
QFT HW2 SOLUTIONS

PHY 610 QFT, Spring 2017

HW2 Solutions

1. We are to show that the Noether charge,

Q =

∫
d3x j0(x) =

∫
d3x

∂L
∂(∂0ϕa(x))

δϕa(x) =

∫
d3x πa(x)δϕa(x),

generates the symmetry transformation, [Q,ϕa] = −iδϕa. This is a straightforward calculation, using

the canonical commutation relation [ϕa(x),Πb(y)] = iδbaδ
3(x− y),1

[Q,ϕa(x)] =

∫
d3y [Πb(y)δϕb(y), ϕa(x)]

=

∫
d3y

(
πb(y)[δϕb(y), ϕa(x)] + [Πb(y), ϕa(x)]δϕb(y)

)
=− iδϕa(x),

where we have assumed that δϕa is independent of Πa in order to set the first term in the integrand

to zero.

2. We are to verify that the Noether charge for translations,

Pµ =

∫
d3x T 0µ(x) =

∫
d3x (−Πa(x)∂µϕa(x) + g0µL(x)),

indeed generates infinitesimal translations [Pµ, ϕa(x)] = i∂µϕa(x). For µ 6= 0, the calculation pro-

ceeds exactly as in problem 2,

[P i, ϕa(x)] =

∫
d3y − [Πb(y), ϕa(x)]∂iϕb(y) = i∂iϕa(x).

For µ = 0, notice that the assumption in problem 2, that δϕa is independent of Πa, no longer holds. In

this case

[P 0, ϕa(x)] =

∫
d3y

1

2
[Πb(y)Πb(y) + ∂iϕb(y)∂iϕb(y) + 2V (ϕ(y)), ϕa(x)]

=− iΠa(x) = i∂0ϕa(x).

3. (a) We are to derive the algebra satisfied by the currentsT 00 = 1
2Π2

a + 1
2 (∂iϕa)2 + V (ϕ),

T 0j = −Πa∂
jϕa.

We begin with the less complicated one,2

[T 0j(x), T 0k(y)] =[Πa(x)∂jϕa(x),Πb(y)∂kϕb(y)]

=Πa(x)[∂jϕa(x),Πb(y)]∂kϕb(y) + Πb(y)[Πa(x), ∂kϕb(y)]∂jϕa(x)

=Πa(x)∂xj [ϕa(x),Πb(y)]∂kϕb(y) + Πb(y)∂yk [Πa(x), ϕb(y)]∂jϕa(x)

=iΠa(x)∂kϕa(y)∂xjδ3(x− y)− iΠa(y)∂jϕa(x)∂ykδ3(y − x)

1Strictly speaking, the canonical commutation relation holds only at equal times x0 = y0. However, because Q is a conserved

charge, it is time independent, so we may choose y0 to be equal to x0 in the following calculation.
2Delta functions are even so the ∂xj and ∂yk could unambiguously be rewritten as ∂j and ∂k when acting on them.
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To obtain the first equality, imagine pushing first ∂jϕa, and then Πa, to the right. Now, what

are derivatives of delta functions? Recall that delta functions only make sense inside an integral,∫
dx δ(x − a)f(x) = f(a), so we can think of derivatives of delta functions as being defined by

partial integration, ie.
∫
dx ∂xδ(x− a)f(x) = −

∫
dx δ(x− a)f ′(x) = −f ′(a). Hence we partially

integrate to get rid of derivatives on the delta functions, yielding3

[T 0j(x), T 0k(y)] = −iδ3(x− y)
(
∂[jΠa(x)∂k]ϕa(x) + Πa(x)∂kϕa(x)∂xj −Πa(x)∂jϕa(x)∂yk

)
.

Note that the last two terms in the parentheses on the right are important if the commutator is

multiplying another term inside the integral (the open-ended derivatives will act on the other

term).

Similarly,

[T 00(x), T 0j(y)] = −1

2
Πb(y)[Π2(x), ∂jϕb(y)]− 1

2
[(∂kϕa)2(x),Πb(y)]∂jϕb(y)− [V (ϕ(x)),Πb(y)]∂jϕb(y).

We now know how to deal with the first two terms, but how about [V (ϕ(x)),Πb(y)]? The trick

is to think of the commutator as a derivative, and use the chain rule to bring down powers of ϕ

from V (ϕ).4 Therefore

[V (ϕ(x)),Πb(y)] = i
∂V

∂ϕb(x)
δ3(x− y).

(Alternatively, this can be seen by Taylor expanding V .) Therefore,

[T 00(x), T 0j(y)] = iΠa(x)Πa(y)∂yjδ3(y−x)−i∂kϕa(x)∂xkδ3(x−y)∂jϕa(y)−i ∂V

∂ϕb(x)
δ3(x−y)∂jϕb(y).

This commutator may be written in a neat way as follows. Replace ∂xkδ3(x−y) with−∂ykδ3(x−
y) in the second term, and then partial integrate the first two terms in y, to yield

[T 00(x), T 0j(y)] = δ3(x− y)

(
−iΠa(x)∂jΠa(y)− i∂kϕa(x)∂k∂jϕa(y)− i ∂V

∂ϕb(x)
∂jϕb(y)

)
− iδ3(x − y)

(
Πa(x)Πa(y)∂yj + ∂kϕa(x)∂jϕa(y)∂yk

)
.

Due to the delta function, we may replace y with x in the expression above. We then recognize

that the first term in parentheses as −i∂jT 00(x), so

[T 00(x), T 0j(y)] = −iδ3(x− y)∂jT 00(x)− iδ3(x− y)(Π2(x)∂yj + ∂kϕa(x)∂jϕa(y)∂yk) .

3A[jBk] is shorthand for AjBk −AkBj .
4The operator [A, ·] satisfies the Leibniz rule, which is to say, [A,BC] = B[A,C] + [A,B]C, so the commutator (with some field

A) is in fact a derivation.
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Finally, a similar calculation shows

[T 00(x), T 00(y)] =
1

4
[Π2(x), (∂jϕ(y))2] +

1

2
[Π2(x), V (ϕ(y))]− (x↔ y)

=
1

4
[Π2(x), ∂jϕa(y)]∂jϕa(y) +

1

4
∂jϕa(y)[Π2(x), ∂jϕa(y)] +

1

2
[Π2(x), V (ϕ(y))]− (x↔ y)

=− i

2
Πa(x)∂jϕa(y)∂yjδ3(x− y)− i

2
∂jϕa(y)Πa(x)∂yjδ3(x− y)

− iΠa(x)
∂V

∂ϕa(y)
δ3(x− y)− (x↔ y)

=
i

2
δ3(x− y)

(
Πa(x)∂jϕa(y)∂yj + ∂jϕa(y)Πa(x)∂yj − (x↔ y)

)
= − i

2
δ3(x− y)

(
Πa(x)∂jϕa(x) + ∂jϕa(x)Πa(x)

)
(∂xj − ∂yj ) .

(b) Integrating the commutators we just derived over x and y will yield the algebra for the trans-

lation generators, [H,H], [P j , H] and [P j , P k]. It is clear that [H,H] = 0, since [T 00, T 00] only

involves derivative operators. Next, [P i, P j ] = −i
∫
d3x ∂[jΠa∂

k]ϕa, and partially integrating in

xj , the integrand becomes Πa∂
[j∂k]ϕa = 0. Finally, [H,P j ] = −i

∫
d3x ∂jT 00 = 0, since ∂jT 00 is

a total derivative.

For the Lorentz generators Mµν =
∫
d3x T 0[νxµ], we have to integrate the commutators we

derived, multiplied by x and y:

[Mµν ,Mρσ] =

∫
d3x d3y x[µ[T 0ν](x), T 0[σ(y)]yρ].

With the expressions for the commutators we have derived, and some tedious but straightfor-

ward algebra, which I will not include here, we should be able to verify the algebra

[Mµν ,Mρσ] = −i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ),

from which [Ki,Kj ] = −iεijkJk, [J i, Jj ] = iεijkJ
k, [J i,Kj ] = iεijkK

k follows.

Finally, for the commutators between translation and Lorentz generators, we could integrate the

commutators we derived, multiplied by x. However, I will describe a simpler method, using

what we proved in problem 3, that Pµ generates translations, ie. [Pµ, ϕa(x)] = i∂iϕa(x) and

[Pµ,Πa(x)] = i∂iΠa(x). (We did not prove the second statement, but the proof proceeds exactly

analogously.) Together with the fact that the commutator is a derivative, it means that for any

local operator f(ϕ(x),Π(x)), we have [Pµ, f(ϕ(x),Π(x))] = i∂µf(ϕ(x),Π(x)). In particular, we

take f to be T 0µ, so

[Pµ,Mνρ] =

∫
d3x [Pµ, T 0[ρ]xν] = i

∫
d3x ∂µT 0[ρxν]

= −i
∫
d3x T 0[ρ|∂µx|ν] = −i

∫
d3x T 0[ρδν]µ

Therefore, [Pµ,Mνρ] vanishes unless µ = ν or ρ. For µ = 0 = ρ, we obtain [H,Kn] = iPn. For

µ = m = ρ and ν = n, we obtain [Pm, Nnm] = iPn, ie. [Pm, Jj ] = −iεjnmPn. For µ = m = ρ and

ν = 0, we obtain [P j ,Kk] = −iδjkH .
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4. (a) We are to find the Noether current corresponding to infinitesimal SO(N) transformation, δϕi =

θijϕj = −iθa(Ta)ijϕj . One may simply use the formula (22.27) (with Kµ = 0), but let us use a

different method (which is often easier). Vary the action with respect to a position dependent

SO(N) transformation θa = θa(x) (which is no longer a symmetry!). Since the action has only

single derivative terms, the variation will contain two terms, one multiplying θa, and one mul-

tiplying the first derivative, ∂µθa. We expect the coefficient of the θ term to be a total derivative,

because the transformation with constant θ is indeed a symmetry. Working it out, we find

δL = i∂µϕi(Ta)ijϕj∂µθ
a,

so the θ term vanishes. Let jµa = i∂µϕi(Ta)ijϕj be the coefficient of the ∂µθa term. Partially

integrating, we see that δS = −
∫
dx ∂µj

µ
a θ

a. But, once again, this has to vanish for constant θa,

so we must have ∂µjµa = 0, and jµa is the conserved Noether current.

(b) We are to show that the Noether charge Qa generates the symmetry transformation, [Qa, ϕi] =

−(Ta)ijϕj . This is a straightforward calculation, with Qa =
∫
d3x j0 = −

∫
d3x iΠi(Ta)ijϕj and

the canonical commutation relations, yielding

[Qa, ϕi(x)] =

∫
d3y i(Ta)jk[Πj(y), ϕi(x)]ϕk(y) = −(Ta)ijϕj(x).

(This is a special case of problem 2.)

(c) Consider the commutator of two symmetry transformations on ϕi, which may be evaluated

using the jacobi identity,

[[Qa, Qb], ϕi] =− [[ϕi, Qa], Qb]− [[Qb, ϕi], Qa]

=− (Ta)ik(Tb)kjϕj + (Tb)ik(Ta)kjϕj

=− ifabc(Tc)ijϕj = ifabc[Qc, ϕi].

(In technical terms, this shows that the ϕi is a representation of the algebra generated by the Qa,

which, of course, is the algebra of SO(n).) The action of [Qa, Qb] and ifabcQc on ϕi coincide.

We wish to show that [Qa, Qb] in fact is equal to ifabcQc. (In technical terms, we want to show

that this representation is faithful.) The most straightforward way of doing this is to note that

since [Qa, Qb] − ifabcQc commutes with ϕi and Πi = ∂0ϕi (since charges are time independent),

[Qa, Qb]− ifabcQc must in fact be a constant. But there are no SO(n) invariant tensors with two

antisymmetric indices for n > 2, so in fact [Qa, Qb]− ifabcQc = 0.

5. (a) In general, we would have [Ai(x), πj(y)] = i(δij − ∇i∇j

∇2 )δ3(x− y), yet for physical states, we also

have ελk = 0. Thus we could replace the commutator by [Ai(x), πj(y)] = iδijδ
3(x− y).

[aλ(k), aλ′(k′)] =εiλ(k)εjλ′(k
′)

∫
d3xd3y[e−ikx(πi(x)− iωAi(x)), e−ik

′y(πj(y)− iω′Aj(y))]

=εiλ(k)εjλ′(k
′)

∫
d3xd3ye−ikx−ik

′y(ω′δijδ
3(x− y)− ωδijδ3(x− y)) = 0

[a†λ(k), a†λ′(k
′)] = −[aλ(k), aλ′(k′)]† = 0
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[aλ(k), a†λ′(k
′)] =εiλ(k)ε∗jλ′ (k

′)

∫
d3xd3y[e−ikx(πi(x)− iωAi(x)), eik

′y(πj(y) + iω′Aj(y))]

=εiλ(k)ε∗jλ′ (k
′)

∫
d3xd3ye−ikx−ik

′y(iω′δijδ
3(x− y) + iωδijδ

3(x− y))

=εiλ(k)ε∗jλ′ (k
′)(2π)3δ3(k − k′)(2ω)δij = (2π)3δ3(k − k′)(2ω)δλλ′

(b)

H =
1

2
(∇jAi∇jAi + πiπi)− JiAi +Hc = H1 +H2 +H3

For the first term, we would have:

H1 =
1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

(−iωk)ε∗λaλe
ikx + (iωk)ελa

†
λe
−ikx][(−iωp)ε∗λ′aλ′eipx + (iωp)ελ′a†λ′e

−ipx]

+
1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

[kjε
∗
λaλe

ikx + (−kj)ελa†λe
−ikx][pjε

∗
λ′aλ′eipx + (−pj)ελ′a†λ′e

−ipx]

=
1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

(ωkωp + kp)ei(k+p)xε∗λε
∗
λ′aλaλ′

+
1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

(ωkωp + kp)e−i(k+p)xελελ′a†λa
†
λ′

− 1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

(ωkωp + kp)ei(k−p)xε∗λελ′aλa
†
λ′

− 1

2

∫
d3xd3kd3p

1

(2π)3
√
ωkωp

(ωkωp + kp)e−i(k−p)xελε
∗
λ′a
†
λaλ′

After integrating over x, we would get either k = −p for the first two terms or k = p for the last

two terms. Then with ω2 = k2, we know that the first two terms will make no contribution. Then

H1 =
1

2

∫
d3kω(ελε

∗
λ′a
†
λaλ′ + ε∗λελ′aλa

†
λ′)

=

∫
d3kωa†λaλ + 2V ε0

6. (a) By taking a map between xi and A = xiσi where and considering a group element g of SU(2)

acting on A, transforming it to g†Ag, we see det(g†Ag) = det(A) = −x2 = −(Rx)2 with some R

in SO(3), which means we could build a map between SU(2) and SO(3). Then noticing that both

±I of SU(2) would be mapped to I of SO(3), we know there should be Z2 kernel.

(b) Now forming a map between (x0, x1, x2) and A = x1σ3 + x2σ1 + x0(iσ2), the action of a group

element g of SL(2,R) on A would be resulted as g−1Ag. Again, by det(g−1Ag) = det(A) = −x2 =

−(Rx)2 with metric (-,+,+) and R belonging to SO(2,1), we could map SL(2,R) to SO(2,1). The Z2

could be seen from that both ±I of SL(2,R) being mapped to I of SO(2,1).

(c) Following the same argument, yet this time we map xµ to A = xµσ
µ with σµ = (1, σi). We have

det(g−1Ag) = det(A) = −x2 = −(Rx)2 with metric (-,+,+,+) and R belonging to SO(3,1), g to

SL(2,C). The Z2 could be seen from that both ±I of SL(2,C) being mapped to I of SO(3,1).
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7. Let us vary the action with respect to a local translation δAµ = −aν(x)∂νAµ, with a infiniestimal. We

obtain

δS =

∫
d4x − 1

2
Fµν(∂µδAν − ∂νδAµ) + JµδAµ

=

∫
d4x

1

4
aρ∂ρ(F

µνFµν) + ∂µa
ρFµν∂ρAν − aρ∂ρ(JµAµ)

=

∫
d4x ∂µa

ν

(
−1

4
F ρσFρσδ

µ
ν + Fµρ∂νAρ + JρAρδ

µ
ν

)
,

where the assumption that Jµ is a conserved current, ∂µJµ = 0, has been used in the second equality.

According to the prescription in question 5, we can identify the coefficient of ∂µaν as the Noether

current,

Tµν = −1

4
gµνF ρσFρσ + Fµρ∂νAρ + JρAρg

µν .

The same result may be obtained using (22.27), noting that Kµ = aµ(− 1
4 (Fρσ)2 + JρAρ).

Notice that this stress tensor, obtained via the Noether method, is neither symmetric (due to Fµρ∂νAρ
term), nor gauge invariant. The first term is gauge invariant, and the third term is gauge invariant up

to a total derivative ∂ρ(Jρλgµν), but the second term is not, since δ(Fµρ∂νAρ) = Fµρ∂ν∂ρλ.

Remark

We can add improvement terms to the Noether stress tensor, of the form T̃µν = Tµν + ∂ρB
ρµν , where

Bρµν is some tensor antisymmetric in its first two indices, Bρµν = −Bµρν . Notice that T̃µν is still

conserved, since ∂ρ∂µBρµν = 0, and the momenta are unchanged as the improvement term is a total

derivative. By considering the spin transformation of the fields in the action, a Bρµν can always be

found such that T̃µν is symmetric.

In the case of the Maxwell field, the improvement term is given by Bρµν = F ρµAν . Indeed, we have

T̃µν =− 1

4
gµνF ρσFρσ + Fµρ(∂νAρ − ∂ρAν) + ∂ρF

ρµAν

=− 1

4
gµνF ρσFρσ + FµρF νρ + ∂ρF

ρµAν

On shell, the last term vanishes (recall that we have set Jµ = 0), so T̃µν is both symmetric and gauge

invariant.

Finally, note that there is an alternative definition of the stress tensor, used in general relativity. We

place the theory in a curved background, restoring explicit factors of the metric,

S =

∫
d4x
√
−g − 1

4
gµρgνσFµνFρσ +AµJ

µ,

and define the stress tensor as the variation with respect to the metric,

Tµνg := − 2√
−g

∂L
∂gµν

.

Since the metric is symmetric, this produces an off-shell symmetric stress tensor, which coincides with

the improved stress tensor on shell. (Try deriving Tµνg ! The identity δ
√
−g = −(1/2)

√
−ggµνδgµν

might be useful.)
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