QFT HW2 SOLUTIONS

PHY 610 QFT, Spring 2017
HW?2 Solutions

1. We are to show that the Noether charge,

Q= /d?’x §%(x) = /dB:c a(aji(x))&pa(x) = /d?’x 7 (x)dpq (),

generates the symmetry transformation, [Q, ¢,] = —idp,. This is a straightforward calculation, using

the canonical commutation relation [, (), 1®(y)] = i626%(z — y)
Qealel] = [ & [0 W30(0). alz)
= / d*y (7 (1)[505 (), va(@)] + [I°(3), 0a(2)]d05 (1))

= —idpq (),

where we have assumed that d¢, is independent of II* in order to set the first term in the integrand

to zero.

2. We are to verify that the Noether charge for translations,

P /d%TO“ / B (~11%(2)0" ga(x) + g% L(2)),

indeed generates infinitesimal translations [P*, ¢, (z)] = i0"¢.(x). For p # 0, the calculation pro-

ceeds exactly as in problem 2,

[P, gul)] = / &y — (), ga(@)]0 op(y) = i ga(z).

For p1 = 0, notice that the assumption in problem 2, that dy, is independent of I1*, no longer holds. In

this case

(P pa(o)] = [ &y SIPGIT() + din(w)Dign(s) + 2V (oly): 2a()

= —ill%(x) = i8°pa ().

3. (a) We are to derive the algebra satisfied by the currents

T = 1H2 (81¢a) +V(p),
T = —Ha(?]goa.

We begin with the less complicated oneE]

[7% (), T% ()] =[a(2)d ga (@), Ty (y)0" 03 ()]
o (2)[07 pa (), I (1)]0" 3 (y) + Ty (y) [[La (), 806 ()]0 ()

o (2)9% [pa (), T ()]0 06 (y) + My ()0 [Ia (@), @1(4)]0” ()
=iHa(x)5’“<pa(y)3” 0%z — y) — illa(y) pa(2)0" 0% (y — @)

IStrictly speaking, the canonical commutation relation holds only at equal times 2 = y°. However, because Q is a conserved

charge, it is time independent, so we may choose y° to be equal to z° in the following calculation.
2Delta functions are even so the 877 and 9%+ could unambiguously be rewritten as 87 and 9* when acting on them.
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To obtain the first equality, imagine pushing first 37¢,, and then II,, to the right. Now, what
are derivatives of delta functions? Recall that delta functions only make sense inside an integral,
Jdz §(z — a)f(z) = f(a), so we can think of derivatives of delta functions as being defined by
partial integration, ie. [ dz 9,6(x —a)f(z) = — [ dx §(z — a) f'(x) = — f'(a). Hence we partially

integrate to get rid of derivatives on the delta functions, yieldingﬁ

(T (@), T% ()] = =i6° (& — y) (VI ()0 () + o (@)0" ()0 — a(2) pa ()0 ) |

Note that the last two terms in the parentheses on the right are important if the commutator is
multiplying another term inside the integral (the open-ended derivatives will act on the other

term).

Similarly,

[T (), T% (y)] = —%Hb(y) (112 (), & u (y)] — %[(5’“%)2(:6)7 I, (1107 0o (y) = [V (0(2), T ()] 00 (y).

We now know how to deal with the first two terms, but how about [V (¢(z)),I;(y)]? The trick
is to think of the commutator as a derivative, and use the chain rule to bring down powers of ¢
from V(ap)ﬁ Therefore

V) o) = 1528w =)

(Alternatively, this can be seen by Taylor expanding V'.) Therefore,

[T%(x), T (y)] = illa(2)Ia(y) 0% 6° (y — ) — 10" Qo (€) 0"+ 6° (2 — ) a(y) —i &fb‘&) 8 (z—y) pp(y).

This commutator may be written in a neat way as follows. Replace 6% §3 (x —y) with —9¥+§3(z —

y) in the second term, and then partial integrate the first two terms in y, to yield

[T%(z), T% (y)] = 6*(x — y) (—iHa(x)aj o (y) — i0"pa(2)0* ¥ a(y) — i ai‘gx) & @b(y))

— 16 (@ — y) (Ta(@)TLa (1) + 0" pu (1) a (y)0™) .

Due to the delta function, we may replace y with x in the expression above. We then recognize
that the first term in parentheses as —id?T%(x), so

[1%(2), T% (y)] = —i6*(x — y)@' T (x) — i6° (x — y)(I1* (2)0% + 8" pa(2)0’ pa(y)0™) |

3 Ali B is shorthand for A7 B — AkBJ.
4The operator [A, -] satisfies the Leibniz rule, which is to say, [4, BC] = B[A, C] + [A, B]C, so the commutator (with some field
A) is in fact a derivation.
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Finally, a similar calculation shows

[1%(@), T ()] = [P (2), (@ p(0)?] + 3 (@), V(ew))] ~ (@ 5 9)
11%(2), & ul0)] guly) + 10 u ) (@), & u )] + 3 [IP(2), V(6(0))] — (& > 1)
= LT @) ()0 5 (&~ y) — £ pa(y) T (2)09 6%z~ y)

. 1917
— il (x) 90u(y)

:%53(x - ) (Ha(x)aj%(y)ayj + aj%(y)na(m)@yj —(z & y))

e i

F(x—y)—(z+y)

= 28— ) (M (@)D pa(2) + & ga @)L ()) (0% — ) |

(b) Integrating the commutators we just derived over = and y will yield the algebra for the trans-
lation generators, [H, H],[P’, H] and [P?, P*]. Tt is clear that [H, H] = 0, since [T, T%] only
involves derivative operators. Next, [P?, P7] = —i [ d®z 9VI1,0%¢,, and partially integrating in
27, the integrand becomes 11,0V 0%, = 0. Finally, [H, P/] = —i [ d®z 97T = 0, since 37T is
a total derivative.

For the Lorentz generators M’ = [d%z T°Vz#l, we have to integrate the commutators we

derived, multiplied by = and y:
0 077) = [ P by 1)), 70 ()

With the expressions for the commutators we have derived, and some tedious but straightfor-

ward algebra, which I will not include here, we should be able to verify the algebra
(M, MP7] = (O M 37 M — " MY — " M),

from which [K*, K7| = —ie;jx JJ*, [J}, J7] = i€;juJ*, [T}, KI] = i€, K* follows.

Finally, for the commutators between translation and Lorentz generators, we could integrate the
commutators we derived, multiplied by . However, I will describe a simpler method, using
what we proved in problem 3, that P* generates translations, ie. [P, p,(z)] = i0%p,(z) and
[P 1, (z)] = i0'T1,(z). (We did not prove the second statement, but the proof proceeds exactly
analogously.) Together with the fact that the commutator is a derivative, it means that for any
local operator f(p(x),II(x)), we have [P*, f(¢(x),1(z))] = i0* f(¢o(z),II(z)). In particular, we
take f to be T%*, so

[PF, M¥P) = / d*z [P, TP =i / dPx P TPy
= —z’/d% TPl grgll = —i/d3x 7Ol gk
Therefore, [P*, M*?] vanishes unless y = v or p. For u = 0 = p, we obtain [H, K] = iP™. For
p=m = pand v = n, we obtain [P, N""™] = iP", ie. [P™, JI] = —i€jpm P". For y = m = p and

v = 0, we obtain [P/, K¥] = —i§'*H.
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4.

(@)

(b)

(©

(@)

We are to find the Noether current corresponding to infinitesimal SO(N) transformation, d¢; =
i = —10%(T,)ijj. One may simply use the formula (22.27) (with K* = 0), but let us use a
different method (which is often easier). Vary the action with respect to a position dependent
SO(N) transformation 8% = 6(x) (which is no longer a symmetry!). Since the action has only
single derivative terms, the variation will contain two terms, one multiplying ¢, and one mul-
tiplying the first derivative, 9,,60. We expect the coefficient of the # term to be a total derivative,

because the transformation with constant  is indeed a symmetry. Working it out, we find
(S,C = i@“api(Ta)ij@jaﬁa,

so the ¢ term vanishes. Let ji = i0"p;(15)i;p; be the coefficient of the 9,0° term. Partially
integrating, we see that 65 = — [ dx 9,j460". But, once again, this has to vanish for constant 6%,

so we must have J,,j# = 0, and j# is the conserved Noether current.

We are to show that the Noether charge @), generates the symmetry transformation, [Qq, ¥;] =
—(T,)ijp;- This is a straightforward calculation, with Q, = [ d3z j° = — [ d3z il1;(T,):;¢; and

the canonical commutation relations, yielding

[Qa, pi(x)] = /dgy i(Ta) 11 (y), i (2)]or(y) = —(Ta)ijej ().

(This is a special case of problem 2.)

Consider the commutator of two symmetry transformations on ¢;, which may be evaluated

using the jacobi identity,

[1Qu, @], i) = = [lis, Qal Qo) = [1Q0, 1], Qul]
= — (Ta)ik(Tb)kjSDj + (Tb)ik(Ta)kj(Pj
= ifabc(Tc)ij@j = ifabe[Qe pil-

(In technical terms, this shows that the ¢; is a representation of the algebra generated by the Q,,
which, of course, is the algebra of SO(n).) The action of [Q,, Q] and i fap.Q. on ¢, coincide.
We wish to show that [Q,, Q3] in fact is equal to i fop.Qc. (In technical terms, we want to show
that this representation is faithful.) The most straightforward way of doing this is to note that
since [Qq, Qb] — i fabc Q. commutes with ¢; and II; = dy¢; (since charges are time independent),
[Qa, Q] — i fabcQc must in fact be a constant. But there are no SO(n) invariant tensors with two

antisymmetric indices for n > 2, so in fact [Qq, Qp] — i fapcQc = 0.

In general, we would have [A;(z), 7, (y)] = i(d;; — v%’zj )63(z —y), yet for physical states, we also

have e,k = 0. Thus we could replace the commutator by [4;(z), m;(y)] = id;;6%(z — y).

[ax (), ax (k)] =} (k). (k) /d?’xd?’y[e*m(m(x) — iwAi(z)), e~V (w5 (y) — i’ 4;(y))]

:eg\(k)ei,(k') /dsscdSye*ikxfik’y(wléij(SB(x —y) — w63 (x —y)) =0

[af (k), al, (k)] = ~[ax(k), ax (K)]T =0
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(b)

(@)

(b)

()

lax(k), al, (k)] =€ (k)e3? (k') / dBed®yle™ ™ (mi(x) — iw A (@), eV (m;(y) + iw’ A; ()]
:eg\(k)ey(k’) / dSzdSyefiszik/y(iw’(;ijdg(x —y)+ iw5ij53(9: —y))

=\ (k)T (K)(2m)38° (k — K') (2w)dy; = (2m)383 (k — k') (2w)dan

1
H= §(VjAz‘VjAz‘ + i) — JiAi + He = Hy + Ho + Hs

For the first term, we would have:

1 1

=3 / Al hdp g e (i) Gane™ + (fmn)esale ™ [(—iup)ane™ + (iwplexal e
+ % /dBﬁdBkdgpij/m[kjeja,\eikm + (—kj)exal e ™) [pjes arn e + (—p;)enal, e
:% /d3xd3kd3p(27f)3xl/m(wkwp + kp)e!FPT S e anan
+ % / dedgdeP(%f)g’\l/m(wkwp +kp)e FPes eyvalal,
- ;/d?’xd?’kd?’pm)g\l/m(wkwp + kp)ei(k_p)“ejeAra)\a;,
After integrating over x, we would get either k¥ = —p for the first two terms or k£ = p for the last

two terms. Then with w? = k2, we know that the first two terms will make no contribution. Then

H,

1
§/d3kw(€)\6§\/a;a,\/ —|—e}‘\e>\/a>\a§/)

:/d%wai\ax + 2Veg

By taking a map between z* and A = z'c" where and considering a group element g of SU(2)
acting on A, transforming it to g’ Ag, we see det(g' Ag) = det(A) = —2% = —(Rz)? with some R
in SO(3), which means we could build a map between SU(2) and SO(3). Then noticing that both
=+ of SU(2) would be mapped to I of SO(3), we know there should be Z; kernel.

Now forming a map between (z°, 21, 2%) and A = z'0? + 220! + 2°(ic?), the action of a group
element g of SL(2,R) on A would be resulted as g~ Ag. Again, by det(g~' Ag) = det(A) = —x? =
—(Rx)? with metric (-,+,+) and R belonging to SO(2,1), we could map SL(2,R) to SO(2,1). The Z»
could be seen from that both &1 of SL(2,R) being mapped to I of SO(2,1).

Following the same argument, yet this time we map z,, to A = z,0/" with o# = (1,0*). We have
det(g~'Ag) = det(A) = —2* = —(Rx)? with metric (-+,+,+) and R belonging to SO(3,1), g to
SL(2,C). The Z; could be seen from that both £ of SL(2,C) being mapped to I of SO(3,1).
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7. Let us vary the action with respect to a local translation dA4,, = —a”(x)0, A, with a infiniestimal. We

obtain

58 = / d'e F“” (0,64, — 8,04,) + JHSA,
_ / d'z Zaﬂap(JWF,w) + 0,aPF*9,A, — a0, (J"A,)
= / d*z 9,0 (—iF’”Fpgdfj + FrP, A, + JPAp(sg) :

where the assumption that J* is a conserved current, d,J* = 0, has been used in the second equality.
According to the prescription in question 5, we can identify the coefficient of J,a” as the Noether
current,
1
T = —lg‘“’F”"Fpg + FrPOY A, + JP A g
The same result may be obtained using (22.27), noting that K = a*(—1(F,)* + JPA,).

Notice that this stress tensor, obtained via the Noether method, is neither symmetric (due to F#?9" A,
term), nor gauge invariant. The first term is gauge invariant, and the third term is gauge invariant up
to a total derivative d,(J”Ag""), but the second term is not, since §(F*?9¥ A,) = FH°0" O, \.

Remark

We can add improvement terms to the Noether stress tensor, of the form T+ = T 4 3, B°*”, where
BP is some tensor antisymmetric in its first two indices, B?*¥ = — B/, Notice that T is still
conserved, since 0,0, B”*” = 0, and the momenta are unchanged as the improvement term is a total
derivative. By considering the spin transformation of the fields in the action, a B**” can always be
found such that T is symmetric.

In the case of the Maxwell field, the improvement term is given by B?** = F** A", Indeed, we have
~ 1
TH = — ZQWFWF’M + PP (0V A, — 0,AY) + 0,F" AY
1
- g FP7F oy + FRPFY 4 0, FPFAY
On shell, the last term vanishes (recall that we have set J* = 0), so T*" is both symmetric and gauge
invariant.
Finally, note that there is an alternative definition of the stress tensor, used in general relativity. We
place the theory in a curved background, restoring explicit factors of the metric,
1 vo L
5= /d% -9 - 19”’)9 FuwFpe + A J",

and define the stress tensor as the variation with respect to the metric,
W= — 2 aiﬁ
V=999
Since the metric is symmetric, this produces an off-shell symmetric stress tensor, which coincides with
the improved stress tensor on shell. (Try deriving 7! The identity 6\/—g = —(1/2)/~99..,9""
might be useful.)
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