QFT HW9 SOLUTIONS

PHY 610 QFT, Spring 2017
HWO9 Solutions

1. For d=3, we may try:
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with ¢ here the Pauli matrices. And then the S matrices are:

5017101 L

=g =50

i —i
o2 _ bt o2 Tt
21T Tl

i ~1
gzt 1.2 "1 2
1T Ty e

,yo —0?® ol

71 —icl @l

’Y2 — i ® ol

V¥ =Ixios®

And

) )

SOI _ 5,70,)/1 _ §O'S®I
) —1

502 — 57o,yz _ 701 @1
7 . 1

03 _ 57073 _ 502 ® ol
) 1

Sl2 — 57172 _ §a2®l
7 . -1

gi3 — 57173 _ 701 ® o2
) -1

23 — 5,7273 _ 703®02

In d=3 Euclidean space, we could write down a spinor representation with Pauli matrices. Yet taking
C = 0%, we have Co'C = —(0')*, which indicates that this is a pseudoreal representation representa-

tion. Therefore there is no Majorana basis.
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2. (a) The first integral vanishes because it is odd in ¢*. Indeed, under the change in dummy variable

q"* — —q*, the measure and f(q?) are invariant and
/ddq " f(¢*) = /ddq — 4" f(d*).

The second integral is some Lorentz covariant matrix with two symmetric indices, and thus
must be proportional to g#. Contracting the integral with g,,,, allows one to find the constant of

proportionality. We get
1
/ddq "¢ f(¢*) = Eg“”/ddq @ 1)

(b) This integral is some Lorentz covariant matrix with four totally symmetric indices, and must be
proportional to (1/4)g(#*gr?) = ghvgr? 4 ghPg"? + gh?g*P. The constant of proportionality can
be found by contracting with g,,,9,-. The result is

dd wov.p o 2\ uv po np Vo p,al/p/dd 2\2 2.
/ 1¢"q"¢"¢" f(q°) 7d(d+2)(g 977 +g"°g"" +¢"7g"") | d°¢(¢°)" f(q")

3. We are to comptue the O[)] correction to the propagator in * theory, with action

1 1 1 e
L= —iZw(Bmp)? - ime2g02 - IZ)\/\/,L @t

We have included a factor of i€ in the ¢ coupling, so that in d = 4 — ¢, A remains dimensionless. (¢

has dimension 1 — €¢/2 in d = 4 — ¢.) The relevant diagrams are

ill(k?) = +

1 d’l —i
= (=i —i((Zp = DK + (Zm — 1)m?).
5N [ o e — (2o = D+ (Z = D)
Now, let us compute the integral, which is divergent for d > 2. The dimensional regularization
scheme is to compute this integral in d < 2, and analytically continuing the resulting expression to
d = 4 — e. One may simply use the master formula (14.27), but I will do the integral here step by step.
These steps illustrate the generic case except that it does not require a Feynman reparametrization of

the denominator.

First, Wick rotate the time component. Recall that the poles of the propagator sit at &(w — i¢) in the
[° plane, so we may rotate the [° contour clockwise by m/2. The time component then becomes a
euclidean component [ = i/, The i arising from the measure then cancels the —i in the propagator,
and the ie may be set to zero since there are no poles in the euclidean propagator. This leaves us with

[ / dl —i a1
) @Cn)iiz4+m?—ie  (2m)d 124+ m?

(Note that in the mostly minus metric convention, /? will become —I2.)
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Next, we use the rotational invariance of the integral to write it in polar coordinates. The surface area
of the unit d ball is Q4 = 27%/2/T'(d/2). This may be derived by noting that

Qq

5T (d/2).

0o 00

i , 1

ﬂ_d/Q _ /e_x%_m_lczi doy .. dzg = Qd/ e—aﬂxd—ldm — Qd/ e_;zz (x2)d/2—1§dx2 =
0 0

(Recall that I'(t) = [;° '~ 'e™* dx.) Thus

I 27r/2 /OC i1 a1
- I(d)2) J, (2m)4 12 + m?2
_ 2t /001 dr? @iz L1
r(d/2) J, 2(2m)? m2 1+ 12/m?
_ m?/? m2)d/2—1 /OO d(®/m?) (Tz/mf)d/zfl
I'(d/2) 0 (2m)d  1+12/m2

Now, we use the identity

/wdtt“l:B(a?b):F(a)F(b)
o

1+ t)e+h T(a+b)
SO
Ll DN0 - df2)
()2 T(d/2) (1)
- <47r1>d/2 (m*)271T(1 — d/2).

The analysis so far has been valid for d < 2, where the integral is convergent. However, the expression
we have written above is actually valid away from the poles of I, the nonpositive integers, ie. for d
not equal to a positive even number. We therefore analytically continue it, in particular tod = 4 — ¢,

which is the region we are interested in.

We therefore have

. Z’AmQﬂe 1 m2 —e/2 -
am? 11 1 2 _
- 1672 (e 9 T 9 o8 W) —i((Zy — 1)k2 + (Zm — 1)m2).

In the second equality, we have used the expansion of I" near —1 (14.26)
2
I'(—1+4¢/2) = ——t- 1+ O[e]
and used that

X¢=e8% =1 4 clog X + O[e]?.

In order that II(k?) is finite and p-independent to order )\, while satisfying the renormalization con-

ditions IT1(k? = —m?) = 0, IT'(k* = —m?) = 0, we must choose
A 1 1 1 m?
? 0+OR, 16W2<e+2+20gu2>

with p? = 4re Vi
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4 @ U] = (d—1)/2
®) [ga] = d—n{d—1) =n— (n—1)d
(c) A scalar field has dimension [¢] = d/2 — 1 from the kinetic term (9,,¢)?, s0 [gm.n] = d — n(d —
1)—-m(d/2—-1)=n+m—(n+m/2—1)d.

(d) The only renormalizable interaction in d = 4 is g1 1 VV (the Yukawa interaction).

5. For d=2 case, we have [¢] = 0 and V = g1 f1(¢)0,00"¢ + g2 f2(¢), with g1 = [0], [g2] = 2 and f1, fo
arbitrary functions of ¢.
For d=3, [¢] = % By setting V;, = g,¢" and solving [g,,] = 3 — § > 0, we know that the renormalizable
interactions are in the form of g3¢>, g16*, g5¢® and g¢°.
Ford=4, [g,)] =4—n >0,V = gs0*.
Ford=5, [g,] =5 — 22 >0,V = g3¢°.
For d=6, [g,] =6 —2n >0,V = g3¢°.
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