
QFT HW1 SOLUTIONS

PHY 610 QFT, Spring 2017

HW1 Solutions

1. Note that the defining equation ηµν = ηρσΛρµΛσν for a Lorentz transformation Λ ∈ O(1, 3) means the

columns of Λ (and rows too, since ΛT is also a Lorentz transformation) are orthonormal, with Λ0
µ

timelike and Λiµ spacelike. In particular, (Λ0
0)2 − Λ0

iΛ
0
i = 1 (which is one way to see that

∣∣Λ0
0

∣∣ ≥ 1).

Now suppose Λ is orthochronous, Λ0
0 ≥ 1, and let vµ be a forward timelike or null vector, ie. (v0)2 ≥

(vi)2 with v0 > 0. Then, using the Cauchy-Schwarz inequality,

(Λv)0 = Λ0
0v

0 +Λ0
i v
i ≥ Λ0

0v
0−
√

(Λ0
i )

2
√

(vi)2 ≥ Λ0
0v

0−v0
√

(Λ0
0)2 − 1 = v0(Λ0

0−
√

(Λ0
0)2 − 1) > 0,

so Λv is still a forward pointing vector. In particular, since Λ̃µ0 is a forward timelike vector for or-

thochronous Λ̃, this shows that (ΛΛ̃)0
0 > 0, and by the above observation, it must in fact be at least 1,

so ΛΛ̃ is once again orthochronous.

Now suppose vµ is a backward pointing spacelike vector, (v0)2 < (vi)2 and v0 < 0. We shall show that

there exists Lorentz transformations which can flip the temporal direction of v. Choose Λ̂ ∈ SO(1, 3)+

such that its first row Λ̂0
µ has its spatial components parallel to v, which is to say, Λ̂0

jδ
ij = λvi, for some

positive λ. Orthonormality requires that Λ̂0
0 =

√
1 + λ2(vi)2. Then

(Λ̂v)0 = Λ̂0
0v

0 + Λ̂0
i v
i = v0

√
1 + λ2(vi)2 + λ(vi)2.

Now, at small values of λ, this is approximately v0, which is negative. Since
√

(vi)2 + v0 > 0, at large

λ becomes positive. Hence there is some value of λ0 where (Λ̂v)0 = 0, and for any λ > λ0, (Λ̂v)0 > 0.

Note that we did not have to demand that any of these Lorentz transformations were proper — just

orthochronous.

2. (a) The equations of motion are

πn =
∂H

∂πn
= ϕ̇n,

ϕ̈n = π̇n = − ∂H
∂ϕn

= −(ϕn − ϕn−1)− (ϕn − ϕn+1)−m2ϕn.

Equating the mode expansions of the left and right hand sides of the second equation yields the

dispersion relation

ω2
k = 2 +m2 − eik − e−ik = 2(1− cos k) +m2.

(Notice that ωk depends only on |k|, as before.)

(b) Since the positions of the atoms are discrete, the momentum is a periodic function. A more

quantitative way of seeing this is as follows: the position n takes integer values, so ei(−ωkt+kn) =

ei(−ωk+2πt+(k+2πm)n) for any integer m, so k and k + 2πm describe the same configuration. The

interval [−π, π] in which k takes its values is known as the Brillouin zone.
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(c) First, invert the Fourier expansion,∑
n

ϕne
ink =

∫
dk′

(2π)2ωk′

∑
n

(ake
i(−ωk′ t+(k+k′)n) + a†ke

−i(−ωk′ t+(k′−k)n))

=
1

2ωk

(
a−ke

−iωkt + a†ke
iωkt
)
,

∑
n

πne
ink =

∑
n

ϕ̇ne
ink =

i

2
(−a−ke−iωkt + a†ke

iωkt),

where we have used that
∑
n e

ink = (2π)δ(k). Thus

ak =
∑
n

(ωkϕn + iπn)e−(ikn−iωkt), a†k =
∑
n

(ωkϕn − iπn)eikn−iωkt.

It is then straightforward to show that [ak, ak′ ] = [a†k, a
†
k′ ] = 0 and [ak, a

†
k′ ] = (2π)(2ωk)δ(k − k′).

(d) We are to substitute the mode expansion of ϕn and πn = ϕ̇n into the hamiltonian. This gives us

an “ω and m part” and “trig function part”:

H =
1

2

∫ π

−π

dk

(2π)2ω2
k

∫ π

−π

dk′

(2π)2ω2
k′

∑
n

(ωkωk′ +m2)(
ake
−iωkt+ikn − a†ke

iωkt−ikn
)(

ak′e
−iωk′+ik

′n − a†k′e
iωk′ t−ik

′n
)

+
(
ake
−iωkt+ikn(1− e−ik) + a†ke

iωkt−ikn(1− eik)
)

(
ak′e

−iωk′ t+ik
′n(1− e−ik

′
) + a†k′e

iωk′ t−ik
′n(1− eik

′
)
)

Expanding this, we get exponents where n appears beside either k− k′ or k+ k′. These naturally

produce δ(k − k′) and δ(k + k′) factors when the sum is evaluated. Doing this,

H =
1

2

∫ π

−π

dk

(2π)2ω2
k

∫ π

−π

dk′

(2π)2ω2
k′

δ(k − k′)
[
(ωkωk′ +m2 + (1− e−ik)(1− eik

′
))aka

†
k′e
−it(ωk−ωk′ ) + h.c.

]
+ δ(k + k′)

[
(−ωkωk′ +m2 + (1− e−ik)(1− e−ik

′
))aka−k′e

−it(ωk+ωk′ ) + h.c.
]

Killing one of the integrals and recognizing that ω2
k = (1− e−ik)(1− eik) +m2, this simplifies to

H =

∫ π

−π

dk

2π

1

2
(aka

†
k + a†kak).

Now, we normal order using the commutation relation in (c), to yield

H =

∫ π

−π

dk

2π
a†kak + Ω0V,

where V = 2πδ(0) is the “volume of space” (really, the number of particles in this case), and

Ω0 =
∫
dk/2π ωk is the zero point energy.

This is the hamiltonian of non-interacting free scalar fields.

(e) Restoring factors of a, the hamiltonian is

H =
1

2

∑
n

π2
n + a−2(ϕn − ϕn−1)2 +m2ϕ2

n.
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In the continuum limit, this becomes (with x = na)

H → 1

2

∫
dx

a
π2(x) + (∂xϕ(x))2 +m2ϕ2(x),

which is the hamiltonian of a free scalar field. Similarly, the dispersion relation

ω2
k = 2(1− cos(ka))a−2 +m2 → k2 +m2

reproduces that of the free scalar in the small a limit. Note also that the Brillouin zone is

[−π/a, π/a], so in the continuum limit we recover that k is allowed to take any value.

3. We are to derive the canonical quantization conditions (3.29) for a(k), a†(k) from that of the fields ϕ

and Π (3.28). With

a(k) =

∫
d3x e−ikx(iΠ(x) + ωϕ(x)), a†(k) =

∫
d3x eikx(−iΠ(x) + ωϕ(x)),

we see that

[a(k), a(k′)] =

∫
d3x d3y e−i(kx+k′y)(i2[Π(x),Π(y)] + ωkωk′ [ϕ(x), ϕ(y)] + iωk′ [Π(x), ϕ(y)] + iωk[ϕ(x),Π(y)])

=

∫
d3x d3y e−i(kx+k′y)(ωk′δ3(x− y)− ωkδ

3(x− y))

=(ωk′ − ωk)

∫
d3x e−i(k+k′)x,

=(ωk′ − ωk)e2iωt(2π)3δ(k + k′) = 0.

In the second last equality, the identity
∫
d3x e−ikx = (2π)3δ3(k) is used (ie. the Fourier transform of

unity is the delta function), and the last equality follows since ω is an even function of k. Similarly,

[a†(k), a†(k′)] = 0. Meanwhile,

[a(k), a†(k′)] =

∫
d3x d3y e−i(kx−k

′y)([Π(x),Π(y)] + ωkωk′ [ϕ(x), ϕ(y)] + iωk′ [Π(x), ϕ(y)]− iωk[ϕ(x),Π(y)])

=(ωk + ωk′)

∫
d3x d3y e−i(kx−k

′y)δ3(x− y)

=(2ωk)(2π)3δ3(k− k′).

4. We are to show that a†(k1)a†(k2) . . . a†(kn)|0〉 is an eigenstate of H =
∫
d3k/2(2π)3 a†a with energy

ω1 + . . . + ωn. This is a straightforward calculation, using the commutation relations derived above.

We have to move the annihilation operator a(k) in H all the way to the right, where it annihilates the

vacuum. For example, moving a(k) past a†(k1),

a(k)a†(k1) = [a(k), a†(k1)] + a†(k1)a(k) = (2π)32ω1δ
3(k− k1) + a†(k1)a(k),

picks up a factor of (2π)32ω1δ
3(k− k1). Moving a(k) past each of the a†(kj), we obtain

H|k1 . . . kn〉 =

∫
d3k

2(2π)3
a†(k)

 n∑
j=1

a†(k1) . . . a†(kj−1)(2π)32ωjδ
3(k− kj)a

†(kj+1) . . . a†(kn)|0〉


=

n∑
j=1

ωj |k1 . . . kn〉.

(Note that we have used the fact that a†s commute in the last equality.)

Page 3 of 6



QFT HW1 SOLUTIONS

5. (a) Up to boundary terms, we may integrate the kinetic term to write

−
∫
d4x ∂µϕ†∂µϕ =

∫
d4x ϕ†∂µ∂µϕ,

so the Euler-Lagrange variation of ϕ† yields the Klein-Gordon equation (∂µ∂µ −m2)ϕ = 0.

(b) The conjugate momenta are

Πϕ(x) =
∂L

∂∂0ϕ(x)
= ∂0ϕ

†(x), Πϕ†(x) = ∂0ϕ(x).

The hamiltonian density is

H = Πϕ∂0ϕ+ Πϕ†∂0ϕ
† − L = Πϕ†Πϕ + ∂iϕ†∂iϕ+m2ϕ†ϕ− Ω0.

(Note the ordering of the Πϕ†Πϕ term; this will be important in part (e).)

(c) Inverting the Fourier transform (following (3.20)),∫
d3x e−ikxϕ(x) =

1

2ω
(a(k) + e2iωtb†(−k)).

(This is because∫
d3x e−ikxϕ(x) =

∫
d3x e−ikx

d3k′

(2π)32ωk′
(a(k′)eik

′x + b†(k′)e−ik
′x)

=

∫
d3k′

2ωk′
(a(k′)e−i(ωk′−ωk)tδ3(k− k′) + b†(k′)ei(ωk′+ωk)t δ3(k + k′)).)

Similarly,∫
d3x e−ikx∂0ϕ(x) =

i

2
(−a(k) + e2iωtb†(−k)),

so that

a(k) =

∫
d3x e−ikx(ωϕ(x) + i∂0ϕ(x)) =

∫
d3x e−ikx(ωϕ(x) + iΠϕ†),

b†(−k) =

∫
d3x e−ikx−2iωt(ωϕ(x)− i∂0ϕ(x)).

To obtain b(k), take the conjugate and relabel k 7→ −k (so eikx+2iωt = eiωt+ikx 7→ eiωt−ikx =

e−ikx), yielding

b(k) =

∫
d3x e−ikx(ωϕ†(x) + i∂0ϕ

†(x)) =

∫
d3x e−ikx(ωϕ†(x) + iΠϕ(x)).

(d) The canonical commutation relations are

[ϕ(t,x),Πϕ(t,y)] = [ϕ†(t,x),Πϕ†(t,y)] = iδ3(x− y),

with all other commutators vanishing. The nonvanishing commutators between the creation/annihilation

operators are

[a(k), a†(k′)] =

∫
d3x d3y e−i(kx−k

′y)(−iωk[ϕ(x),Πϕ(y)] + iωk′ [Πϕ†(x), ϕ†(y)])

=2ω(2π)3δ3(k− k′),
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and similarly,

[b(k), b†(k′)] = 2ω(2π)3δ3(k− k′).

It is clear that the [a, a] (and therefore also [a†, a†], [b, b] and [b†, b†]) commutators vanish, since ϕ

and Πϕ† mutually commute. For [a, b] (and [a†, b†]), the contributions from [ϕ,Πϕ] and [Πϕ† , ϕ†]

are equal and opposite.

(e) We are to rewrite the hamiltonian H =
∫
d3x H in terms of the creation and annihilation opera-

tors, by substituting the mode expansions (c) into the expression for the hamiltonian density we

obtained in (b). Expanding out the terms yields

H =

∫
d3x

d3k

(2π)32ωk

d3k′

(2π)32ωk′(
ωkωk′(−a(k)a†(k′)e−i(k

′−k)x + b†(k)b(k′)ei(k
′−k)x − a(k)b(k′)ei(k

′+k)x + b†(k)a†(k′)e−i(k+k′)x)

+ (kk′ +m2)(a†(k)a(k′)ei(k
′−k)x + b(k)b†(k′)e−i(k

′−k)x)

+ (−kk′ +m2)(b(k)a(k′)ei(k
′+k)x − a†(k)b†(k′)e−i(k+k′)x)

)
− Ω0V

The dx integral may be performed, yielding either δ3(k − k′) or δ3(k + k′) for each term, which

then cancels one of the dk integrals. After simplification, one arrives at

H =
1

2

∫
d3k

2(2π)3
(a(k)a†(k) + b†(k)b(k)− a(k)b(−k)e−2iωt − b†(k)a†(−k)e2iωt)

+
1

2
(k2 +m2)

∫
d3k

(2π)32ω2
(a†(k)a(k) + b(k)b†(k) + b(k)a(−k)e−2iωt + a†(k)b†(−k)e2iωt)− Ω0V.

Now, we use the commutation relations derived in (d). First, we consider the terms involving ab

and a†b†. Commuting b past a (and a† past b†), and relabeling k → −k, we see that they add to∫
d3k

(2π)3(2ω)2
(−ω2 + k2 +m2)(a(k)b(−k)e−2iωt + a†(k)b†(−k)e2iωt) = 0,

which vanishes due to the mass shell relation. Meanwhile, for the other terms, we use the com-

mutation relations to write all the terms in the order a†a and b†b (which annihilates the ground

state). This yields

H =

∫
d3k

(2π)3(2ω)2

(
(ω2 + k2 +m2)(2ω)δ3(0) + (ω2 + k2 +m2)(a†(k)a(k) + b†(k)b(k))

)
− Ω0V

=

∫
d3k

(2π)32ω
ω(a†(k)a(k) + b†(k)b(k)) + 2E0V − Ω0V,

so Ω0 = 2E0 for zero ground state energy. Therefore, as expected, a complex scalar field has two

sets of oscillators, a(k) and b(k), as opposed to real scalar fields which have just one. Both sets of

oscillators contribute to the zero point energy.

6. This is a straightforward evaluation of the integral

E0 =

∫
|k|<Λ

d3k

(2π)32ω
ω2 =

1

2(2π)3

∫
|k|<Λ

d3k
√
k2 +m2 =

Λ4

2(2π)3

∫
|k′|<1

d3k′
√
k′2 +m2/Λ2,
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where in the last equality we have rescaled k′ = k/Λ. For m/Λ � 1, the integrand may be approxi-

mated by |k′|, so

E0 =
Λ4

2(2π)3

∫ 1

0

d |k| 4π |k|3 =
Λ4

16π2
.
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