
QFT HW9 SOLUTIONS

PHY 610 QFT, Spring 2017

HW9 Solutions

1. For d=3, we may try:

γ0 = σ2

γ1 = iσ1

γ2 = iσ3

with σ here the Pauli matrices. And then the S matrices are:

S01 =
i

2
γ0γ1 =

i

2
σ3

S02 =
i

2
γ0γ2 =

−i

2
σ1

S12 =
i

2
γ1γ2 =

−1

2
σ2

For d=4, we can take advantage of the tensor product:

γ0 = σ2 ⊗ σ1

γ1 = iσ1 ⊗ σ1

γ2 = iσ3 ⊗ σ1

γ3 = I ⊗ iσ3

And

S01 =
i

2
γ0γ1 =

i

2
σ3 ⊗ I

S02 =
i

2
γ0γ2 =

−i

2
σ1 ⊗ I

S03 =
i

2
γ0γ3 =

1

2
σ2 ⊗ σ1

S12 =
i

2
γ1γ2 =

1

2
σ2 ⊗ I

S13 =
i

2
γ1γ3 =

−1

2
σ1 ⊗ σ2

S23 =
i

2
γ2γ3 =

−1

2
σ3 ⊗ σ2

In d=3 Euclidean space, we could write down a spinor representation with Pauli matrices. Yet taking

C = σ2, we have CσiC = −(σi)∗, which indicates that this is a pseudoreal representation representa-

tion. Therefore there is no Majorana basis.
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2. (a) The first integral vanishes because it is odd in qµ. Indeed, under the change in dummy variable

qµ → −qµ, the measure and f(q2) are invariant and∫
ddq qµ f(q2) =

∫
ddq − qµ f(q2).

The second integral is some Lorentz covariant matrix with two symmetric indices, and thus

must be proportional to gµν . Contracting the integral with gµν allows one to find the constant of

proportionality. We get∫
ddq qµqν f(q2) =

1

d
gµν

∫
ddq q2 f(q2).

(b) This integral is some Lorentz covariant matrix with four totally symmetric indices, and must be

proportional to (1/4)g(µνgρσ) = gµνgρσ + gµρgνσ + gµσgνρ. The constant of proportionality can

be found by contracting with gµνgρσ . The result is∫
ddq qµqνqρqσ f(q2) =

1

d(d+ 2)
(gµνgρσ + gµρgνσ + gµσgνρ)

∫
ddq (q2)2 f(q2).

3. We are to comptue the O[λ] correction to the propagator in φ4 theory, with action

L = −1

2
Zφ(∂µφ)

2 − 1

2
Zmm2φ2 − 1

4!
Zλλµ̃

ϵφ4.

We have included a factor of µ̃ϵ in the φ4 coupling, so that in d = 4 − ϵ, λ remains dimensionless. (φ

has dimension 1− ϵ/2 in d = 4− ϵ.) The relevant diagrams are

iΠ(k2) = +

=
1

2
(−iλµ̃ϵ)

∫
ddl

(2π)d
−i

l2 +m2 − iϵ
− i((Zφ − 1)k2 + (Zm − 1)m2).

Now, let us compute the integral, which is divergent for d ≥ 2. The dimensional regularization

scheme is to compute this integral in d < 2, and analytically continuing the resulting expression to

d = 4− ϵ. One may simply use the master formula (14.27), but I will do the integral here step by step.

These steps illustrate the generic case except that it does not require a Feynman reparametrization of

the denominator.

First, Wick rotate the time component. Recall that the poles of the propagator sit at ±(ω − iϵ) in the

l0 plane, so we may rotate the l0 contour clockwise by π/2. The time component then becomes a

euclidean component l0 = il̄d. The i arising from the measure then cancels the −i in the propagator,

and the iϵ may be set to zero since there are no poles in the euclidean propagator. This leaves us with

I :=

∫
ddl

(2π)d
−i

l2 +m2 − iϵ
=

dd l̄

(2π)d
1

l̄2 +m2
.

(Note that in the mostly minus metric convention, l2 will become −l̄2.)
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Next, we use the rotational invariance of the integral to write it in polar coordinates. The surface area

of the unit d ball is Ωd = 2πd/2/Γ(d/2). This may be derived by noting that

πd/2 =

∫
e−x2

1−...−x2
d dx1 . . . dxd = Ωd

∫ ∞

0

e−x2

xd−1dx = Ωd

∫ ∞

0

e−x2

(x2)d/2−1 1

2
dx2 =

Ωd

2
Γ(d/2).

(Recall that Γ(t) =
∫∞
0

xt−1e−x dx.) Thus

I =
2πd/2

Γ(d/2)

∫ ∞

0

l̄d−1 dl̄

(2π)d
1

l̄2 +m2

=
2πd/2

Γ(d/2)

∫ ∞

0

1

2

dl̄2

(2π)d
(l̄2)d/2−1 1

m2

1

1 + l̄2/m2

=
πd/2

Γ(d/2)
(m2)d/2−1

∫ ∞

0

d(l̄2/m2)

(2π)d
(l̄2/m2)d/2−1

1 + l̄2/m2
.

Now, we use the identity∫ ∞

0

dt
ta−1

(1 + t)a+b
= B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
,

so

I =
1

(4π)d/2
1

Γ(d/2)
(m2)d/2−1Γ(d/2)Γ(1− d/2)

Γ(1)

=
1

(4π)d/2
(m2)d/2−1Γ(1− d/2).

The analysis so far has been valid for d < 2, where the integral is convergent. However, the expression

we have written above is actually valid away from the poles of Γ, the nonpositive integers, ie. for d

not equal to a positive even number. We therefore analytically continue it, in particular to d = 4 − ϵ,

which is the region we are interested in.

We therefore have

iΠ(k2) =− iλm2µ̃ϵ

2

1

(4π)2

(
m2

4π

)−ϵ/2

Γ(−1 + ϵ/2)− i((Zφ − 1)k2 + (Zm − 1)m2)

=i
λm2

16π2

(
1

ϵ
+

1

2
+

1

2
log

m2

4πeγ µ̃2

)
− i((Zφ − 1)k2 + (Zm − 1)m2).

In the second equality, we have used the expansion of Γ near −1 (14.26)

Γ(−1 + ϵ/2) = −2

ϵ
+ γ − 1 +O[ϵ]

and used that

Xϵ = eϵ logX = 1 + ϵ logX +O[ϵ]2.

In order that Π(k2) is finite and µ-independent to order λ, while satisfying the renormalization con-

ditions Π(k2 = −m2) = 0, Π′(k2 = −m2) = 0, we must choose

Zφ − 1 = 0 +O[λ]2, Zm − 1 =
λ

16π2

(
1

ϵ
+

1

2
+

1

2
log

m2

µ2

)
,

with µ2 = 4πe−γ µ̃2.
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4. (a) [Ψ] = (d− 1)/2

(b) [gn] = d− n(d− 1) = n− (n− 1)d

(c) A scalar field has dimension [φ] = d/2 − 1 from the kinetic term (∂µφ)
2, so [gm,n] = d − n(d −

1)−m(d/2− 1) = n+m− (n+m/2− 1)d.

(d) The only renormalizable interaction in d = 4 is g1,1φΨ̄Ψ (the Yukawa interaction).

5. For d=2 case, we have [ϕ] = 0 and V = g1f1(ϕ)∂µϕ∂
µϕ + g2f2(ϕ), with g1 = [0], [g2] = 2 and f1, f2

arbitrary functions of ϕ.

For d=3, [ϕ] = 1
2 . By setting Vn = gnϕ

n and solving [gn] = 3− n
2 ≥ 0, we know that the renormalizable

interactions are in the form of g3ϕ3, g4ϕ4, g5ϕ5 and g6ϕ
6.

For d=4, [gn] = 4− n ≥ 0, V = g4ϕ
4.

For d=5, [gn] = 5− 3n
2 ≥ 0, V = g3ϕ

3.

For d=6, [gn] = 6− 2n ≥ 0, V = g3ϕ
3.
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