
QFT HW5 SOLUTIONS

PHY 610 QFT, Spring 2017

HW6 Solutions

1. (a) With incoming and outgoing electron labeled by p and p′ and the incoming and outgoing photon

by k and k′, we could set, in the FT frame:

p =(m, 0, 0, 0)

k =(ω, 0, 0, ω)

k′ =(ω′, ω′sinθ, 0, ω′cosθ)

p′ =p+ k − k′

Then we have s = −(p+ k)2 = m2 + 2mω and u = −(p− k′)2 = m2 − 2mω′.

(b) Again we could start from p′ = p+ k − k′ and may end up with:

(p′)2 = −m2 =(p+ k − k′)2

=p2 + k2 + k′2 + 2pk − 2pk′ − 2kk′

=−m2 − 2mω + 2mω′ − 2ωω′(cosθ − 1)

Then the relationship is

1− cosθ = m(
1

ω′ −
1

ω
)

(c) From the textbook we may have an expression of T , and with the help of what we found in part

(b), we could recast it as:

|T |2 =32π2α2[
m2 +mω + ωω′

ω2
+

m2 −mω′ + ωω′

ω′2 − 2m2 +mω −mω′

ωω′ ]

=32π2α2[m2(
1

ω2
+

1

ω′2 − 2

ωω′ ) + 2m(
1

ω
− 1

ω′ ) +
ω

ω′ +
ω′

ω
]

=32π2α2(
ω

ω′ +
ω′

ω
− sin2θ)

Now we could take a look at ω′. Expressing ω′ as a function of ω and θ and then take d differen-

tial, we may have:

dω′ =
mω2

[m+ ω(1− cosθ)]2
dcosθ =

ω′2

m
dcosθ

With t = 2m2 − s− u = 2m(ω′ − ω), we find:

dt = 2mdω′ = 2ω′2dcosθ =
ω′2

π
dΩFT

Finally, by putting all these components together, we get:

dσ

dΩFT
=

ω′2α2

2m2ω2
(
ω

ω′ +
ω′

ω
− sin2θ)
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2. (a) We could get the answer immediately by putting (11.53) and (11.23) together.

(b) Taking care that on the left-hand side, we have a two-index tensor and the only vector building

block would be k. Then all possible terms we could write down would be gµν and kµkν . Then

since A and B could only depend on some scalar variables, yet the only candidate, k2 = −m2 is

not dimensionless, we know that A and B must be pure numbers.

(c) With m = 0, we have |k′1| =
√
s
2 . Integrating over dΩ may give us a factor 4π.

(d) by projecting out the gµν or kµkµ, we may have :∫
(k′1k

′
2)dLPS2(k) = (4A+B)k2∫

(kk′1)(kk
′
2)dLPS2(k) = (A+B)(k2)2

Noting that we have δ function in dLIPS2(k), enforcing k1′ + k′2 = k. Also the with the help of

on-shell condition, we may make a replacement: (kk′1)(kk′2) →
(k2)2

4 and (k′1k
′
2) → k2

2 . Equations

above are simplified to:

4A+B =
1

16π

A+B =
1

32π

which yields A = 1
48π and B = 1

96π

3. (a) There is a U(1) symmetry acting as φ1 7→ eiθφ1, φ∗
1 7→ e−iθφ∗

1, φ2 7→ e−iθφ2, φ∗
2 7→ eiθφ∗

2.

(b) Using either jµ = (∂L/∂∂µφ)δφ, or varying the action under a spacetime dependent symmetry

transformation θ(x), and collecting the coefficient of ∂µθ, we get

jµ = i (φ1∂
µφ∗

1 − ∂µφ1φ
∗
1 − φ2∂

µφ∗
2 + ∂µφ2φ

∗
2) .

The Noether charge is

Q =

∫
d3x i

(
φ1∂

0φ∗
1 − ∂0φ1φ

∗
1 − φ2∂

0φ∗
2 + ∂0φ2φ

∗
2

)
.

Substituting the mode expansions

φj(x) =

∫
d3k

(2π)32ωk
(aj(k)e

ikx + b†j(k)e
−ikx), j = 1, 2

yields

Q =

∫
d3k

(2π)32ωk

(
a†1(k)a1(k)− b1(k)b

†
1(k)− a†2(k)a2(k) + b2(k)b

†
2(k)

)
,

that is, the Noether charge counts the difference between the number of φ1 and φ2 particles (with

antiparticles contributing opposite signs).

(c) At µ = 0 there is a U(1)× U(1) symmetry, acting as φ1 7→ eiθ1φ1, φ2 7→ eiθ2φ2.
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(d) When µ = 0, m1 = m2, the symmetry is enhanced to an SO(4) symmetry rotating φj :=

(ℜφ1,ℑφ1,ℜφ2,ℑφ2). The Noether current is

jµa = i∂µφi(Ta)ijφj ,

where (Ta)ij are the (hermitian) generators of SO(4) in the defining representation.

4. (a) ⟨0|TA(x)A(y)|0⟩ =
x y

+
x y

z1 z2
+

x y

z1

z2

+O[λ3]

= ∆xy − λ2α2

∫
d4z1d

4z2(∆x1∆12∆12∆2y +
1

2
∆x1∆12∆22∆1y) +O[λ3]

(b) ⟨0|TB(x)B(y)|0⟩ =
x y

+
x y

z1 z2
+

x y

z1
+O[λ3]

= ∆xy − λ2α2

∫
d4z1d

4z2
1

2
∆x1∆12∆12∆2y + iλ2β

∫
d4z1

1

2
∆x1∆11∆1y +O[λ3]
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