QFT HWS8 SOLUTIONS

PHY 610 QFT, Spring 2017
HW7 Solutions

1. This is a straightforward verification.

2. 29 a) WithA =1+ dwand U(1 + dw) = I + (i/2)0w,,, M*", to linear order in dw, the left hand side
of (2.27) is

U(A) Lok p(z)U(A) = 0" p(x) — %&uw[M”p,@“gp(x)]
while the right hand side is

AF,0P (A1 x) =0F () + dwh ,0Pp(x) + (—0w,,x”) 0" O p(x))
=0 () + dwy, gt 0P () — dwy,zP 0" O ().

Taking the antisymmetric coefficient of dw (recall that dw is antisymmetric) yields the desired
equality.

b) We could use the hint and follow the method of problem 2.8, but since we have not done the
problem, it is probably quicker to verify the commutation relation of Sy explicitly. I will show
this, and then say a few words about the method of problem 2.8.

(S5, 8071 =(S")* 5(S77)° = (v > po)

=(=0)(g"*0f — (u = v)(—1)g"78] — (p > 7)) — (w & po)
= —¢"“g" 47 + 3 more from antisymmetry [uv], [po] — (uv < po)

= —1ig™(Sy7)*, + 3 more.

Therefore, S{j" is indeed a representation of the Lorentz group.

If we were to follow the hint, we should define the total angular momentum generator (J"*)* 5 =
L1755 + (S77)* 5. We showed in part (a) that J#” are the representation matrices for fields

in the vector representation. Working out problem 2.8, we find that £#”, which are the rep-
resentation matrices for scalar fields, satisfies the Lorentz algebra commutation relations, by
using the Jacobi identity. A similar argument will show that J#* also satisfies the Lorentz
algebra commutation relations. Finally, we notice that [S},”, £°?] = 0, which is to say, the spin
and orbital angular momenta do not mix, so the spin part Sy of the total angular momentum

must also satisfy the Lorentz algebra commutation relations.

¢) This is a straightforward computation. In matrix form,

00 0 0
00 —i 0
512_
v 0 i 0
0 0 0
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Note that (5{?)% = diag(0,1,1,0) and (S{?)**! = S]? for integer j. Therefore

Q12 = (—if)* 2] —i0)*+ 2j+1
exp(fzﬁSv):Z @) +Z @+ 1) SV?)
j=0
1 0 0 O 0 0 0 O 00 0 O
0 0 0 O 01 0 0 o 00 — O
= + cos 6 —isinf
0 0 0 O 0 010 0 ¢ 0
0 0 0 1 0 0 0O 0 0 0

d) This is a straightforward computation with the same steps as above, with a few factors of ¢

inserted.

36.1 In problem 2.9, we saw that, in the defining, or vector, representation of the Lorentz group
SO(3,1), Dy (A) = exp(—ifS;?) for a rotation of angle 6 about the 3 axis, and exp(—inS{?) for a
boost of rapidity 7 along the 3 axis. (I have used the notation Dy (A) = A to emphasize that A
here to distinguish between the abstract element A € SO(3, 1) and its action on the vector repre-
sentation.) This is the finite version of the statement (2.32), which states that the exponential map
sends the vector representation S/ of the Lie algebra so(3, 1) to the vector representation Dy of
the Lie group SO(3,1). Specifically, the exponential map sends 657 to a rotation of # about the
3 axis and nSP? to a boost of i along the 3 axis.

Actually, since the representations A — Dy (A) and S** — S} are homomorphisms, the expo-
nential map actually lifts to the abstract Lie algebra and Lie group, so in fact A = exp(—i6S5'?)
for an abstract element A representing a rotation of 6 about the 3 axis. Therefore, the exponential
map indeed relates any representation of the Lie algebra to one of the Lie group. In particular,

for the Dirac spinor representation we have the desired relations.

. : —paa=bb _ o ab_ab i o . el
(a) The relation 0/,0,,i = —2¢€qa€,; may be turned into o#*“G,” = —2¢%’¢?” using the definition

grad = eabe“bogb. This is now what we need in order to prove the first Fierz identity.

(o x) 0dauxa) = (dao" xea) (500 xa0)

= —20xlae™xL) (X2ae ™ xar)

= —2(xIxd) (eaxa)

The second Fierz identity simply says that the same result should be obtained upon switch-
ing x2 <> x4. This is clear above. When we move x4 past x2, we get a minus sign by anti-
commutativity, but then we get another one by reversing the spinor index positions to agree

with our conventions.

(b) The Fierz identities in Dirac form follow from the given definitions and

o 0] , [0 o Lo o
R s | guab 0 |

0 0
Applying these will turn (¥1v# P, W) (¥3v* Pr¥4) into (XJ{W‘XQ)(X;@LX‘;) and —2(W¥; PRVS) (VS PLWs)

into —Q(XJ{X;)(MXQ).

b, =

Page 2 of ??



QFT HWS8 SOLUTIONS

(c) As an example, we may apply the above rules to prove the middle identity. The left hand side
is U1 LUy = & x2 while the right hand side is U§ P, U = x2&;. These are equal for the same

reason as before, where we need anti-commutativity and a reversal of the index positions.

4. In this problem, we see that the energy momentum tensor in a theory with Lorentz invariance can be
made symmetric. Recall in homework 2, we noted that the canonical energy momentum tensor needs
not be symmetric, but you may know that the energy momentum tensor is also the tensor which
couples to the (symmetric) metric in general relativity. The solution to this is that the tensor which
appears in general relativity is actually the improved, or Belinfante energy momentum tensor, which

we will derive in this problem.

(a) Recall that the (canonical) energy momentum tensor is the Noether current corresponding to
spacetime translations dpa(xz) = —a*d,pa(x). This may be derived either by the method of
section 22, noting that the lagrangian varies into a total derivative d, K* with K# = —a*L, or by
varying the action with a spacetime dependent variation dp4(z) = a*(x)d,p4(z) and finding
the coefficient of 9,,a”. Either way, we obtain the desired energy momentum tensor. (The A index
doesn’t affect anything.)

(b) Consider an infinitesimal lorentz transformation dp 4 (z) = (2/2)dw,.., (5" 4P 0op (x)—dwh,a¥dupa(x) =
dwpuw ((1/2)(SH) A% - §Bx70")pp(z) (this is the infinitesimal version of (36.66)). The lagrangian
varies into a total derivative, 6L = —dw,, 2"0"L = —éw,, 0" (z¥ L), where we have used that

O*x¥ = g"” vanishes when contracted with the antisymmetric dw,,. Therefore, the Noether

current is

- pvp _ 2 (qur _ Py B v

2(5w,,pj\/l 8(3}L@A)5ww (2(5’ )A P 5,4) pB + 0w, L

oL B
wp i(SHY _ glegrlsB ulo vl p
= M 3 Bpn) (z( A T A) v+ "'z
=THlegrl BHP,

where BHP = —i(@L/@(@H@A))(S“”)ABch is the Belinfante correction term.

(c) Using 9, M*#¥? = 0 and the above expression for M*"?, we get
0 zau(Tu[pr] + BHVP)
:8HT“[px”] + Tu[p(gz] +9,B"P
=0+ TP 9, BHP.
irst, we show that 1s symmetric:
(d) Fi h hat ©#" is sy i
ol —plw] | lap(BP[HV] _ Blulelv] _ B[V\plu])
2
=7l 9,BP =0,

where we have used that B is antisymmetric in p, v.

Next, the correction terms are divergenceless,

1
0O = T1) = 50,0,(B" — B'" — B") =),
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so the conservation of T#" implies the conservation of ©#”. In the second equality above we

have used that B"** is antisymmetric in p, p.

Finally, to show that [ d®z T% = [ d3z ©", note that % — T = 9,(B”*” — B%" — B"*), and
the p = 0 term does not contribute, since B — B% — B9 = (. Therefore, 0% — T is a spatial

total divergence, and assuming that fields go to zero at infinity, its spatial integral vanishes.

(e) First, we show that =#*# is conserved:
9, =P = 3M(@u[pr]) — @u[p(gz] — Qv — 0,

where we have used that ©# is conserved in the second equality and that it is symmetric in the

last.

Next, we show that Z°# — M%7 is a spatial total derivative:

EOVp MOVp [ TO[ ) vl BO’/P

(80((300[) BOap _ BpnO)xv) _ (BVO/) _ BOup _ Bpl/O) _ BOl/p) _ (P o V)

1
(25[, BoOp _ BOop _ BpUO)SUV _ (P o V)) _ Bpr
1
T2
1
=5 (Da (BT = B — BP)3%)) — (p ¢+ v)

In the last equality, the extra B terms on the right cancel due to antisymmetry in p, v and in the
second and third indices of B. Similarly to the previous part, the temporal component o = 0
vanishes since B — BY — BP0 — (, so we have shown that = — M%7 is a spatial total

derivative (and hence their spatial integrals coincide).

(f) For a left handed Weyl spinor, S = (i/2)o*”, where the notation ¥ := (1/2)(c*5"” — o”c"),
o = (1/2)(a*0” — V") is used (spinor indices a,b = 1,2 suppressed). The lagrangian is
L =ipTard, b — (m/2) (1 + 1TpT). From the above results, we have”

T = g" L — it ahov,
BHvP — %ﬁJT&“JW)W
The improved energy momentum tensor is therefore
M = g" L —ip a0 + iap (YT (aPot” — GtaP” — G aPr)p).

Let us check that ©*” is manifestly symmetric. We will need the equations of motion, i9,¢5°” =

m,16° 0, = map, as well as the identities 0#5” + 0¥ = —2¢*" = g*0” + 67 o*. Keeping this

1Since fermions anticommute, it actually matters which chrectlon we take the derivative with respect to 9,,7. We should take the

derivative from the side where we multiply 0", ie. either a8, L 8”¢ ord"y 5 (g; IR
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in mind, we simplify ©*":
O =g L — 159" ) + T + 20,01 (3 (9 + 0¥5) + 5 (9 + 05"
+ %W(apaﬂ” +G"(g" + aVaP) + G (" + o"5P))Db
=L — ipte 0y + Sy + L00Te s — Dug
+ w}‘(awop —2g° ual/]) RUNE ¢T ual/)w wTngW
i _ i
=g L+ (o + eyl 4+ 29"+ 0 w* )+ 700 1e ) — Sty

For the 11570#"1) term in the first line, we have used the identity 6°0"” — H5F = —2grlrgvl,
Now, note that (35.17) ()4 = (1/2)€%(c" 0%, — o¥,0".) is symmetric in a,c, so Yo’ =

aa” cé aa” cé

P (") 0e1® = 0 (recall that the ¥s anticommute). Similarly, 1/f6#*4" = 0, so we obtain

O =gt L + g" (Y + piapt) + ( Oty — pTarg)y)
:gwmww + z(a(uwav Y — M&(/@V)w))

which is manifestly symmetric. Notice that these currents are not hermitian, because the la-
grangian is hermitian only up to a total derivative. If we had started with the hermitian la-
grangian £ = (i/2)(¢ 610,00 — ObTar) — (m/2) (¢ + ¢TyT), we would obtain hermitian
currents.

For a Dirac spinor, S** = (i/2)y*", where v** := (1/2)[y*,7"]. The lagrangian is £ = i¥~y*0,, ¥ —

mUW. From the above results we get
TH = ghv [ — i TAH " T
BHVP — %\I,,Yu,yvmp’
yielding
OM = g L — iUy OV + iap(@(ypyﬂy — APV VPRV,

A similar simplification as in the Weyl spinor case, with the equations of motion (iv#0, —m)¥ =
0,70, ¥y* + m¥ = 0, and the identity {y*,~7"} = —2¢"" yields

om = —%\Iw(“a”hp + iawxiw”)xp.
(Notice that £ = 0 on shell, since £ is linear in 9, ¥.)

(a) Unlike a Dirac mass term, a Majorana mass term mu») +hc breaks charge conservation; it is only
invariant under real unitary transformations, ie. orthogonal transformations O(V). (Explicitly,
Vi = UinbUjihy, s0 UL Uy = oy for invariance.)

(b) Recall that, in d = 1 + 3, a Majorana spinor is constructed out of a Weyl spinor and its conjugate,

(Jf’&). Therefore, the lagrangian for a Majorana spinor may be written, up to a total derivative,
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()

(d)

(e)

as that of a Weyl spinor (suppressing flavor indices):

i T
£=30"Cy,

i a —e? ch' e
25 (ﬂ’a Yt ) < _€a1}> (Uui)c ' > Ou (w%)

,Ll)a Ztca#wfc+w'faauaca ¢)

=3
= (0o ) — ol 4 pliae )
8

l\D\N l\D\@ w\s

(Yot yh) +iyTer o,

where in the last equality we have used that —9,,¢%¢", 1 = Yot 8, 0% = 1k 0,ba, owing
to the anticommutivity of fermions, and that e?gt, ¢¢d = gida,

Hence, the invariance group is the same as that of the Weyl group, U(N).

Using the same procedure as above, the Majorana mass term may be written as a Weyl mass

term. Therefore, the invariance group is the same as that in part a, O(N).

Recall that a Dirac field consists of two Weyl spinors, which we may choose to be left handed,
and write as ¥ = (éxf) The Dirac action then may be expanded, up to a total derivative, as the
sum of the two Weyl actions. The invariance group is therefore U(2N). (The x and ¢ fields are
allowed to interchange. The subgroup which does not mix x and £ is U(N) x U(N).)

By the same reasoning, the massive Dirac action has invariance group O(2N). This O(2N) sym-
metry does not seem manifest looking at the mass terms m¥¥ = m(x¢ + ¢t h), but by going
back to the real basis (36.14-15), 1 = (x + £)/V/2,92 = —i(x — £)/V/2, we may write the mass
term as (m/2)(Y11h1 + ot + ¥i] + wiel), making the O(2N) symmetry manifest.
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