
QFT HW8 SOLUTIONS

PHY 610 QFT, Spring 2017

HW7 Solutions

1. This is a straightforward verification.

2. 2.9 a) With Λ = 1 + δω and U(1 + δω) = I + (i/2)δωµνM
µν , to linear order in δω, the left hand side

of (2.27) is

U(Λ)−1∂µφ(x)U(Λ) = ∂µφ(x)− i

2
δωνρ[M

νρ, ∂µφ(x)]

while the right hand side is

Λµρ∂̄
ρφ(Λ−1x) =∂µφ(x) + δωµρ∂

ρφ(x) + (−δωνρxρ)∂ν∂µφ(x))

=∂µφ(x) + δωνρg
µν∂ρφ(x)− δωνρx

ρ∂ν∂µφ(x).

Taking the antisymmetric coefficient of δω (recall that δω is antisymmetric) yields the desired

equality.

b) We could use the hint and follow the method of problem 2.8, but since we have not done the

problem, it is probably quicker to verify the commutation relation of SV explicitly. I will show

this, and then say a few words about the method of problem 2.8.

[SµνV , SρσV ]αγ =(SµνV )αβ(S
ρσ
V )βγ − (µν ↔ ρσ)

=(−i)(gµαδνβ − (µ↔ ν))((−i)gρβδσγ − (ρ↔ σ))− (µν ↔ ρσ)

=− gµαgρνδσγ + 3 more from antisymmetry [µν], [ρσ] − (µν ↔ ρσ)

=− igρν(SµσV )αγ + 3 more.

Therefore, SµνV is indeed a representation of the Lorentz group.

If we were to follow the hint, we should define the total angular momentum generator (J µν)αβ =

Lµνδαβ + (SµνV )αβ . We showed in part (a) that J µν are the representation matrices for fields

in the vector representation. Working out problem 2.8, we find that Lµν , which are the rep-

resentation matrices for scalar fields, satisfies the Lorentz algebra commutation relations, by

using the Jacobi identity. A similar argument will show that J µν also satisfies the Lorentz

algebra commutation relations. Finally, we notice that [SµνV ,Lρσ] = 0, which is to say, the spin

and orbital angular momenta do not mix, so the spin part SV of the total angular momentum

must also satisfy the Lorentz algebra commutation relations.

c) This is a straightforward computation. In matrix form,

S12
V =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 .
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Note that (S12
V )2j = diag(0, 1, 1, 0) and (S12

V )2j+1 = S12
V for integer j. Therefore

exp(−iθS12
V ) =

∞∑
j=0

(−iθ)2j

(2j)!
(S12
V )2j +

∞∑
j=0

(−iθ)2j+1

(2j + 1)!
(S12
V )2j+1

=


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

+ cos θ


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

− i sin θ


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 .

d) This is a straightforward computation with the same steps as above, with a few factors of i

inserted.

36.1 In problem 2.9, we saw that, in the defining, or vector, representation of the Lorentz group

SO(3, 1), DV (Λ) = exp(−iθS12
V ) for a rotation of angle θ about the 3 axis, and exp(−iηS03

V ) for a

boost of rapidity η along the 3 axis. (I have used the notation DV (Λ) = Λ to emphasize that Λ

here to distinguish between the abstract element Λ ∈ SO(3, 1) and its action on the vector repre-

sentation.) This is the finite version of the statement (2.32), which states that the exponential map

sends the vector representation SµνV of the Lie algebra so(3, 1) to the vector representation DV of

the Lie group SO(3, 1). Specifically, the exponential map sends θS12
V to a rotation of θ about the

3 axis and ηS03
V to a boost of η along the 3 axis.

Actually, since the representations Λ 7→ DV (Λ) and Sµν 7→ SµνV are homomorphisms, the expo-

nential map actually lifts to the abstract Lie algebra and Lie group, so in fact Λ = exp(−iθS12)

for an abstract element Λ representing a rotation of θ about the 3 axis. Therefore, the exponential

map indeed relates any representation of the Lie algebra to one of the Lie group. In particular,

for the Dirac spinor representation we have the desired relations.

3. (a) The relation σµcċσµdḋ = −2ϵcdϵċḋ may be turned into σ̄µaȧσ̄ḃbµ = −2ϵȧḃϵab using the definition

σ̄µaȧ = ϵabϵȧḃσµ
bḃ

. This is now what we need in order to prove the first Fierz identity.

(χ†
1σ̄
µχ2)(χ

†
3σ̄µχ4) = (χ†

1ȧσ̄
µȧaχ2a)(χ

†
3ḃ
σ̄ḃbµ χ4b)

= −2(χ†
1ȧϵ

ȧḃχ†
3ḃ
)(χ2aϵ

abχ4b)

= −2(χ†
1χ

†
3)(χ2χ4)

The second Fierz identity simply says that the same result should be obtained upon switch-

ing χ2 ↔ χ4. This is clear above. When we move χ4 past χ2, we get a minus sign by anti-

commutativity, but then we get another one by reversing the spinor index positions to agree

with our conventions.

(b) The Fierz identities in Dirac form follow from the given definitions and

PL =

[
δca 0

0 0

]
, PR =

[
0 0

0 δȧċ

]
, γµ =

[
0 σµ

aḃ

σ̄µȧb 0

]
.

Applying these will turn (Ψ̄1γ
µPLΨ2)(Ψ̄3γ

µPRΨ4) into (χ†
1σ̄
µχ2)(χ

†
3σ̄µχ4) and −2(Ψ̄1PRΨ

C
3 )(Ψ̄

C
4 PLΨ2)

into −2(χ†
1χ

†
3)(χ4χ2).
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(c) As an example, we may apply the above rules to prove the middle identity. The left hand side

is Ψ̄1PLΨ2 = ξ1χ2 while the right hand side is Ψ̄C
2 PLΨ

C
1 = χ2ξ1. These are equal for the same

reason as before, where we need anti-commutativity and a reversal of the index positions.

4. In this problem, we see that the energy momentum tensor in a theory with Lorentz invariance can be

made symmetric. Recall in homework 2, we noted that the canonical energy momentum tensor needs

not be symmetric, but you may know that the energy momentum tensor is also the tensor which

couples to the (symmetric) metric in general relativity. The solution to this is that the tensor which

appears in general relativity is actually the improved, or Belinfante energy momentum tensor, which

we will derive in this problem.

(a) Recall that the (canonical) energy momentum tensor is the Noether current corresponding to

spacetime translations δφA(x) = −aµ∂µφA(x). This may be derived either by the method of

section 22, noting that the lagrangian varies into a total derivative ∂µKµ with Kµ = −aµL, or by

varying the action with a spacetime dependent variation δφA(x) = aµ(x)∂µφA(x) and finding

the coefficient of ∂µaν . Either way, we obtain the desired energy momentum tensor. (TheA index

doesn’t affect anything.)

(b) Consider an infinitesimal lorentz transformation δφA(x) = (i/2)δωµν(S
µν)A

B
φB(x)−δωµνxν∂µφA(x) =

δωµν((i/2)(S
µν)A

B − δBAx
ν∂µ)φB(x) (this is the infinitesimal version of (36.66)). The lagrangian

varies into a total derivative, δL = −δωµνxν∂µL = −δωµν∂µ(xνL), where we have used that

∂µxν = gµν vanishes when contracted with the antisymmetric δωµν . Therefore, the Noether

current is

1

2
δωνρMµνρ = − ∂L

∂(∂µφA)
δωµν

(
i

2
(Sµν)A

B − xρ∂νδBA

)
φB + δωµνx

νL

⇒ Mµνρ =− ∂L
∂(∂µφA)

(
i(Sµν)A

B − x[ρ∂ν]δBA

)
φB + gµ[ρxν]L

=Tµ[ρxν] +Bµνρ,

where Bµνρ = −i(∂L/∂(∂µφA))(Sµν)ABφB is the Belinfante correction term.

(c) Using ∂µMµνρ = 0 and the above expression for Mµνρ, we get

0 =∂µ(T
µ[ρxν] +Bµνρ)

=∂µT
µ[ρxν] + Tµ[ρδν]µ + ∂µB

µνρ

=0 + T [νρ] + ∂µB
µνρ.

(d) First, we show that Θµν is symmetric:

Θ[µν] =T [µν] +
1

2
∂ρ(B

ρ[µν] −B[µ|ρ|ν] −B[ν|ρ|µ])

=T [µν] + ∂ρB
ρµν = 0,

where we have used that Bρµν is antisymmetric in µ, ν.

Next, the correction terms are divergenceless,

∂µ(Θ
µν − Tµν) =

1

2
∂µ∂ρ(B

ρµν −Bµρν −Bνρµ) = 0,
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so the conservation of Tµν implies the conservation of Θµν . In the second equality above we

have used that Bνρµ is antisymmetric in ρ, µ.

Finally, to show that
∫
d3x T 0ν =

∫
d3x Θ0ν , note that Θ0ν − T 0ν = ∂ρ(B

ρ0ν −B0ρν −Bνρ0), and

the ρ = 0 term does not contribute, sinceB00ν−B00ν−Bν00 = 0. Therefore, Θ0ν−T 0ν is a spatial

total divergence, and assuming that fields go to zero at infinity, its spatial integral vanishes.

(e) First, we show that Ξµνρ is conserved:

∂µΞ
µνρ = ∂µ(Θ

µ[ρxν]) = Θµ[ρδν]µ = Θ[νρ] = 0,

where we have used that Θµν is conserved in the second equality and that it is symmetric in the

last.

Next, we show that Ξ0νρ −M0νρ is a spatial total derivative:

Ξ0νρ −M0νρ =(Θ0[ρ − T 0[ρ)xν] −B0νρ

=

(
1

2
∂σ(B

σ0ρ −B0σρ −Bρσ0)xν − (ρ↔ ν)

)
−B0νρ

=
1

2

(
∂σ((B

σ0ρ −B0σρ −Bρσ0)xν)− (Bν0ρ −B0νρ −Bρν0)−B0νρ
)
− (ρ↔ ν)

=
1

2

(
∂σ((B

σ0ρ −B0σρ −Bρσ0)xν)
)
− (ρ↔ ν)

In the last equality, the extra B terms on the right cancel due to antisymmetry in ρ, ν and in the

second and third indices of B. Similarly to the previous part, the temporal component σ = 0

vanishes since B00ρ − B00ρ − Bρ00 = 0, so we have shown that Ξ0νρ − M0νρ is a spatial total

derivative (and hence their spatial integrals coincide).

(f) For a left handed Weyl spinor, SµνL = (i/2)σµν , where the notation σµν := (1/2)(σµσ̄ν − σν σ̄µ),

σ̄µν := (1/2)(σ̄µσν − σ̄νσµ) is used (spinor indices a, b = 1, 2 suppressed). The lagrangian is

L = iψ†σ̄µ∂µψ − (m/2)(ψψ + ψ†ψ†). From the above results, we have1

Tµν = gµνL − iψ†σ̄µ∂νψ,

Bµνρ =
i

2
ψ†σ̄µσνρψ.

The improved energy momentum tensor is therefore

Θµν = gµνL − iψ†σ̄µ∂νψ +
i

4
∂ρ
(
ψ†(σ̄ρσµν − σ̄µσρν − σ̄νσρµ)ψ

)
.

Let us check that Θµν is manifestly symmetric. We will need the equations of motion, i∂ρψ†σ̄ρ =

mψ, iσ̄ρ∂ρψ = mψ, as well as the identities σµσ̄ν + σν σ̄µ = −2gµν = σ̄µσν + σ̄νσµ. Keeping this

1Since fermions anticommute, it actually matters which direction we take the derivative with respect to ∂µψ. We should take the

derivative from the side where we multiply ∂νψ, ie. either
←−
∂ L

∂(∂µψ)
∂νψ or ∂νψ

−→
∂ L

∂(∂µψ)
.
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in mind, we simplify Θµν :

Θµν =gµνL − iψ†σ̄µ∂νψ +
m

4
ψσµνψ +

i

4
∂ρψ

†(σ̄µ(gρν + σν σ̄ρ) + σ̄ν(gρµ + σµσ̄ρ))ψ

+
i

4
ψ†(σ̄ρσµν + σ̄µ(gρν + σν σ̄ρ) + σ̄ν(gρµ + σµσ̄ρ))∂ρψ

=gµνL − iψ†σ̄µ∂νψ +
m

4
ψσµνψ +

i

4
∂(µψ†σ̄ν)ψ − m

2
ψψgµν

+
i

4
ψ†(σ̄µν σ̄ρ − 2gρ[µσ̄ν])∂ρψ +

i

4
ψ†σ̄(µ∂ν)ψ − m

2
ψ†ψ†gµν

=gµνL+
m

4
(ψσµνψ + ψ†σ̄µνψ† + 2gµν(ψψ + ψ†ψ†)) +

i

4
∂(µψ†σ̄ν)ψ − i

4
ψ†σ̄(µ∂ν)ψ.

For the ψ†σ̄ρσµνψ term in the first line, we have used the identity σ̄ρσµν − σ̄µν σ̄ρ = −2gρ[µσ̄ν].

Now, note that (35.17) (σµν)ac = (1/2)ϵȧċ(σµaȧσ
ν
cċ − σνaȧσ

µ
cċ) is symmetric in a, c, so ψσµνψ =

ψa(σµν)acψ
c = 0 (recall that the ψs anticommute). Similarly, ψ†σ̄µνψ† = 0, so we obtain

Θµν =gµνL+
m

2
gµν(ψψ + ψ†ψ†) +

i

4
(∂(µψ†σ̄ν)ψ − ψ†σ̄(µ∂ν)ψ)

=gµνmψ†ψ† +
i

4
(∂(µψ†σ̄ν)ψ − ψ†σ̄(µ∂ν)ψ),

which is manifestly symmetric. Notice that these currents are not hermitian, because the la-

grangian is hermitian only up to a total derivative. If we had started with the hermitian la-

grangian L = (i/2)(ψ†σ̄µ∂µψ − ∂µψ
†σ̄µψ) − (m/2)(ψψ + ψ†ψ†), we would obtain hermitian

currents.

For a Dirac spinor, Sµν = (i/2)γµν , where γµν := (1/2)[γµ, γν ]. The lagrangian is L = iΨ̄γµ∂µΨ−
mΨ̄Ψ. From the above results we get

Tµν = gµνL − iΨ̄γµ∂νΨ,

Bµνρ =
i

2
Ψ̄γµγνρΨ,

yielding

Θµν = gµνL − iΨ̄γµ∂νΨ+
i

4
∂ρ(Ψ̄(γργµν − γµγρν − γνγρµ)Ψ).

A similar simplification as in the Weyl spinor case, with the equations of motion (iγµ∂µ−m)Ψ =

0, i∂µΨ̄γµ +mΨ̄ = 0, and the identity {γµ, γν} = −2gµν yields

Θµν = − i

4
Ψ̄γ(µ∂ν)Ψ+

i

4
∂(µΨ̄γν)Ψ.

(Notice that L = 0 on shell, since L is linear in ∂µΨ.)

5. (a) Unlike a Dirac mass term, a Majorana mass term mψψ+hc breaks charge conservation; it is only

invariant under real unitary transformations, ie. orthogonal transformations O(N). (Explicitly,

ψjψj 7→ UjkψkUjlψl, so UTkjUjl = δkl for invariance.)

(b) Recall that, in d = 1+ 3, a Majorana spinor is constructed out of a Weyl spinor and its conjugate,(
ψa

ψ†ȧ

)
. Therefore, the lagrangian for a Majorana spinor may be written, up to a total derivative,
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as that of a Weyl spinor (suppressing flavor indices):

L =
i

2
ΨTCγµ∂µΨ

=
i

2

(
ψa ψ†ȧ

)(−ϵab
−ϵȧḃ

)(
σµbċ

σ̄µḃc

)
∂µ

(
ψc

ψ†ċ

)

=
i

2

(
ψaσµaċ∂µψ

†ċ + ψ†ȧσ̄µȧc∂µψc
)

=
i

2

(
∂µ(ψσ

µψ†)− ∂µψ
aσµaċψ

†ċ + ψ†ȧσ̄µȧc∂µψc
)

=
i

2
∂µ(ψσ

µψ†) + iψ†σ̄µ∂µψ,

where in the last equality we have used that −∂µψaσµaċψ†ċ = ψ†ċσµaċ∂µψ
a = ψ†

ċ σ̄
µ
ċa∂µψa, owing

to the anticommutivity of fermions, and that ϵabσµbċϵ
ċḋ = σ̄µḋa.

Hence, the invariance group is the same as that of the Weyl group, U(N).

(c) Using the same procedure as above, the Majorana mass term may be written as a Weyl mass

term. Therefore, the invariance group is the same as that in part a, O(N).

(d) Recall that a Dirac field consists of two Weyl spinors, which we may choose to be left handed,

and write as Ψ =
(
χ
ξ†

)
. The Dirac action then may be expanded, up to a total derivative, as the

sum of the two Weyl actions. The invariance group is therefore U(2N). (The χ and ξ fields are

allowed to interchange. The subgroup which does not mix χ and ξ is U(N)× U(N).)

(e) By the same reasoning, the massive Dirac action has invariance group O(2N). This O(2N) sym-

metry does not seem manifest looking at the mass terms mΨ̄Ψ = m(χξ + ξ†χ†), but by going

back to the real basis (36.14-15), ψ1 = (χ + ξ)/
√
2, ψ2 = −i(χ − ξ)/

√
2, we may write the mass

term as (m/2)(ψ1ψ1 + ψ2ψ2 + ψ†
1ψ

†
1 + ψ†

2ψ
†
2), making the O(2N) symmetry manifest.
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