
Lecture 1

Quantum field theory arises “inevitably” from the marriage of quantum me-
chanics and special relativity.

I am taking for granted a working knowledge of quantum mechanics and of
special relativity. A mastery of the covariant formalism (manipulations with
Lorentz indices, Minkowski metric etc.) is required. If you need to brush up on
this, there are many standard textbooks. For example, most general relativity
books start with a review of special relativity, see e.g. the first three chapters
of Schutz’ book “A first course in general relativity”.

I presented various arguments for the impossibility of single-particle rela-
tivistic quantum mechanics. I do not necessarily recommend that you spend
much time on these topics now. After you are comfortable with the main ideas
QFT, it will be instructive to go back to them. My lecture was partly based on
chapter 1 of Srednicki and also on chapter 1 of the book by F. Strocchi, “An
introduction to non-perturbative foundations of QFT”.

• Heuristic reasoning from ∆p∆q ∼ h̄ and E = mc2 leading to creation of
particle/anti-particle pairs. Necessary to have a multi-particle framework.

• Inconsistency of single-particle interpretation of various covariant gener-
alization of the Schroedinger equation.

– Most naive attempt, the relativistic Schroedinger equation (setting
c = h̄ = 1)

i
∂

∂t
ψ(x, t) =

√
m2 −∇2ψ(x, t) .

The square root is very problematic: non-locality in space. There
exist no solutions compact support. If they existed, their Fourier
transform ψ̃(p) would be an analytic function, but this is in contra-
diction with

i
∂

∂t
ψ̃(p, t) =

√
m2 + p2ψ̃(p, t) .

The non-existence of localized solutions is incompatible with rela-
tivistic causality (one should be able to localize observables their
support must evolve in time with velocity less than c).

One is then led to look for local relativistic equations, such as the
Klein-Gordon and Dirac equation.

– Klein-Gordon equation, of second order in spacetime derivatives. Sin-
gle component φ(x) describing a spin zero particle:

(∂2 −m2)φ(x) = 0 .
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– Dirac equation, of first order in spacetime derivatives. Four-component
ψ(x) describing a spin 1/2 particle:

(iγµ∂µ −m)ψ(x) = 0 .

Both the Klein-Gordon equation and the Dirac equation have negative
energy solutions, making a conventional interpretation of φ(x) and ψ(x) as
single-particle wavefunctions very problematic. The presence of negative
energy solutions is an inevitable consequence of the relativistic dispersion
relation E2 − p2 = m2, which has two solutions a priori on equal footing,
namely E = ±

√
p2 +m2. (And we saw, choosing by hand the plus sign is

not an option.) In the presence of interactions (for example, by coupling
to an external electromagnetic field by minimal coupling pµ → pµ − eAµ)
positive energy states will transition to negative energy states. There is
no stable ground state.

Dirac mistakenly thought that his equation was conceptually superior to
the Klein-Gordon equation. His initial reasoning involved the require-
ment of a positive definite probability density. This can be achieved if the
differential operator is linear in the time derivative (as in the Dirac equa-
tion), but not if it is quadratic, as in the Klein-Gordon equation. Indeed,
the conserved current associated to the Dirac equation is jµ = ψ̄γµψ, so
j0 = ψ̄γ0ψ = ψ†ψ ≥ 0. By contrast, the conserved current associated to
the Klein-Gordon equation is jµ = i/2m(φ∗∂µφ− (∂µφ

∗)φ). For solutions
of energy E, which have time dependence e−iEt, we find j0 = E/m, so
j0 < 0 when E < 0. We now understand this issue to be a red herring.
As we shall see, in QFT these conserved currents are not associated to
probability but to (electric) charge, which can have either sign.

How inconsistencies arise in the single-particle interpretation of the Dirac
equation is explained in detail in chapter 2 of Itzykson and Zuber.

The history of the Dirac equation and of Dirac’s wildly creative resolu-
tion of the impasse are discussed for example in chapter 1 of Weinberg’s
book. (If you like history of physics, you will enjoy Schweber’s beauti-
ful book “QED and the men who made it”). Dirac quickly realized that
the single-particle interpretation of his equation was untenable and devel-
oped a multi-particle interpretation based on the “Dirac sea” : negative
energy states are supposed to be “already occupied”. Transitions from
positive energy states are forbidden by Pauli exclusion principle. A hole
in the Dirac sea is interpreted as an antiparticle. Dirac’s hole theory,
when treated with care, gives correct results, but it is a very cumbersome
approach and it is best thought of as a historical curiosity. We need a
formalism that is able to deal with spin zero and spin one half particle on
the same footing.

In summary, the single-particle interpretation of both the Dirac and Klein-
Gordon equation is simply wrong. Dirac’s reinterpretation of his equation
(with the Dirac sea) is a radical departure from single-particle quantum
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mechanics. It points the way to the modern viewpoint: quantum field
theory.

There seem to be a priori two routes towards a consistent relativistic quan-
tum mechanics:

1. Promote time T to an operator T̂ , on equal footing with the familiar
position operator X̂i (usually called q̂i). In covariant language, we have
X̂µ(τ) = (T̂ (τ), X̂i(τ)), where τ is proper time.

2. Demote the position operator to an ordinary label, just like time is treated
in ordinary non-relavistic QM. Both time and position are labels on oper-
ators, the quantum fields ϕ̂a(xµ), which are operator-valued functions of
spacetime.

Although at this stage this is far from obvious, when developed correctly the
two routes are in fact completely equivalent – using one or the other viewpoint
is a matter of taste or of convenience. By a horrible terminology, approach 1
is sometimes called the first-quantized viewpoint, and approach 2 the second-
quantized viewpoint. In both cases we are quantizing exactly once. Approach
1 emphasizes the role of particles, approach 2 emphasizes the role of fields.
Particles are quanta of fields, and fields are coherent states of quanta. Both
ideas are equally fundamental, in fact they are dual to each other. Don’t worry
if you don’t follow these vague philosophical pronouncements now, hopefully
you will one day! We will follow approach 2, which is the conventional one, and
the most convenient in most applications.
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