QFT HW5 SOLUTIONS

PHY 610 QFT, Spring 2017
HW6 Solutions

1. (a) Withincoming and outgoing electron labeled by p and p’ and the incoming and outgoing photon
by k and £/, we could set, in the FT frame:
p :(ma 0,0, 0)
k =(w,0,0,w)

k' =(w',w'sind, 0,w’cost)

p=p+k—k

Then we have s = —(p + k)? = m? + 2mw and u = —(p — k') = m? — 2muw'.

(b) Again we could start from p’ = p + k — k" and may end up with:

() =—m*=(p+k—K)?
=p? + k% + k'? + 2pk — 2pk’ — 2kK'

= —m? — 2mw + 2mw’ — 2ww’(cosh — 1)

Then the relationship is
1 1
1—cost =m(— — —
cos® = m( = w)
(c) From the textbook we may have an expression of 7, and with the help of what we found in part

(b), we could recast it as:

m2 4+ mw +ww'  m?—mw Fww 2m2 4 mw — mw’
|7d|2 :327'('2042[ 2 —|— 5 — ; ]
w w ww
1 1 2 1 1 w W
9.2 27 2
=32ma’(m (ﬁ+ﬁ_ww’)+2m($_ﬁ)+ﬁ+z}

!/
:327r2a2(£/ +2 5in’6)
woow

Now we could take a look at w’. Expressing w’ as a function of w and # and then take d differen-

tial, we may have:
2 ”2

e dcost = w—dcosQ
m

[
do = [m 4+ w(1 — cosh)]?

With t = 2m? — s — u = 2m(w’ — w), we find:

12
dt = 2mdw’ = 2w dcost = w—dQFT
T

Finally, by putting all these components together, we get:

do w?a? w W

. 2
= 2 (4= —sin®
dQpr 2m2w2(w’ + w o )
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2. (a) We could get the answer immediately by putting (11.53) and (11.23) together.

(b) Taking care that on the left-hand side, we have a two-index tensor and the only vector building
block would be k. Then all possible terms we could write down would be g*” and k*k”. Then
since A and B could only depend on some scalar variables, yet the only candidate, k* = —m? is

not dimensionless, we know that A and B must be pure numbers.
(c) Withm = 0, we have |k]| = % Integrating over df2 may give us a factor 4.

(d) by projecting out the g** or k*k*, we may have :
/ (K, k) ALPSs (k) = (44 + B)i2

/ (b)) (kKL ALPSa (k) = (A + B) (k)2

Noting that we have § function in dLIPSs(k), enforcing k1/ + ki, = k. Also the with the help of
on-shell condition, we may make a replacement: (kk})(kk5) — @ and (k1k5) — % Equations

above are simplified to:

1
4A+ B=—o
* 167
At B——t
327

which yields A = ;- and B = 51—

3. (a) Thereisa U(1) symmetry acting as 1 + €1, of = e 007, o > e g, b s 3.

(b) Using either j* = (0L£/00,¢)dyp, or varying the action under a spacetime dependent symmetry

transformation #(x), and collecting the coefficient of 0,6, we get
3" =i (10" — 0101 — 20" 5 + 0" paps)

The Noether charge is
Q= /dSw i (p10°¢7 — 00197 — 02005 + 0"p23)

Substituting the mode expansions

d3k ikx —ikx .
@j(x):/m(%(k)ek +b}(k)€ ), Jj=12

yields

3 1
Q= [ G (o000 = b1 ()8} ) = e} R)aal0) + ()} 1)

that is, the Noether charge counts the difference between the number of ¢; and ¢, particles (with
antiparticles contributing opposite signs).

(c) At = 0thereisa U(1) x U(1) symmetry, acting as 1 +— €11, o 1 €925,
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(d) When ¢ = 0, m; = mo, the symmetry is enhanced to an SO(4) symmetry rotating ¢; =
(Re1, Se1, Rpa, Sps). The Noether current is

gt =10"0i(Ta)ij 0y,

where (T,);; are the (hermitian) generators of SO(4) in the defining representation.

22
x Yy ox 77> Yy =z N Yy
(@) (OITA(z)A(y)|0) = + . + : +OV’]
Z1 z9 Z1
1
= A:M/ — )\2a2 /d421d422(A$1A12A12A2y + EAx1A12A22A1y) + O[)\3]
/0
\
T ) T Y T \ ! Y
®) OTB@)BI0) = === ===~ G SR emn’ Lo
z 2 21

1 1
= Amy — )\2a2/d421d422 5A11A12A12A2y + iAQ,B/d421 §Ax1A11A1y + O[)\g]
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