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This is a historical note. In 1974 I was an undergraduate student of L.D. Faddeev. I was working
on quantum gravity [without matter] in one loop approximation. I discovered [simultaneously with
G. t’'Hooft M. Veltman] that on mass shell ultra-violet divergences cancel. The text below is a
translation of the Diploma.

The diploma was in Russian, it was never published. Recently Faddeev found a reference to my result by an editor
in Feynman’s lectures on gravitation [1] (the reference is on page xxxvii of the book). The scan of original diploma
can be found in the first line of the webpage [2]. The result was obtained simultaneously with G. t'Hooft M. Veltman,
see [3] . The translation of the diploma follows [17].

INTRODUCTION

The diploma is devoted to quantization of gravity. First appropriate method for quantization of gravity was
formulated by Dirac [7] in 1958 in a frame of Hamiltonian approach. Other methods [essentially equivalent to Dirac’s]
were suggested in [8-12]. Hamiltonian approach is not covariant, this makes perturbation theory complicated.

An approach to covariant quantization of gravity was suggested in [13], but this method led to violation of unitarity,
see [14]. In the same publication Feynman showed that to restore unitarity of a diagram in a form of a closed ring one
has to substract another diagram also in a form of a ring, which describes propagation of fictitious particle. Solution
of the problem for any diagram was formulated in 1967 by Fadeev and Popov [16] and De-Witt [15] [using essentially
different approaches]. This approach to quantization contains fictitious particle [ghosts] and their interaction with
gravitons. Next question is renormalization. Formally the whole theory is not renormalizable. Here the pure gravity
is studied in one loop approximation.

COVARIANT QUANTIZATION

We shall use functional integral for quantization of gravity. The background formulation for generating functional for
scattering matrix will be used, not generating functional of Green functions. The integral will depend on asymptotic
fields. We shall consider scattering matrix directly on mass shell, using classical equation of motion. Matrix element
of scattering matrix with n external lines can be obtained by n multiple differentiation of our generating functional
with respect to asymptotic fields. Asymptotic fields are classical fields. The generating functional of scattering matrix
covariantly depends on asymptotic fields. We will see that some divergencies disappear on mass shell.

Let us denote by gffl, a classical solution of Einstein equations [18]. So R =0 and R, = 0.

Let iW(gffV) denote a generating functional for connected Feynman diagrams with loops:
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W = ¢miS6r(g)0) /expiSGT(ggfu + up,) det (—g% — tys) d"uag (1)

Here

SGT(gaﬁ):/\/gR(gaﬁ>d4x (2)

is Einstein action for gravitational field. The measure g—5/ 2d'%g,, assures unitarity. The formula (1) formally
covariant under non-abelian group of coordinate transformation. The theory is similar to nonabelian gauge field. We
shall use Faddeev-Popov approach to quantization, also we should choose a gauge to keep explicit covariance of W.
Below we shall use notations:

gfuj = gffu + Upw, gfﬁgéu = 6;0; (3)



Also V¢ will be a covariant derivative with respect to gffl, (sometimes we shall write ¢l as a lower index ) and
V! will be a covariant derivative with respect to gf”, (sometimes we shall write ¢ as a lower index ) .
Let us introduce an auxiliary condition :

1
ViU = 594 ViiUas = Cu = 0 (4)

Here C,,, is an arbitrary function of coordinates. We shall also use

1
Dy = Vil = 595V Uas 5)
So in one loop quantization we get :
eV = /expiSGT(gZU) det MH §* (D, — C,) g;*?d"U,,, (6)

We used SGT(ggfﬁ) = 0. The one loop operator is
My = ViVighe + ViVigh, — 93V Vigh, (7)

It is checked in the original diploma that the right hand side of (6) transforms as scalar density under coordinate
transformations. At this point we want to emphasize that gffy is an arbitrary solution of Einstein equations. Let us
get rid of the § function following ideas of t’Hooft, see [6]. Note that the expression

N = (H m) / dCyexp{~i [ d'z/gg5 CaCy} ®

does not depend on gffl, The constant factor in the equation (6) does not matter, so we can multiply the right hand
side by N.

eV = (H @) / dC, exp{—i | d*x\/gg% CaCp} / expiSer(gh,) det M ] 6% (D) — C) g, */2d"U,  (9)
After integrating with respect to C,, we obtain:
eV = <H @) /exp{iSGr(gfw) - i/d‘%\/ﬁg?ﬁDaDg} (det M) 9;5/2d10UW (10)
We can also represent det M as an integral with respect to anti-commuting vector fields Y

det M = /d4yo‘d4xﬁ expi/d%YaMaﬁXﬁ (11)

Finally we arrive to the following expression for generating functional for scattering matrix:
i i ; cl g i ) —5/2 T
W — <H \/gcl> /exp{zSGT(gfw) —z/d4x1/g lgczﬁD"DB}eXp (l/d4:vx Magxﬁ) 9 / dU,,, d"Fd* P (12)

We do not care about common factors. We can calculate the integral by stationary phase approximation. The
stationary point is

Guv = gzly7 X* =0, Xﬁ =0 (13)
We shall leave in the exponent only terms quadratic in integration variables. In this approximation we get:

FMaﬁXﬁ = FgglﬁVﬁfZfoxB (14)



The integral
eV = (15)
— . 2 . H « . — .o —=
(I, gcll) fexp{zUWJgiiéi%Uag —i[d* x\/gClgclBDaDg} exp (zfd‘l:vxavglvulx ) d'OU,,, d*\*d*x"?

can be taken. Now we have to calculate the quadratic form:
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In the rest of diploma we shall use only ggfﬁ , so we shall drop index cl. For Fgg o We get:

F?W —

1, v A
= 3 685+ 848 — g g) (V00 — 282)) "

It is convenient to denote:
Ey = (V%) ) (18)

We can evaluate Gaussian integrals in the form (15)
. —-1/2 .
eV = Hg&l det Fg, | det Fy (19)
x
This is the expression for generating functional of scattering matrix in one loop approximation.
CANCELATION OF INFINITIES IN ONE LOOP APPROXIMATION
To calculate determinants in formula (19) we shall use method of proper time

Indet F' = —Tr/ @ (ei(F+i0) _ eis[) (20)
0 S

We are going to differentiate the left hand side, so Tr Ooo %eis}

Let us write differential equation and initial data:

will not contribute and we shall not write it.

6eiﬁ'5
Os

=iFeifs,  ¢iFs| _o=1 (21)

Let us denote by G(z,y|s) the kernel of the integral operator exp(iF's). The main part of the operator F' is
d’Alembertian. So we can separate a singular factor characteristic for parabolic equation:

G(z,2'|s) = (4;;2 exp (ia(;;xl))DlﬂA(x,x’B) (22)

Here A(x,2'|s) is a smooth function which turns into 1 at s = 0. The o(z,2’) is geodesic distance between points x
and z’. Tt satisfy a differential equation:

g0 (z,2")0,0(x,2") = 20(z, 2') (23)

In case of flat space 20(x,2’) = (z — 2)?. The third factor in (22) is density D(z,z’) = det(—0,. (z,2")). It satisfy
a differential equation:

D' (o'D) , =4 (24)

It is also convenient to introduce a scalar:




We use the following notation: 9,® = 0®/dz” and 9,,® = d®/dx’". Later we shall use lim,_,» D = g(x). This
follows from lim, ., 8,8,/ 0(2,2') = g, (). In order to calculate expiF's we need to introduce a function of parallel
transport gg, (z,2'). It is a by-vector: index a is related to the point z and 3’ to 2’. The function satisfy the equation:
0795, = 0. Corresponding boundary condition is g§, (z,2") — d5, as x — 2’ [19]. The function of parallel transport
has the following properties:

Juv' = Gv' s gZ Ov = =0 pu, gua’gg = Guv, det (_guu’) =V a9’
Now we ready to study the formula (22). For fictitious particles we put
Al yl9)G = g5 (. y) [ (2, yls) (25)

The function ff(x,y|s) is a by-scalar satisfying equation:

off ouft i ,
A N A 4 (26)
Consider Taylor series:
iz, y]s) Za x,y)(is) ap =1 (27)
Coefficients satisfy equations:
, 0
otan.u+na, = A 1/2 g (gg A1/2an_1) , (28)
Let us do similar calculations for gravitons:
1 "o v no v 1 nv 'y/)\/
Al@,yls)ary = 5 (9n9y T 9595 = 59" 9vx | far (2. yls) (29)

Here f is a scalar at z and 4-tensor at point y, it is symmetric and traceless with respect to «')\. It satisfy an
equation:

0

’_ 7 . !’ IJ/ _ 1.7 0 . ’ !’ < A/ ’
5 w4 2 (f,w)Z/Z/ =igl g5 ATV/? (A” 29&’/95/f2/5/) )~ 294 9 Rs0%95 fo (30)

Consider Taylor series for this f

fhs = Za 15 (is)" (31)
Coefficients satisfy a recursion:
0 (o)l + lan) = g gy ATV (Al/ 29&”/93/(%—1)3323).9 294 97 RO59%. 9% (an—1)a (32)
Note that the coefficients (an);\j,g// are symmetric and traceless with respect to upper indices \'v'. Also
(ao)ary = % <5giagﬁ + 887, — %g)‘/'y/galg/> (33)

These calculations directly generalize the ones by B.S. De-Witt [he used them for description of interaction of scalar
particles with external gravity]. So we described the kernel exp (zsﬁ') , see (22) . We can use it to separate infinities
in the formula (20). Ultraviolet infinities arise from integration at s ~ 0. Taylor expansion (26) and (31) are useful.
For fictitious particles we obtain:

lndeth:4/d:v4\/§Z/
n=0"0

;_a (is)"an(x,x) (34)




We put exp 3= io lo = 1. Only coefficients at ag,a; and ap are divergent at zero [quartic, square and logarithmic
divergencies correspondingly]. So in (34) we shall consider only first three terms:
Indet F/ =4 [ dat\/g [;° Tsye S (1 +isar — s%ag) = (35)

diz — a o+l o0 ds i/s
_4f f(g+;10)2_02+;0+[1 +O 0 ds /]2>

Last integral is divergent at 0 and co. We can get similar expression for gravitons:

2 4 2a o410 ds
lthGT: d4 t I — 1 1 _/ 1/5 o
e g o (it e I [ e ) e (36)

So we need coefficients a; and as for both gravitons and fictitious particles. Then we can use (19) to calculate
divergencies of the generating functional for scattering matrix. We can use (28) to derive:

. 1. ~1/2 a o
lim afl =— lim A 1/293, ( A AL/2 f; 1)0 (37)

Because the lim,_,, o* = 0. Equation (32) lead to:

lim(ay )" 'B’ =— hm gt g (Al/Qgg\",gg/(an,l) /ﬁ/) - ZRX (an Ny o (38)

In order to calculate the right hand side in these equations we need to know expressions like o 5, which we can find

recursively from equations: ¢/'c,, = 20 also o/gj,, = 0 and 4AV2 = 2A1/2#U + A1/2U” Last equation follows
from (24). Now shall evaluate covariant derivatives and use commutation rule:

(¢M).vo - (¢M).a’v = Ruaﬁ " (39)

Let us present a table of limits:

limo =limo* =0, limo, =guw, limoag, =0  limo,erp = 3(Rurop + Rupor) (40)
lim U*L”‘T = 8R“ + St Ry RM — £ Roprs R0 (41)
mAYZ =1, Lim(AY2) =0, lmAY=-1R,, lm(AY2)" =-1R, (42)
: 24 v «
lim (AY2)" = =3 R, + 55 R — 55 Ry R + g5 Ragys R0 (43)
These limits were evaluated by De Witt in [6].
limg!, = 4", limg!, =0, 1imgff,.p)\ = %Rﬁ,p)\ (44)
lim gl o = 3 (Rinra + Bl ) s limgh =5 (Rog 27 = Ry, "R ) (45)
Using these tables and formula (37) we calculate the coefficients
, I
ol =1, limal =167 (A1/2gg,) ——1R=0 (46)
vz
/ L H
lima} = & lim ¢’ [AW 595 (g g,AW)J T — 5 R + & R? — &Ry RM — S Ro gy s R0 (47)
lima) = — 4L Rog s RO (48)
Similar for gravitons:
21
trap =9, trap =0, tras = ERQWRMM (49)

Quadratic divergencies are absent both for gravitons and fictitious particles: a{ =0 and a§" = 0 As for logarithmic
divergencies, we should take into account the identity [6]:

/d4:1:\/§ (R2 — 4R, R" + RQM(;RO‘M‘;) =0 (50)
This means that

/ d*z\/g (RaprsR*7°) =0

This means that logarithmic divergencies also absent. So we proved that there is no ultra-violet divergencies for
generating functional of scattering matrix on mass shell. This result was obtained simultaneously with [3].



FINITE PART OF THE GENERATING FUNCTIONAL OF THE SCATTERING MATRIX

We can rewrite equation (26) for Fourier transform:

ff(I,ZE|S) = /00 dweis“’ff(x,ﬂw)

— 00

O(wf’) 1 . Loff
Do = O'Hf{L + ZQB/A 1/2 VMVMA1/2‘Q§ 8—(4) (51)
Similar for gravitons we can define Fourier transform of f&":
fgllg:(:zr,ﬂs) = /_OO dwe's¥ 5;5:(3:,x|w)
We can start from equation (30) and obtain:
' /7 6 AN~/
6(wfﬂ, /) yu ’ ’ 8f)\/yl / ’ af /’Y/
a’pB) A pv v —1/2 1/2 w 5 a’'f wov phs w S o’
e = (P )y + ol gf ATV [ AR g0 == - 20 9% RL39% 95— (52)

These function are used in diploma [2] to represent the finite part of the generating functional of the scattering matrix

1

[e’e] . 1 » w + ’LO
W= W/d%\/g/oo dw{af? (z, z|w) — §trfG (z, zlw)}w? In

1
m2

(53)

Here m? is an arbitrary positive constant. The equations for f should be solved by perturbations starting form the

flat metric. If the functions f are analytic and decay, then we can change the integration countour:

/d4x\/§/00 dw{df! (z, z|w) — %trfcr(x,x|w)}w2 (54)

s

~ 2(4m)?

W

ONE LOOP DIAGRAM WITH TWO VERTICES

The section of diploma consider insertions of one loop diagram with one and two vertices in a tree diagram. The
calculations in the diploma proves that the insertion of the diagram with one and two loops in any tree diagram
vanish. The full text of diploma [in Russian] can be found on authors web-page [2].
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