QFT HWS8 SOLUTIONS

PHY 610 QFT, Spring 2017
HWS Solutions

1. Since 8 is numerically equal to 7, it commutes with 7" while anticommuting with 7% and vs5. To
derive a few nice rules, we use the fact that v° and ~y5 are hermitian in Srednicki’s conventions while

everything else is antihermitian.

P = BTB=8y8=1°
¥o= BB =-pyB=4
W5 = —Bind = —Bivsf = ins

The bar operator is order-reversing (AB = BTA'3 = BBTBBATS = B A) and this will help in

evaluating the others.

Vhys = syt = —ysyt = P
= i [P
SHY = [k v = — A7 AR = — —[AY AH] = §H
0= =707 = =10
D55 = —iSHS = iy = iy S

2. (a) Relations derived in chapter 40 (based on general properties of momentum and angular momen-
tum) reveal three transformation laws for Dirac spinors:
POz, )P = ipU(-i,t)
T'(ZFH)T = Cy¥ (7, 1)
clw@z e = cuT(zt)

8|

\.Rl

From this, it follows that the ¥V bilinear is even under C, P and T. The scalar ¢ must therefore

be as well for the gy ¥V interaction to preserve these symmetries.

(b) The same transformations tell us that Wiy ¥ is even under C but odd under P and T. With a
goWiys ¥ interaction, we therefore need the field ¢ to be odd under P (pseudoscalar) and odd

under T (possibly a property without a name).

3. The tree level graphs for eTe™ — eTe™ (incoming momenta and spins p, s1; pa, s2, outgoing momenta

and spins ps, s3; p4, S4) are the ¢t and u diagrams

= (1) (00, (P1)ss (98)) (B (P2)1, () — 77—
- (*i9)2(17sl(p1)vs4(P4))(1752(pz)v33(P3))m~
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Note the relative minus sign between the two diagrams, arising from anticommuting ¥3 and W,.

Similarly, for o — ete™ (incoming momenta p1, p2, outgoing momenta and spins ps, s3; p4, s4), We

have the ¢ and v diagrams

—i(—ph + 1 +m) . —i(—ps +pb +m)

—t+m?2 — e —u+m? —ie

— (~ig)t.y (ps) ( ) 0s, (D1):

. At tree level, ete™ — pp proceeds via the ¢ and u channels (writing u; for us, (p;), etc. to reduce

clutter):

(g, ((CH )T S )y

—t +m? —u+m?

It helps simplify things if we use the on-shell condition (1 + m)u; = 0 at this point, so

+2m +2m
T = 92@2 (9/3 =+ 9/4 ) Up.

m2 —t m2 —u
Thus
+2m +2m +2m +2m
|T|2:g4ﬂ1 (anz_t +HT/:;2_u>U2T)2 (anz_t +H’r/;ll2_u>ul.

To simplify this, we think of |T|” as a trace, and use cyclicity to move the basis spinors next to each

other, in the form u; %1, and so on, and then use the spin averaging
Z us, (P1)Us, (P1) = —ph +m, Z Vs, (P2)0s, (P2) = —p — M
s1=% so==%

to eliminate the basis spinors. This yields

+2 +2 +2 +2
(TP = X gtwun (B0 BT g, (220 22

m2 —t m2 —u m2 —t m2 —u

s1isa—t H3+2m+y4+2m>(_m_m) (g@+2m+p/4+2m)

L4
— tr(—
19 i Hl+m)(m2—t m?—u m2—t m?-u

[ [0} o, + P
_ 4 tt uu tu ut
- <<m2t>2+<m2u>2+<m2t><m2u>>’
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and it remains to compute the gamma traces

4By = tr(—ph + m)(ps + 2m)(—po — m)(ps + 2m),
4@y, = tr(=ph +m)(pa + 2m)(=pp — m)(ph + 2m),
4Dy, = tr(—ph +m)(ps + 2m)(—ph — m)(ph + 2m),
APy = tr(=pp +m)(pa + 2m)(—pe — m)(ph + 2m).

The t and u channels are related by ps <+ p4, so it suffices to compute ®,; and ®,,. To compute
these traces, recall that the trace of an odd number of ~s vanishes, and trI = 4, try*y¥ = —4¢*",

tr YRy Py = 4(ghV gPT? — ghPgP? + g7 g¥?). ! Twill illustrate the process for ®;:

4Py =tr(—ph + m)(ps + 2m)(—pe — m)(ps + 2m)
=—dm*tr I +m? tr(leg@ + 49/19& + 2]7/19‘3 — 29@}7& —ps — 29&9@) + tr pipapens
=4 (—4m* — m*(4p1 - p3 + 4p1 - p2 — 4p2 - p3 — p3) + 2(p1 - p3)(p2 - p3) — (p1 - P2)p3)
=4 (—4m* —m?(2(t — m® — M?) +2(2m®* — 5) — 2(u — m* — M*) + M?)
+(1/2)(t = m® — M?)(u — m® — M?) + (1/2)M?(2m* — s))

7 1 1 9 1
=4 (2m4 +4m*M? — 5M4 + ot 57th - szu) :
In the fourth equality, we have converted to Mandelstam variables s = —(p1 + p2)? = 2m? — 2p; - po,

t=—(p1 —p3)? = m? + M? + 2p; - p3, u = m? + M? + 2p; - ps. (M? is the mass of the scalar.) In the
fifth equality we collect terms and use that s + ¢ + u = 2m? + 2M2.

A similar calculation may be done for ®,, and ®,,,, ®,; may be obtained by exchanging ¢ <> u (in
fact, 4, = ®,;). The results are

Oy = %(tu —m?2(9t +u) — Tm* + 8m2M? — M*),
Dy = L(tu — m?(9u +t) — Tm* + 8m>M? — M4),
By, = 2(—tu — 3m2(t +u) — 9m* + 8m>M? + M*) = B,,,.

Comparing with the result from e~ ¢ — e~ (48.26-29), we see that the amplitude is related by ex-
changing s with ¢, and multiplying by —1/2. At a diagrammatic level, this can be seen by the fact
that the ete™ — ¢ diagrams are those of e_¢ — e~ ¢, but rotated by 7/2. (The minus sign is due to
moving a fermion from the initial to final state, and the 1/2 is due to the fact thatine”¢ — e~ ¢ we

are summing over the final spin states of the electron, rather than averaging (see (46.9)).)
5. The calculation is virtually identical to ete™ — (¢ in Yukawa theory from the previous problem, and
indeed a very similar example of eTe™ — ~v is done in the text. I will therefore be brief.

The relevant tree level diagrams for e~y — e~ are (once again, with u; short for u,, (p1), and €/

short for ¢} (p1) and so on)

IThe index structures of these gamma traces are fixed by the cyclicity property of the trace. Alternatively, these identities are

derived in section 47.
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Pa - yz
b2
iT = +
b1 b3 p1 b3
. T e tm) it tm)
= et ((—ze%) e (—ieyu) + (—ieyy) e (—iey) | v,
s, using (v#7"...4°)T = By? ...y "B,
|7-|2 = 646;#656262(’@1Agp’u,g’L_LgA#l,ul,
where
’YV(_H/l — P+ m)Vu ’Yu(_g/l + Ko +m)y,
Auu = B + B .
—s+m —u+m
Averaging over initial, and summing over final states, with Y usti, = —p +m, 3, e/l = g", we
arrive at

<‘7-|2> — 64 ( <(I>SS> + <(I)su> + <(I)u8> + <(I)uu> 2) ,

(s—=m?)2  (s—=m?2)(u—m?2) (u—m?)
where
(Pus) = T try(=ph — 1o +m)Yu(=ph + M)V (=i — P + M)V (= +m),
(Bsu) =  try(—p, — P, + m)Vu(—ph + M0V (=ph + 1 + M)V (—ph + m),
and (®,,,) and (®,,) are obtained from (®,,) and (®P,,) respectively by s > u, ie. p2 > —pa.

To evaluate these traces, the following identities are useful:

’7“7}1 = gul/’yu’yy = _guz/gw/ = —4,
YN = Y(=29" = V) = 270,
Sy = =G tr I = =40, 5t VYo = 4(g,uugp0 = GupGve + g;mgup)'
I will quote the result after performing the gamma matrix algebra:
(®ss) =8p1 - (p1+p2) ps - (pr + p2) — 4(p1 + p2)°p1 - p3 — 16m*(p1 + p2)°

+16m*(p1 + p3) - (1 + p2) — 4m*p1 - ps + 16m*
=2(—su +m?(3s + u) + m?)

(@ou) = —8(p1 +p2) - (p1 — pa) p1 - p3 — Am>((p1 — pa) - (p1 +p2) + (1 + p3) - (P1 — pa)
+ (p1 +p3) - (p1 + p2) + p1 - p3) — 8m*
=2m?(—t + 4m?) = (D)
(Byu) = 2(—su+m?(3u+ s) +m?).

This is related to the ete™ — v cross section (59.22-25) by crossing symmetry s <> ¢, as remarked in
the problem.
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6. The tree level diagrams for eTe™ — eTe™ are

71_‘2” us(—iey” vy — ug(—iey")uy

719:” Vo (—iey” )vy.

= Ua(—tey")uy

Note the relative minus sign owing to anticommuting u; past 3. A similar calculation to that of the

above yields

7— 2 4 ss st ts tt

where, upon averaging over initial and summing over final spins,

tr((=ph +m)y" (=pe — m)y") tr((=ps + m)yu(=ph — M%),

tr((—pr +m)y” (=5 + m)vu(=pa — m) v (—pp — m)y")

L N[

and (@), (P4s) are obtained via exchanging ps <+ —ps. Performing the gamma matrix algebra yields

(Bgs) = 2(s% 4 2st + 2% — 8m?t + 8m*),

(®4) = 2(t% + 2st + 252 — 8m?2s + 8m?),

(Bg) = —2(u? — 8m2u + 12m*) = (Pyy).
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