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Chapter 3

Elements of the Theory of
Lie Groups and Algebras

3.1 Groups

A group is a set G in which a multiplication operation with the following
properties is defined:

1. associativity: for all a,b,c € G, (ab)c = a(be);
2. existence of a unit element e € G, such thatforalla € G, ae = ea = q;

3. existence of an inverse element a~' € G for each ¢ € & such that
1

ala=aa"'=e.
If the multiplication operation is commutative (i.e. ab = ba for all a,b €
(7), the group is said to be Abelian, otherwise it is non-Abelian.
Groups G and Gy are isomorphic if there exists a bijective mapping
f: Gh — G4 consistent with the multiplication operations

flarg2) = Flg)flg2).  flo™h) =[f(g) "

In what follows, we shall write group isomorphisms as G; = G2 and we
shall often not distinguish between isomorphic groups.

A subgroup H of a group G is a subset H of G, which is itself a group
with respect to the multiplication operation defined in G. In other words,
for h, ki, hy € G, the product hyhs and the inverse element h~! are defined;
hihs and h™! are required to be elements of the set H, if h, hy, he € H.

Let us give some examples.
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1. The group U(1) is the set of complex numbers z with modulus equal
to unity, [z = 1. Multiplication in U (1) is the multiplication of
complex numbers (since for lz1] = |22] = 1 we have lz122] = 1,
multiplication is indeed an operation in U/(1)). The unit element
is z = 1 and the inverse element to z ¢ ULy is 27t (2t & Uy,
sinee 271 =1 for |2| = 1).

2. The group Z, is the set of integers modulo n, i.e. integers k and
(k+mn) are identified (in other words, the set Z, consists of n integers
0.1,...,(n-1)). Multiplication in Z,, is defined as addition of integers
modulo n; in other words, if 0 < k; <n—1,0 <ky <n-—1, then

kit ks for (}C]‘Fkg)gn—-l
(k1 + 2) (mOdn)k{quLkg—n for (k1 +kg) >n—1.

Subtraction modulo n is defined analogously. We note that addition
modulo n is commutative. The unit element in Z,, is k = 0, the
inverse to the element k is equal to

o for k=0
(—k) (mod”)—{n_k forO<hk<n-1.

Problem 1. Show that the group Z, s isomorphic to the group of nth
roots of unity, i.e. the group consisting of all complex numbers z such that
2" =1 (group multiplication is multiplication of complex numbers). Thus,
Zn is a subgroup of the group U(1).

3. The group GL(n,C) is the set of complex n x n matrices with a
non-zero determinant. Multiplication in GL(n, C) is matrix multi-
plication; the unit element is the unit nxn matrix, the inverse element
to M € GL(n,C) is the inverse matrix M~ (which always exists
because det M # 0 by the definition of the group GL(n,C')).

Problem 2. Describe the group GL(1,C).

The groups U(1),Z, and GL(1,C) are Abelian groups, the groups

GL(n,C) with n > 2 are non-Abelian.

The groups in the following examples are subgroups of the group

GL(n,C). In other words, we are dealing with n x n matrices and the

multiplication operation is matrix multiplication.

4. The group GL(n,R) is the group of real matrices with non-zero
determinant,

5. The group U(n) is the group of unitary n x n matrices, i.e. such that

Ulu =1 (3.1)
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s the matrix

(U U)} (U Us) = UUTUh Uz = 1

i) =vUt =

I

as required. We note that it follows from (3.1) that

det U2 = detUdetUT =1,

ie |detU|=1forallU € U(n).

6. The group SU(n)
determinant (SU(n) is evident
the group operations (matrix m
in SU(n) (i.e. SU(n) is indeed a group)

is the group of unitary matrices with unit
ly a subgroup of U(n)). The fact that
ultiplication and inversion) are closed
follows from the equations

det (U1 Uy) = det Uy det Uy=1
det Ut = (detU)" ! =1,

when det U; = det Uy = detU = 1.

7. The group O(n) is the group of real ortl

that
070 =1.

O(n) is clearly a subgroup of GL

that it follows from (3.2) that det O = *1,

1ogonal matrices, 1.e. such

(3.2)

(n, R) and also of U(n). We note

since

4ot OTO = det O det O = (det 0)? = 1.

Thus, the group O
and det O = —1).

8. The group SO(n
matrices O with det O = +1.

We note that the subset of Q(n) consis
_1 is not a subgroup of O(n). Indeed,

then det (0102) = +1, i.e. this subset is not ¢

multiplication.

Let us continue with definitions w

center of a group G is the subset o
which commute with all elements of the group,

wg = gw.

(n) divides into two disjoint subsets (det O = +1

) is the subgroup of the group O(n) consisting of the

ting of matrices with det o=

if detO; = detOp = —1,
losed under matrix

hich will be useful in the sequel. The
f G consisting of all clements w € G,

ie. such that for all g € G
(3.3)

e o e
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The center of the group W C G is a subgroup of G. Indeed, for wy,w, € W,
we have

(wi1wz)g = w1 (wag) = wigwa = g(wiws),

so that wyw, € W. Multiplying (3.3) by w ! on the left and on the right,
we obtain

gw™t =wlg,

so that the set W is closed under group operations.

Problem 3. Describe the center of the group SU(n) and show that it is
isomorphic to Z,,.

Problem 4. Show that the center of the group GL(n,C) consists of
matrices of the form X-1, where A is an arbitrary, non-zero compler number
and 1 is the unit n x n matriz (the non-trivial part of the problem is to
show that all matrices which commute with any matriz in GL(n,C) are
multiples of unity).

The direct product Gy x G3 of the groups 1 and Gy is the set of pairs
{g,h} where g € G; and k € G, in which the multiplication operation and
the inverse element take the form

{g.hHg" '} = {gg',hh'}
{lo,n}™" = {g7 " n71),

the unit element is the pair {e, ea} where e; and e; are the unit elements
in G and Gy, respectively. Thus, G; x Gz is a group. We note that G,
is a subgroup of the group G; x Ga; more precisely, G4 is isomorphic to
the subgroup of the group G, x G2, consisting of the elements of the form
{g,e2} for g € G;.

This definition is useful because, if one succeeds in identifying that some
group G is a direct product of two other groups G and G, then properties
of the group G can be determined by studying the properties of the groups
G and Gy individually.

A group homomorphism is a mapping f from a group G to a group ',
consistent with the multiplication operations, i.e. for all g, g;,9; € G

f9192) = f(91)f(g2)

(the product g,g2 is given in the sense of multiplication in (7, while the
product f(g1)f(g2) is given in the sense of multiplication in G'),

fle)y=¢

’
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3.1 Groups
(e,€' are the units of G, G, respectively)
fla ) =1

(the inverse clements on the left- and tight-hand sides of the equation are
taken in the sense of the groups G and G, respectively).
Here are some examples of homomorphisms.

1. A homomorphism from SU(2) to SU(3) under which the 2 x 2 matrix
g (g € SU(2)) is mapped to the 3 X 3 matrix of the form

0
g 0 (3.4)

3

0 01

which clearly belongs to the group SU(3).

9. The homomorphism from the group Gy x G2 to the group G1 under
which the element {g,h} is mapped to g € G1-

Suppose f is a homomorphism from G to G'. The set of all elements
of G which can be represented in the form f(g) for some g € G is called
the image of the homomorphism, Im f. The set of elements g € G such
that f(g) =€’ is called the kernel of the homomorphism, Ker f. In the first
4 of all matrices of the form (3.4), and Ker f is the
while Ker f is the
(i.e. Ker f = G2).

example, Im f is the se
unit 2 x 2 matrix. In the second example, Im f = Gy,

set of elements of the form {e, h}, where h is arbitrary

Problem 5. Show that Im f is a subgroup of G' (f is a homomorphisim
from G to G'). Show that Ker f is @ subgroup of G.

Let us now introduce the concept of the (right) coset space, G/H of a
group G by its subgroup H. Let H be a subgroup of a group G. Let us
define equivalence in G- we shall say that gi is equivalent to g2 (g1 ~ g2)
if g1 = goh for some L e H. We recall that the following properties are

alence relation: 1) if g1 ~ g2. then ga ~ g1; 2) if

required for an equiv
g1 ~ g2 and g2 ~ 93 then g, ~ ga. In our case, these properties are easy

to verify: 1) if g1 = goh, then g2 = gk, ie. g2 ~ g1, Since h~! € H;
2) if g1 = gohi2, 92 = gshas, then g1 = ¢ (hoghiz), and g1 ~ gz since
hoshis € H.

This equivalence relation allows us to divide the set G into disjoint sets

(cosets): a coset consists of elements of G which are all equivalent to one

another. We note that the coset containing the unit element € € G is the

subgroup H itself.
The set of cosets is called the (right) coset space G/H.

Another definition of equivalence is possible: g1 ~ g2 if g, = hgo for some
h € H. This is used to construct the left coset space, which is sometimes

denoted by G\H.
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Problem 6. Take the subgroup isomorphic to 50(2) in the gro
to be the group of matrices of the form

0
9 o), geS0@)
0 0 1

Show that there 15 @ one-to-one correspondence between the coset space of

50(3) by this subgroup and the two-dimensional sphere
50(3)/50(2) = 52,

The coset space G/H is closely related to homogencous spaces. A set A
is said to be & homogeneous Space with respect to the group G if the group
¢ acts transitively on A, ie. toeach g€ G there corresponds an jnvertible

mapping of the space A to itself, such that

a = F(g)a-

Here, the operation F ig required to be consistent with the group Op-

erations, i.e.
F(gig2)a = F(g1)F(g2)a
Fle)a = ¢
F(g Ha = [F(g) e

(3.5)

where F~1isa mapping from A to A which 18 the inverse of the mapping

F; a is an arbitrary element of A; g.01,92 are arbitrary elements of the
group G- In addition, it s required that for any pair @, o € A, there exists

ge G such that
o = F(g)a

(transitivity of the group action).
The stationary subgroup H for the element ap € A cons

h € G which leave do unchanged:
F(h)ao = ao-

ists of all elements

; for example,

The fact that this set {s a subgroup can be checked using [35)
if hy.he € H, then

F(hih2)ao = F(h1)F(h2)ao = F(hy)ao = do;

ic. hiha € H.
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0(2) in the group S0(3)

between the coset Space of
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(g2)a
(3.5)

1,
s the inverse of the mapping
re arbitrary elements of the

1y pair a; o € A, there exists

ap € A consists of all elements

ocked using (3.9); for example,

T(hl)an = ap,
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3.1 Groups

For a homogeneous space the stationary subgroups for all elements a € A
are the same. Indeed, suppose Ho and H; are stationary subgroups for the
elements ag and aj, respectively. Take g € G such that

ay = F(g)ﬂ.g
Then an isomorphism of the subgroups Hg and H; is given by the mapping
B = ghg™". (3.6)

where h is any clement of Hp. First, we check that h' € Hy, i.e. F(h')ay =
a;. We have

Il

F(ghg™)F(g)ac = F(@)F(M)F (97 9)ao
F(g)F(h)ag = F(g)ao = a1.

F(h)a;

as required. The correspondence (3.6) is clearly one-to-one: the inverse
mapping is given by the formula

h=g ‘g

Finally, the mapping (3.6) is consistent with the group operations, for
example, if hy, he € H, then

ghiheg ' = 9’119_19}129‘1 = hhhs,

where R} 5 = gh129".

Problem 7. We define the action of the group S0(3) on the two-
dimensional sphere S* as follows. Let g be a matriz of SO(3) and @ a (unit)
vector with components a;, i = 1,2,3. Every such vector corresponds to a
point on the unit two-dimensional sphere in three-dimensional Buclidean
space. Define F(g)d to be the vector b with components b; = gi;a;- Since
gTg =1, we have B2 = @, i.e. the action of F(g) takes the sphere to the
sphere. Show that SO(3) acts transitively on §2, and that the stationary
subgroup of any point of the sphere S* is equal to 50(2).

If the group G acts transitively on the space A (i.e. A is a homogeneous
space under G) then there is an isomorphism

A=G/H, (3.7)

where H is the stationary subgroup of any element of the space A.

Indeed, let ag be some element of A, with H its stationary subgroup.
Let us define the element a € A which corresponds to the coset k € G/H,
as follows

ax = Flgi)ao, (3.8)
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where gi 18 8 representative of the coset k. The element aj does not depend
on the choice of representative g if g, = grph 18 another representative of
the coset k, then F(g},)a0 = F(gi)F(h)ao = F(gx)ao. Thus, the mapping
(3.8) is :ndeed a mapping from G/H to A. Let us check that it is one-to-
one. Let a be some element of A. It is always possible 10 find some g € G
such that a = F(g)ao- It belongs to some coset k € G/H. We show that
if F(g)ao = F (g")ao, then g and ¢’ belong to the same coset (which proves
the invertibility of the mapping (3.8))- From F(g)ao = F (¢")ag we have
the equation

F(g~Y)F(¢")ao = a0

which means that g~ lg € H,le g~lg' = h, where h e H. Hence, g’ = gh
and, consequently, g’ and g belong to the same coset.
Tllustrations of equation (3.7) are provided by assertions formmlated in

the following two problems.

Problem 8. Show that SO(n)/SO(n — 1) = S", where S§™ is the n-
dimensional sphere. Here, the embedding of SO(n — 1) in SO(n) is given

by
(SO(%' B ?) c SO(n).

Problem 9. Show that SU(n)/SUmn-1) = 52 where the embedding of
SU(n—1) m SU(n) ts defined analogously to in the previous problem.

The subgroup H of the group G i8 said to be a normal subgroup of the
group G if for allhe Hand all g € G

ghg™' € H.

if H is a normal subgroup, then K = G/H is a group- Indeed, we construct
the multiplication operation in K as follows. Let ki, ks € K, where k1 and
ko are cosets, and choose representatives of these, g1 € k1, 92 € ko, Then
kyks is the coset which contains the clement gig» of the group G. The
unit e € K is the equivalence class which contains the unit element of the
group G (observe that, from the definition of the coset space, it follows that
ep = H), and L1 is the coset containing g, where g is a representative
of the coset k.

For these operations indeed to be operations in K, it is required that the
result of their actions should not depend on the choice of representatives
in the cosets. Let us verify this for the multiplication operation. Suppose
g1. 44 € k1, g2, gh € ko are two sets of representatives, such that

g =gih1, g2 =922
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where hq, h
1,h2 € H. We check that g{g} = g1 goh for some h € H. We have

rol
9195 = g1h1g2ha = g19295 *h1goho.

But g;* 5
ut g5 hig: € H, and so (g; 'h1g2)hs also belongs to H, as required.

Problem 10. Let G = @& ,
. 1 X G2. Show that G is a normal subgroup of

G2 — G/Gl

P
roblem 11. Show that the subgroup U(1) of the group U(n), consisting

of matrices which are multi ity, i
Ay iples of unity, is a normal subgroup of the group

Problem 12. Show that th ;
Shilt GO e center of any group is a normal subgroup of

Problem 13. Show that
Un)/U(1) = SU(n)/Z,,

where Z,, is the center of the group SU(n).

3.2 Lie groups and algebras

elc:}‘n Zg?phc;ty in ‘Wh&t‘ follows, we shall consider matrix groups whose
. GSLEL(re g};i}trlc;as (in other words, we shall consider subgroups of the
1, ; although the notions ex
: pounded here are of
natllrllreéilthey are most easily formulated for matrix groups. g
i ;uisgc; o: ;za: n l1rnatrices the notion of neighborhood (topology)
. ural way: two matrices i i
e . are said to be nearby if al
o mailrfir;znﬁ ax;e nfe;lrby. We also introduce the differentiation of a:)l/cami];
wi
oy (1}4),_ 7 c;'es.pnc:(ﬂ‘: to ad real parameter t: the elements of the
Generaﬂydt ; I;J e derivatives g M,;(t) of the matrix elements M,;(t)
2n2-dime’ the space of all complex n x n matrices can be viewed 2ixs a.
o mat;lsm]nal (real) Euclidean space R?"’, whose coordinates are the
X element. oo ili
e e s Re My; and. Im M;;. Smooth families of matrices are
il e 0f s) en?bedded in this Euclidean space. For example, a
S i Rzn?y o n:g;rlces M(t), depending on a real parameter ¢, is: a
» and <25 corresponds to the tangent vector to this curve.
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Smooth (matrix) groups are groups which are smooth manifolds! in the
space R2"” described above. These groups are called Lie groups.

The simplest non-trivial example of a Lie group Is the group U(1).
It can also be understood as a matrix group by considering complex
numbers as 1 x 1 matrices. The group U(l) is a circle in the complex
plane (in the two-dimensional real space of 1 X 1 matrices). The groups
U(n), SU(n), 0(n), SO(n) are also Lie groups.

Two manifolds are said to be homeomorphic if there exists & smooth
one-to-one mMapping from one to the other.? For example, an ellipsoid is
homeomorphic to & sphere, but a torus and a sphere are not homeomorphic.

Problem 14. Show that the group SU(2) is homeomorphic to the three-
dimensional sphere 5%,

For each point of a {curved) manifold of dimension k in on?2-dimensional
Euclidean space, one can define the tangent space to the manifold at that
point: thisisa real vector space of dimension k consisting of vectors tangent
to the manifold at the given point.

The tangent space for a Lie group at the unit element 18 the Lie algebro
of that Lie group (the unit element of the group; the unit matrix is a point
of the group manifold). In other words, any curve g(t) in the Lie group G
is represented near unity in the form

g(t) =1+ At oO(th), (3.9)

where unity is the unit matrix, addition is matrix addition and A helongs
to the Lie algebra of the group G- In what follows, the Lie algebra of the
group G will be denoted by AG.

Equation (3.9) can be viewed as 2 definition of the algebra AG: its
elements are all matrices A, such that (3.9) is a curve in G near unity. Let
us check that the algebra AG is 2 real vector space. If Ac AG corresponds
to the curve g(t); then the curve g(t) = g(ct), where ¢ is a real number,
corresponds to the clement cA (because, gty =1+ (cA)t + o@?)). I
A, Ay € AG correspond to the curves g1 (). g2(t) i the group, then the
curve

g"(t) = 1 (Dg2()
corresponds to the sum (A1 + As), since

g'(t) = (L + At + Sk At e =21t (A + A2)t + o@?).

A St T

1Here and in what follows, we shall not refine the notion of smoothness. For example;
we shall not encounter continuous manifolds which are not infinitely differentiable-

2 Apain, we shall not distinguish between homeomorphism (continuous but mot
necessarily differentiable mapping) and diffeomorphism.
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Thus, the product of an element of AG by a real number and the sum of
two elements of AG are also elements of the Lie algebra AG, i.e. 4 is a real
vector space.

One more operation, commutation, is defined in a Lie algebra: the

matrix [A1, Ap] = A; A — Ay A; belongs to the algebra AG, if A, A € AG.
Indeed, if

Gt) =14+ At +-, got) =1+ Ag(t) +---

then the curve

9(t) = g1(€)g2(8) 97 "(€) g5 (€),

where £ = /1, corresponds to the matrix [A1, As]. To verify this with
accuracy up to and including # = €2, we write,

9(t) = (1+ A€ + &%) (1 + A2l + 02€?)(1 — A1 — 51€2)(1 — Ape — Br€?),
(3.10)

where 31 9 = a1 0 — A"f’z (so that the matrix (1 — A4;€ — 3;£2) is the inverse

to the matrix (1 4+ A€ + 01£?) with accuracy up to and including £2).
Collecting terms in (3.10), we obtain

g(t) = 1+ [41, 43)€% + O(£Y),
s0 that to linear order in ¢,
g(t) =1+ [A4;, As]t.

Thus, in a Lie algebra, in addition to multiplication by a number and
addition, commutation is also defined. '
Let us describe the Lie algebras of certain groups.

L. The U(n) algebra (we shall sometimes denote specific groups and
their algebras in the same way, provided this does not lead to
confusion). Unitary matrices close to unity must have the property

(14 At + OE* N1+ ATt + O(t?)) = 1.
Therefore
At =4,

Le. the Lie algebra of the group U(n) is the algebra of all anti-
Hermitian matrices.
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Problem 15. Check explicitly that addit
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ion, maltiplication by @ number

and commutation are defined in the set of anti-Hermatian matrices.

9. The SU(n) algebra. In addition to unitarity, the matrices of SU(n)

close to unity must satisfy the property

det (1 + At +0(%) = 1.

Since, for small ¢, det (14 At) =1+ (Tr A)t + O(t?), we have the

condition
TrA=0.

The SU(n) algebra is the algebra of all anti-Hermitian matrices with
zero trace.

3. The SO(n) algebra. This is the algebra of all real matrices satisfying

the condition

AT = -A
(in other words, the matrices of the S0(n) algebra are real
antisymmetric matrices).

s of a Lie algebra (addition,
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b) the set of real antisymmetric
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Problem 16.
multiplication by a Te
of anti-Hermitian ma
matrices.

Since every anti-Hermitian matrix can be represented in the form iA,
where A is an Hermitian matrix, the SU(n) algebra in physics is often
defined as the algebra of Hermitian matrices with zero trace, and elements
of the group 5 U(n) near unity are written in the form

g:1+iAt+O(t2).

Problem 17. Describe the Lie algebras of the groups GL(n,C) and
Gitn, B
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. Problem 18. Show that the Lie algebras of SU(2) and 50(3) ore
isomorphic. Show that the relation between the groups is SU(2)/22 =
group SU(2). Thus, although locally

SO(3), where Zg s the center of the
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(close to unity) the groups SU(2) and SO(3) are the same, on the whole
(globally), they are different.

The dimension of the vector space, which is a Lie algebra, is called the
dimension of the algebra. It is equal to the dimension of the group manifold
for the corresponding group. Let us find the dimension of the SU(n)
algebra. Arbitrary n x n matrices are characterized by 2n? parameters.
In the SU(n) algebra, n? linear conditions are imposed upon them:

Al =-A

(this is a matrix condition, i.e. 2n? conditions, however, only half of them
are independent, since from A;; = —AJ; we have the complex conjugate
condition A}, = —A;;). In addition, another linear condition is imposed:

TrA =0

(this is a single condition, since, from AT = — A it follows that all diagonal
elements are imaginary). Thus, the dimension of the SU(n) algebra is
equal to (n? —1).

Problem 19. Show that the dimension of the SO(n) algebra is equal to

n(n —1)/2.
In a Lie algebra, as in a vector space, one can choose a basis. The
elements of this basis are k matrices 17; (1 = 1,...,k; where k is the

dimension of the algebra), called the generators of the Lie algebra and
of the corresponding Lie group. Since the commutator [T;,7}] belongs to
the algebra, it decomposes in terms of generators, i.e.

[T, T5) = CijaTh,

where C,;; are antisymmetric in the first two indices and real. The Cj;x
are called the structure constants of the algebra, or, which amounts to the
same thing, the structure constants of the group. Their values, of course,
depend on the choice of basis.

For example, in the space of anti-Hermitian 2 x 2 matrices, one can
choose a basis in the form T, = —é‘?}', where the 7; are Pauli matrices

0 0 —i 10
n={1 0/ ™7 o) BTl -1)°
The structure constants of the SU(2) algebra are obtained from the
equations

(70, 75] = 2@k Tk
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and are equal to Eijk- However, the SU(2) algebra physics 1s often
defined as the algebra of Hermitian 2 X 9 matrices; the generators {the

basis in this algebra) are chosen in the form
Tt' = =il
2

Here, the structure constants are purely imaginary and the commutation

relation for generators takes the form
[T,’,Tj] = iEijka‘

The generators of the SU(3) algebra (in physics, this is also defined as
the algebra of Hermitian matrices with zero trace) are chosen in the form
=10 = 1.9, 5 B where the Aq are the Gell-Mann matrices

0 10 o —i O 1 0 O
>\1=—' 1 0 01, }\2: i 0 0}, }\3—"- 0 -1 01,

o 00 o 0 O p 0 O

0 01 g 0 —i A
M=1{00 o), »s= o 0 0] |
100 i 0 0 \

0 00 o 0 O i
hi= 10 o 11, Aam=10 0 —i-

o 10 0o+ 0

1 10 0
A= 2 o1 0

V3\o 0

Problem 20. Show that these generators of the group SU(3) are linearly
independent.

Problem 21. Calculate the structure constants of the group sU(3) in
the Gell-Mann basis (as mentioned earlicTs the structure constants of ihe
group and the algebra oT€ the same)-

A Le subalgebra of a Lie algebra 1s 2 real vector space in A, which is
closed under the operation of commutation (i.c. it is itself a Lie algebra)-
For example, 0ne subalgebra in the SU(3) algebra 18 the set of maftrices of

the form

|
3]
R L et i

4

0o 00

where A is a2 X 9 matrix in the SU(2) algebra. This subalgebra is clearly
jsomorphic to the SU(2) algebra.
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Problem 22. Let H be a Lie subgroup of the Lie group G. Considering H
as a Lie group, construct its Lie algebra AH . Show that AH is q subalgebra
in AG.

Let A and B be two Lie algebras of dimensions N4 and Ng, respectively;
T2, ... ,Tj& . & full set of generators of the algebra A: TZ... .,T;‘?B a full
set of generators of the algebra B. We shall assume that the elements of
the algebra A are n4 x n, matrices, and that the elements of the algebra
B are ng x np matrices. We construct the set of (N4 + Ng) matrices of
dimension (n4 +ng) x (n4 +npg) such that the first N4 matrices have the

form
TA O, .
(O L AXHB)? 2:15'--1NA!

NEXNA Onaxns

where Oy ; is the zero k x ! matrix. We choose the remaining Npg matrices
in the form

ORA X7 OILA Xng -

(OannA TéB 1 q_]-!"‘)NB'

The real vector space in which this set of (N4 + Np) matrices forms a

basis is called the direct sum of the algebras A4 and B and is denoted by

(A + B). Clearly, the study of the direct sum of two Lie algebras reduces
to the study of each algebra individually.

Problem 23. Let G = Gi x Gy be the direct product of the Lie groups
Gi and G3. Show that the Lie algebra of the group G is isomorphic to the
direct sum of the Lie algebras of the groups Gy and Gy defined above, i.e.

AG = AG, + AGs.

The Lie subalgebra C in the Lie algebra A is said to be an invariant
subalgebra (or ideal), if for all c€ C and a € A,

[e,a] € C.

Problem 24. [Let the subgroup H be a normal subgroup in the Lie group
G. Show that the Lie algebra of the group H is an invariant subalgebra in
the Lie algebra G.

Thus, it is convenient to study local (and only local) properties of Lie
8roups by considering the corresponding Lie algebras. The main concepts of
group theory have analogies in the theory of Lie algebras. At the same time,

Lie algebras are relatively simple objects, since they are vector (linear)

Spaces.
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3.3 Representations of Lie groups and Lie
algebras

A representation T of a group G in a linear space V' is a mapping under
which each element ¢ € G is mapped to an invertible linear operator T(g),
acting on V; this mapping must be consistent with the group operations,
so that the unit element of the group G is mapped to the unit operator
and the following equations are satisfied:

T(g192) = T(91)T(g2) (3.11)
T(g™Y) = [T

Correspondingly, a representation T of the Lie algebra AG in the space vV
is a mapping under which each element A € AG is mapped to a linear
operator T(A), where this mapping is consistent with the operations in the
algebra AG, ie.

T(A+B) = T(A)+T(B)
T(ad) = oT(A) (3.12)
T([A,B]) = [T(A),T(B)]

for all A, B € AG and any real number «. Here, the commutator of two
operators acting on V is, as usual,

(T(A),T(B)] = T(A)T(B) - T(B)T(A).

If T(G) is a representation of the Lie group G in the space ¥/, then it
can be used to construct a representation T(AG) of the corresponding Lie
algebra AG in the space V, according to the formula

T(1 + eA) = 1+ £T(A), (3.13)

where ¢ is a small parameter. On the left-hand side T'(i + €A) is an
operator corresponding to the element (1 +e4) € G which is close to
the unit element of the group; on the right-hand side T'(A) is the operator
corresponding to the element of the algebra A € AG for the representation
T(AG). We remark that not every representation of an algebra is generated
by a representation of the group (see problem below).

Problem 25. Check that the mapping of the algebra AG to the set
of linear operators acting on V, defined by equation (9.13) s indeed a
representation of the algebra AG, i.e. the properties (3.12) are satisfied.
If V is a real vector space (i.e. only multiplication of vectors by a real
number is defined in V), then a representation of a Lie group or algebra in
it is said to be a real representation.

by
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If T(g) is a unitary operator for all g € G, then the representation of the
group is said to be a unitary representation. For a unitary representation
of a group, the representation of the corresponding Lie algebra defined by
formula (3.13) consists of anti-Hermitian operators,

[T(A)]" = -T(A)

for all A € AG.

Let us fix a basis e; in V. If T(g) is the operator corresponding to the
element g € G for the group representation T(G), then its action takes e;
to some vector of V' which can again be decomposed with respect to the
basis e;, so that

T(g)e; = Tyi(g)e;. (3.14)
Thus, for a fixed basis, every element g € G is mapped to a matrix
T;i(g). For a real representation the matrices T}:(g) are real, for a unitary
representation the 7T};(g) are unitary matrices. The matrix T;i(g) has
dimension n x n, where n is the dimension of the space V (and has nothing
in common with the dimension of the group G7). Any vector ¢ € ¥V can be
represented in the form of a decomposition with respect to the basis e,

¥ = 1e,
where the 1, are the components of the vector (numbers). Then
T(9)e = ¥u(T(g)e:) = ¢:Tjze;.
Thus, the components of the vector T'(g)y are equal to
(T(9)¥)i = T5(9);. (3.15)

This relation explains the somewhat unusual choice of the order of the
indices in (3.14).
From equation (3.15) it follows that

Tii(9192) = Ti(91)Tk;(g2) (3.16)
T.'ij (e) = (57; (317)
Ti(e7h) = [T(9)];, (3.18)

Le. a product of elements of the group corresponds to a product of matrices,
the unit element to the unit matrix, and the inverse element to the inverse
matrix. Indeed, for all 4, we have

[T(9192)¥]: = T;5(g192)%, -
On the other hand,

(T(g1g2)9); = (T(91)T(g2)%]i = Tia(91)[T (g2 )]k = Tur(g1)Ti; (92)%;,
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which, by virtue of the arbitrarines

Properties (3.17) and (3.18) are prove
equations (3.16)-(3.18) could be used as the basis

s of 1, proves the equality (3.16).

d analogously. We note that
for the definition of a

representation.
Representations of groups (or algebras) T(G) and 7"(G) on the same
space V are said to be equivalent if there exists an invertible operator 5,

acting on V, such that

T'(g) = ST(9)S™"

for all g € G.
Let W be a linear subspace
of the representation T(G) acting on V if for

T(g)w € W,

ie. the action of any operator T(g) does not lead out of the subspace
W. The trivial invariant subspaces are the space V itself and the space
consisting of the zero vector alone. The representation T'(G) is said to be
an irreducible Tepresentation of the group G on V' if there are no non-trivial
invariant subspaces.

We now present examples of repr
important for what follows.

in V. It is said to be an invariant subspace
allp e Wand g € G,

esentations of Lie groups which are

1. The fundamental representation

Let G be a Lie group consisting of n X 7 matrices (for example, SU(n) or

S0(n)), and V an n-dimensional space of columns
2t
= : (3.19)

Un
The fundamental representation T(g) acts on this space V as follows:

(T(N¥)i = gi5%5-

< SRR

dimensional space, €; &

Another definition is possible: let V be an n-
is of the

basis in V' then the action of the operator T(g) on the vector e;

form

F Rt

T(Q)‘%‘ = gji€j-

Problem 26. Show that these definitions are equivalent.
We note that for the groups SU(n) the fundamental representation is

complex, while for the groups S50(n) it is real.
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Problem 27. Show that the fundamental representations of the groups
SU(n) and SO(n) are irreducible.

2. Representation conjugate to the fundamental representation

This is a representation of a group of n x n matrices on an n-dimensional
space of columns (3.19), defined by the equation

(T(g)ﬂf); - 9:31;’}3

Equivalent definition: the conjugate of the fundamental representation is
the representation on the space of Tows ¢ = (¢1,...,¢,) such that

(T(9)8): = ¢;g],.

Problem 28. Show that the fundamental representation of the group
SU(2) is equivalent to its conjugate.

The fundamental representation of a Lie algebra AG and the conjugate
of the fundamental representation of the algebra are defined analogously.

Problem 29. As previously mentioned, the SU(2) and SO(3) algebras
are isomorphic. Let T be the fundamental representation of the SU(2)
algebra. This corresponds to some representation of the SO(3) algebra, to
be denoted by T. Show that no representation of the group SO(3) generates
the representation T' of the S0(3) algebra according to formula (3.13).

3. The adjoint representation Ad (G) of the Lie group G

Let AG be the Lie algebra of the group G; we shall suppose that both the
group G and the algebra AG consist of n x n matrices. The algebra AG
is a real vector space, which is also the space of the adjoint representation.
We define the action of the linear operator Ad (g), corresponding to the
element g € G, on a matrix A € AG as follows:

Ad(g9)A = gdg™1L.

For this to be a representation, the essential requirement is that gAg!
should be an element of the algebra AG for all A € AG and g € G. To see
this, we construct a curve in the group G of the form

h(t) = gga(t)g™?,

Where g4 (t) =14+ ¢4+ .- is the curve defining the element 4 € AG. We
have 2(0) = 1 and
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where A, is some element of the algebra AG. On the other hand,

h(t) = 1+tgAg™ +--+

so that gAg~! = An € AG, 88 required.
ked; for example,

The properties (3.11) are easily chec
Ad(pg2)A = (g192)Alg:192) 7"
= qupAg; it = ai(e2Ag )0

Ad (1) Ad(g2)A
(g1) Ad(g2) is understood as the consecutive action of first
(g2) and then the operator Ad (g1))-
it follows that the adjoint representation of a Lie
B € AG is mapped to the operator ad (B)
ace of the representation) as follows:

(3.20)

(as always, Ad
the operator Ad

From formula (3.13)
algebra is such that the element
acting on elements A of AG (the sp

ad (B)A = (B, Al.

Indeed, if g=1+¢€B, then
Ad(g)A=(1+ eB)A(1—eB)=A+ e[B, 4],

which, together with equation (3.13), which in this case has the form

Ad(g)A=A+ead (B)A,

leads to (3.20).
The matrices of the adjoint representation of a Lie algebra coincide
with the structure constants. Indeed, by the definition of a matrix of a

representation
d(t)t; = T
ad (t:)t; kj Lo

in AG, and Té? is the matrix of

where t, are generators (basis elements)
On the other hand,

the linear operator corresponding to the generator t;.

ad (tz)tj = [tz‘,tj] = Cijktka

where Cy ) ar€ the structure constants of the algebra AG. Consequentlys

T =G (3.21)
We again stress that the adjoint representation is always real. This can
be seen from (3.21), since the structure constants are real.
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3.4 Compact Lie groups and algebras

Lie groups are smooth manifolds (matrix Lie groups are submanifolds in
the space of all matrices of a specific dimension, see Section 3.2). Compact
Lie groups are those whose manifolds are compact.

Problem 30. Show that the groups SU(n) and 50(n) are compact, while
GL(n,C) and GL(n, R) are not compact.

Compact Lie algebras are Lie algebras corresponding to compact Lie
groups.

The following theorem holds. A Lie algebra is compact if and only if it
has a (positive-definite) scalar product, which is invariant under the action
of the adjoint representation of the group.

In other words, in any compact Lie algebra AG, and only in a compact
Lie algebra, there exists a bilinear form (A, B) such that for all g € G and
all A, B € AG

where for all 4 € AG
(A’ A) 2 01

with equality only for the zero element of the algebra, A4 = 0.
For matrix groups, the scalar product in the corresponding algebra is
the trace

(A,B) = -Tr (AB).

Its invariance under the adjoint representation is evident from the pos-
sibility of permuting matrices cyclically inside the trace symbol:

(949", 9Bg™") = =Tr (9Ag™'gBg™") = ~Tr (AB).

The non-trivial part of this theorem for matrix algebras is the positive
definiteness of —Tr(A42?), for compact matrix Lie algebras and only for
compact matrix Lie algebras.

Problem 31. Show that ~Tr (A?) is positive for all non-zero A in the
SU(2) algebra. Show that —Tr (A?) may be both positive and negative for
the GL(2,C) algebra.

The existence in a Lie algebra of a positive-definite scalar product, which
Is invariant under the adjoint representation is of great importance for
gauge theories, therefore precisely compact Lie groups and algebras are
used in their construction.
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In what follows, we shall consider only compact Lie groups and algebras
and will not stipulate this explicitly cach time.

In an algebra, generators can be chosen so as
basis. The normalization is usually taken as follows:

to form an orthonormal

'I‘r(t,-tj} == *%éij. (3.22)

In this basis the structure constants are antisymmetric with respect to all

three indices. Indeed, by definition,
[t., t;] = Cujktrs
and from equation (3.22), it follows that
Cijx = —2Tr [ty t5]tx = —2[Tx (titste) — Tr (¢5t:tx)]-
with the same quantity but with the indices

We compare this expression
k,j transposed:

Ciry = —2[Tr (t;txt;) — Tr (Ertaty )

With cyelic permutation of the matrices within the trace symbol, we have

Cig = —2[Tr (t;t:te) — Tr (it tk)],
which coincides with —Cjjx- Thus,
Ct’kj = —Lyk
by virtue of the antisymmetry in the first

and Cj;r is fully antisyminetric,
two indices.

Problem 32. Suppose A is an invariant subalgebra of the compact algebra

B. Let A, be the orthogonal complement of A in B (we recall that A is

o vector space with a scalar product). Show that Ay 1s also an invarient

subalgebra and

B=A+A,

in the sense of a direct sum of Lie algebras.
All Abelian compact Lie algebras are direct sums of U(1) algebras.
A compact Lie algebra is said to be semi-simple if it does not contain an
Abelian invariant subalgebra. A compact Lie algebra is said to be simple
if it does not contain any invariant subalgebras whatsoever.
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The following statement holds. Any compact Lie algebra A is uniquely
representable in the form of a direct sum of a certain number of U(1)
subalgebras and simple subalgebras.

A=U0)+UQ)+---+UQ)+ A1+ -+ Ay, (3.23)

where the A, are simple algebras. Thus, the study of compact Lie algebras
reduces to the study of simple Lie algebras. Equation (3.23) implies that
locally every compact Lie group is represented in a unique way in the form
of a direct product

G=U1)xU(1)x---xU(l) x Gy % -+ x Gy,

where the G, are simple groups (simple Lie groups are those which
correspond to simple algebras). The global (i.e. valid for groups as a whole)
version of this statement is somewhat more complicated; we shall not use
it and we shall not formulate it here.?

In the case of a simple compact Lie algebra, there exists just one
invariant positive-definite scalar product (up to multiplication by a
number). If the algebra is semi-simple, the full set of invariants is described
as follows. Suppose, for example,

A=A + As.
Then any vector B € A has the form
B=B+B; Bye€ A, Bse As. (3.24)

Let (,); be an invariant scalar product in A; and (. )2 an invariant scalar
product in A,. Then all invariant scalar products of vectors of the form
(3.24) have the form

(B, B') = a1(By, B})1 + a2(Bs, By)a,

where a; and ay are arbitrary positive numbers. In other words, positive-
definite quadratic invariants (relative to the adjoint representation) in a
sum of simple algebras are lincar combinations of quadratic invariants in
each of the simple algebras with arbitrary positive coeflicients.

The complete list of simple Lie algebras is known. In addition to the
algebras with which we have become acquainted SU(n), n = 2,3,..., and
S0(n), n = 5,7,8..., (SO(3) and SO(4) reduce to SU(2) and SO(6) to
SU(4)), there is an infinite set of matrix algebras Sp(n,C), n = 3,4,...,

%nd a finite number (five) of so-called exceptional algebras Ga, Fi, Es. E7,
8-

.3.'I‘hat the analogous assertion to (3.23) for groups as a whole is not completely
gVIaI can be seen from the fact that different Lie groups can correspond to the same
e algebra. An example is provided by the groups SU(2) and SO(3).
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Problem 33. Show that the SO(4) algebra is isomorphic to the (S U(2)+

SU(2)) algebra. ,

In the construction of models in particle physics, the groups SU(n) are
most often used; the symmetries S0(n) are occasionally considered, while
the groups FEs and Eg are used in the construction of unified theories of
the strong, weak and electromagnetic interactions.

The following statement holds for representations. Any representation
of a compact Lie group is equivalent to @ unitary representation, and
representations of the Lie algebra are equivalent to anti-Hermitian
representations. This property is also important for the theory of gauge
fields; in what follows, we shall always assume that group representations
are unitary.

As previously mentioned, when the group SU(n)is considered in physics,
it is customary to use Hermitian (rather than anti-Hermitian) generators
(if A is an anti-Hermitian matrix, then A = iB, where B is Hermitian).
Then, every element of the algebra is represented in the form

A=Ay,

where t, are Hermitian matrices, and the A® are real coefficients. Elements

close to the unit element of the Lie group are written in the form
g=1+ 1%,

where £¢ are small real parameters. The relations between the generators
explicitly contain the imaginary unit, i,

[tﬂ.1 tb] = icabctca

where Cgpe are fully antisymmetric real structure constants of the algebra.
For complex representations of SU(n) and other algebras, Hermitian
generators T(ta) = Ta such that

[Taa Tb] = icabcTc

are also used.
We shall usually employ this convention in the following study.

Problem 34. Show that SUn), n=2,3,.- and SO(n), n = 5,6,
are simple groups.




