δφ(x2)〉

= δ(4)(x− x1) 〈φ(x1)φ(x2)〉 − δ(4)(x− x2) 〈φ(x1)φ(x2)〉

=
1

π2
∂µ

(
(x− x1)µ

(x− x1)4
− (x− x2)µ

(x− x2)4

)
〈φ(x1)φ(x2).〉 (48)

We see that

〈φ(x1)φ∗(x2)Jµ(x)〉 =
1

π2

(
(x− x1)µ

(x− x1)4
− (x− x2)µ

(x− x2)4

)
〈φ(x1)φ(x2)〉 (49)

Note that there is no integration ”constant” since for x → ∞ the three point
function must vanish. Hence, all the divergences are coming from the propaga-
tor and therefore can be taken care of by the the renormalization of φ.

f) From dimensional analysis any two-point function in a generic massless
theory will have the form
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G(2)(p) =
i

p2
+

i

p2
(A log

Λ2

p2
+ . . . ) +

i

p2
(ip2δZ)

i

p2
(50)

=
i

p2
+

i

p2
f

(
Λ

µ

)
− iδZ

p2
(51)

for some function f . So we see that all the divergent terms (terms that diverge
for Λ→∞) are functions of Λ

µ , and therefore

µ
dδZ
dµ

= −Λ
dδZ
dΛ

. (52)

from which it follows that

γO = −Λ
dZO
dΛ

(53)

Consider now the integral in (22). After using Feynman parameters, shifting
the loop momentum (assuming Λ→∞) and Wick rotate, we have

〈
φ(p1)φ(p2)φ2(x)

〉
=
iλ

2

1

p2
1p

2
2

∫
d4k

(2π)4

1

k2

1

(k + p1 + p2)2

= −λ
2

1

p2
1p

2
2

∫ 1

0

dx

∫ Λ

0

d4kE
(2π)4

1

(k2
E − x(1− x)(p1 + p2)2)2

= − λ

(4π)2

1

p2
1p

2
2

∫ 1

0

dx

∫ Λ

0

dkE
1

(k2
E − x(1− x)(p1 + p2)2)2

Λ→∞
= − λ

(4π)2

1

p2
1p

2
2

∫ Λ

dk
1

k

= − λ

(4π)2

1

p2
1p

2
2

log Λ

So we see that

Zφ2(Λ) = − λ

(4π)2
log Λ (54)

which gives the expected value for γφ2 . One can similarly repeat the calculation
for γφ4 and γJ .
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Problem 3 : (Peskin problem 12.3 (asymptotic symmetry))

a) The relevant Feynman diagrams for βλ are shown in figure (1). Apart
from the symmetry factors, the loop integral is the same as in the usual φ4

theory. The calculation is done in detail in the book by Peskin & Shroeder (see
p. 326-327). Using the notation of this book the above diagrams are equal to

−
(
λ2 +

1

9
ρ2

)
[iV (s) + iV (t) + iV (u)]− iδλ, (55)

where the factor in front of ρ2 comes from the symmetry factor of the diagrams
with two ρ-vertices. Following the usual steps, the beta function can be easily
evaluated

βλ =
9λ2 + ρ2

3(4π)2
(56)

For the other beta function, the relevant diagrams are shown in figure (2 ).
They are equal to(

1

3
λρ

)
2iV (s)− 1

9
ρ2 [iV (t) + iV (u)]− iδρ. (57)

As before the coefficients 1
3 and 1

9 are coming from the symmetry factors. In
this case the beta function is

βρ =
6λρ+ 4ρ2

3(4π)2
(58)

b)Using the above beta functions it is easy to calculate the beta function for
the ration ρ/λ as

µ
d(ρ/λ)

dµ
= µ

dρ

dµ

1

λ
− µdλ

dµ

ρ

λ2
=

ρ

3(4π)2

(
−
(ρ
λ

)2

+ 4
ρ

λ
− 3

)
(59)

We see that there are two fixed point for ρ/λ = 0, 1, 3. If we start with ρ/λ < 3
then the ration will flow toward the other fixed point which satisfies ρ = λ.

c) The beta functions in d = 4− ε dimensions are

βλ = −ελ+
9λ2 + ρ2

3(4π)2
(60)

βρ = −ερ+
6λρ+ 4ρ2

3(4π)2
(61)

However, the terms contacting ε cancel out in the beta function for the ratio
and the result is the same as in part (b). The reason is that the ratio is still a
dimensionless parameter. As before, the fixed points happen for ρ/λ = 0, 1, 3
and the RG diagram is shown in figure (3).
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Figure 1: Relevant diagrams for βλ. The single line correspond to φ1 and the
double line to φ2.

Figure 2: Relevant diagrams for βρ. The single line correspond to φ1 and the
double line to φ2.

Figure 3: RG graph.
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