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This is a historical note. In 1974 I was an undergraduate student of L.D. Faddeev. I was working
on quantum gravity [without matter] in one loop approximation. I discovered [simultaneously with
G. t’Hooft M. Veltman] that on mass shell ultra-violet divergences cancel. The text below is a
translation of the Diploma.

The diploma was in Russian, it was never published. Recently Faddeev found a reference to my result by an editor
in Feynman’s lectures on gravitation [1] (the reference is on page xxxvii of the book). The scan of original diploma
can be found in the first line of the webpage [2]. The result was obtained simultaneously with G. t’Hooft M. Veltman,
see [3] . The translation of the diploma follows [17].

INTRODUCTION

The diploma is devoted to quantization of gravity. First appropriate method for quantization of gravity was
formulated by Dirac [7] in 1958 in a frame of Hamiltonian approach. Other methods [essentially equivalent to Dirac’s]
were suggested in [8–12]. Hamiltonian approach is not covariant, this makes perturbation theory complicated.

An approach to covariant quantization of gravity was suggested in [13], but this method led to violation of unitarity,
see [14]. In the same publication Feynman showed that to restore unitarity of a diagram in a form of a closed ring one
has to substract another diagram also in a form of a ring, which describes propagation of fictitious particle. Solution
of the problem for any diagram was formulated in 1967 by Fadeev and Popov [16] and De-Witt [15] [using essentially
different approaches]. This approach to quantization contains fictitious particle [ghosts] and their interaction with
gravitons. Next question is renormalization. Formally the whole theory is not renormalizable. Here the pure gravity
is studied in one loop approximation.

COVARIANT QUANTIZATION

We shall use functional integral for quantization of gravity. The background formulation for generating functional for
scattering matrix will be used, not generating functional of Green functions. The integral will depend on asymptotic
fields. We shall consider scattering matrix directly on mass shell, using classical equation of motion. Matrix element
of scattering matrix with n external lines can be obtained by n multiple differentiation of our generating functional
with respect to asymptotic fields. Asymptotic fields are classical fields. The generating functional of scattering matrix
covariantly depends on asymptotic fields. We will see that some divergencies disappear on mass shell.

Let us denote by gcl
µν a classical solution of Einstein equations [18]. So R = 0 and Rµν = 0.

Let iW (gcl
µν) denote a generating functional for connected Feynman diagrams with loops:

eiW = e−iSGr(gcl
ρω)

∫

exp iSGr(g
cl
ρω + uρω)

−5/2

det
(

−gcl
γδ − uγδ

)

d10uαβ (1)

Here

SGr(gαβ) =

∫ √
gR(gαβ)d4x (2)

is Einstein action for gravitational field. The measure g−5/2d10gµν assures unitarity. The formula (1) formally
covariant under non-abelian group of coordinate transformation. The theory is similar to nonabelian gauge field. We
shall use Faddeev-Popov approach to quantization, also we should choose a gauge to keep explicit covariance of W .
Below we shall use notations:

gt
µν = gcl

µν + uµν , gαβ
t gt

βµ = δα
µ (3)
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Also ∇cl will be a covariant derivative with respect to gcl
µν (sometimes we shall write cl as a lower index ) and

∇t will be a covariant derivative with respect to gt
µν (sometimes we shall write t as a lower index ) .

Let us introduce an auxiliary condition :

∇µ
clUµν − 1

2
gαβ

cl ∇cl
ν Uαβ − Cν = 0 (4)

Here Cnu is an arbitrary function of coordinates. We shall also use

Dν = ∇µ
clUµν − 1

2
gαβ

cl ∇cl
ν Uαβ (5)

So in one loop quantization we get :

eiW =

∫

exp iSGr(g
t
µν) det M̂

∏

x

δ4 (Dν − Cν) g
−5/2
t d10Uµν (6)

We used SGr(g
cl
αβ) = 0. The one loop operator is

M̂νω = ∇µ
cl∇t

µgt
νω + ∇µ

cl∇t
νgt

µω − gαβ
cl ∇cl

ν ∇t
αgt

βω (7)

It is checked in the original diploma that the right hand side of (6) transforms as scalar density under coordinate
transformations. At this point we want to emphasize that gcl

µν is an arbitrary solution of Einstein equations. Let us
get rid of the δ function following ideas of t’Hooft, see [6]. Note that the expression

N =

(

∏

x

√
gcl

)

∫

dCν exp {−i

∫

d4x
√

gclgαβ
cl CαCβ} (8)

does not depend on gcl
µν . The constant factor in the equation (6) does not matter, so we can multiply the right hand

side by N .

eiW =

(

∏

x

√
gcl

)

∫

dCν exp {−i

∫

d4x
√

gclgαβ
cl CαCβ}

∫

exp iSGr(g
t
µν) det M̂

∏

x

δ4 (Dν − Cν) g
−5/2
t d10Uµν (9)

After integrating with respect to Cν we obtain:

eiW =

(

∏

x

√
gcl

)

∫

exp{iSGr(g
t
µν) − i

∫

d4x
√

gclgαβ
cl DαDβ}

(

det M̂
)

g
−5/2
t d10Uµν (10)

We can also represent det M̂ as an integral with respect to anti-commuting vector fields χα

det M̂ =

∫

d4χαd4χβ exp i

∫

d4xχαMαβχβ (11)

Finally we arrive to the following expression for generating functional for scattering matrix:

eiW =

(

∏

x

√
gcl

)

∫

exp{iSGr(g
t
µν) − i

∫

d4x
√

gclgαβ
cl DαDβ} exp

(

i

∫

d4xχαM̂αβχβ

)

g
−5/2
t d10Uµνd4χαd4χβ (12)

We do not care about common factors. We can calculate the integral by stationary phase approximation. The
stationary point is

gµν = gcl
µν , χα = 0, χβ = 0 (13)

We shall leave in the exponent only terms quadratic in integration variables. In this approximation we get:

χαM̂αβχβ = χαgcl
αβ∇µ

cl∇cl
µ χβ (14)
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The integral

eiW = (15)
(
∏

x g−1
cl

) ∫

exp{iUµν
δ2S

δgcl
µν δgcl

αβ

Uαβ − i
∫

d4µ

x
√

gclgαβ
cl DαDβ} exp

(

i
∫

d4xχα∇µ
cl∇cl

µ χα
)

d10Uµνd4χαd4χβ

can be taken. Now we have to calculate the quadratic form:

Uµν
δ2S

δgcl
µνδgcl

αβ

Uαβ −
∫

d4µ

x
√

gclgαβ
cl DαDβ =

1

2

∫

d4xUµν
ˆFµν
αβ cl

gαλ
cl gβδ

cl Uλδ (16)

In the rest of diploma we shall use only gcl
αβ , so we shall drop index cl. For ˆFµν

αβ cl
we get:

ˆFµν
αβ cl

=
1

2

(

δµ
ρ δν

λ + δµ
λδν

ρ − gµνgρλ

)

(

∇θ∇θδ
ρ
αδλ

β − 2Rρ
α

λ
β

)

(17)

It is convenient to denote:

F̂v = (∇θ∇θ)(v) (18)

We can evaluate Gaussian integrals in the form (15)

eiW =

(

∏

x

g−1
cl

)(

−1/2

det F̂Gr

)

det F̂f (19)

This is the expression for generating functional of scattering matrix in one loop approximation.

CANCELATION OF INFINITIES IN ONE LOOP APPROXIMATION

To calculate determinants in formula (19) we shall use method of proper time

ln detF = −Tr

∫ ∞

0

ds

s

(

ei(F+i0) − eisI
)

(20)

We are going to differentiate the left hand side, so Tr
∫∞
0

ds
s eisI will not contribute and we shall not write it.

Let us write differential equation and initial data:

∂eiF̂ s

∂s
= iF̂ eiF̂ s, eiF̂ s|s=0 = I (21)

Let us denote by G(x, y|s) the kernel of the integral operator exp(iF̂ s). The main part of the operator F̂ is
d’Alembertian. So we can separate a singular factor characteristic for parabolic equation:

G(x, x′|s) =
−1

(4πs)2
exp

(

iσ(x, x′)

2s

)

D1/2A(x, x′|s) (22)

Here A(x, x′|s) is a smooth function which turns into 1 at s = 0. The σ(x, x′) is geodesic distance between points x
and x′. It satisfy a differential equation:

gµν∂µσ(x, x′)∂νσ(x, x′) = 2σ(x, x′) (23)

In case of flat space 2σ(x, x′) = (x − x′)2. The third factor in (22) is density D(x, x′) = det(−σµν′(x, x′)). It satisfy
a differential equation:

D−1 (σµ
. D).µ = 4 (24)

It is also convenient to introduce a scalar:

∆ =
D

√
g
√

g′
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We use the following notation: ∂νΦ = ∂Φ/∂xν and ∂ν′Φ = ∂Φ/∂x′ν . Later we shall use limx→x′ D = g(x). This
follows from limx→x′ ∂µ∂ν′σ(x, x′) = gµν′(x). In order to calculate exp iF̂ s we need to introduce a function of parallel
transport gα

β′(x, x′). It is a by-vector: index α is related to the point x and β′ to x′. The function satisfy the equation:
στ

. gα
β′τ = 0. Corresponding boundary condition is gα

β′(x, x′) → δα
β′ as x → x′ [19]. The function of parallel transport

has the following properties:

gµν′ = gν′µ, gν′

µ σ.ν′ = −σ.µ, gµσ′gσ′

ν = gµν , det (−gµν′) =
√

gg′

Now we ready to study the formula (22). For fictitious particles we put

A(x, y|s)α
β′ = gα

β′(x, y)ff (x, y|s) (25)

The function ff(x, y|s) is a by-scalar satisfying equation:

∂ff

∂s
+

σ.µff
.µ

s
=

i

4
gα

β′∆−1/2∇µ∇µ

(

∆1/2gβ′

α ff
)

(26)

Consider Taylor series:

ff (x, y|s) =

∞
∑

n=0

af
n(x, y)(is)n, a0 = 1 (27)

Coefficients satisfy equations:

σµ
. an.µ + nan =

1

4
∆−1/2gα

β′

(

gβ′

α ∆1/2an−1

)θ

.θ
(28)

Let us do similar calculations for gravitons:

A(x, y|s)µν
α′β′ =

1

2

(

gµ
λ′g

ν
γ′ + gµ

γ′g
ν
λ′ − 1

2
gµνgγ′λ′

)

fγ′λ′

α′β′ (x, y|s) (29)

Here f is a scalar at x and 4-tensor at point y, it is symmetric and traceless with respect to γ′λ′. It satisfy an
equation:

∂

∂s
fµ′ν′

α′β′ +
σω

.

s
(f.ω)µ′ν′

α′β′ = igµ′

ω gν′

δ ∆−1/2
(

∆1/2gω
λ′gδ

ν′fλ′ν′

α′β′

)θ

.θ
− 2igµ′

θ gν′

ς Rθ
ω

ς

δg
ω
λ′gδ

γ′f
λ′γ′

α′β′ (30)

Consider Taylor series for this f

fµ′ν′

α′β′ =

∞
∑

n=0

aµ′ν′

α′β′(is)
n (31)

Coefficients satisfy a recursion:

σω
. (an.ω)µ′ν′

α′β′ + n(an)µ′ν′

α′β′ = gµ′

ω gν′

δ ∆−1/2
(

∆1/2gω
λ′gδ

ν′(an−1)
λ′ν′

α′β′

)θ

.θ
− 2gµ′

θ gν′

ς Rθ
ω

ς

δg
ω
λ′gδ

γ′(an−1)
λ′γ′

α′β′ (32)

Note that the coefficients (an)λ′γ′

α′β′ are symmetric and traceless with respect to upper indices λ′γ′. Also

(a0)
λ′γ′

α′β′ =
1

2

(

δλ′

α′δ
γ′

β′ + δλ′

β′δ
γ′

α′ −
1

2
gλ′γ′

gα′β′

)

(33)

These calculations directly generalize the ones by B.S. De-Witt [he used them for description of interaction of scalar
particles with external gravity]. So we described the kernel exp (isF̂ ) , see (22) . We can use it to separate infinities
in the formula (20). Ultraviolet infinities arise from integration at s ∼ 0. Taylor expansion (26) and (31) are useful.
For fictitious particles we obtain:

ln det F̂ f = 4

∫

dx4√g

∞
∑

n=0

∫ ∞

0

ds

s(4πs)2
e

iσ
2s (is)nan(x, x) (34)
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We put exp iσ
2s |0 = 1. Only coefficients at a0, a1 and a2 are divergent at zero [quartic, square and logarithmic

divergencies correspondingly]. So in (34) we shall consider only first three terms:

ln det F̂ f = 4
∫

dx4√g
∫∞
0

ds
s(4πs)2 e

iσ
2s (1 + isa1 − s2a2) = (35)

= 4
∫ d4x

√
g

(4π)2

(

−4
(σ+i0)2 − 2a1

σ+i0 + [ln σ+i0
2 −

∫∞
0

ds
s ei/s]a2

)

Last integral is divergent at 0 and ∞. We can get similar expression for gravitons:

ln det F̂Gr =
1

(4π)2

∫

d4x
√

gtr

( −4

(σ + i0)2
I − 2â1

σ + i0
+ [ln

σ + i0

2
−
∫ ∞

0

ds

s
ei/s]â2

)

|x=y (36)

So we need coefficients a1 and a2 for both gravitons and fictitious particles. Then we can use (19) to calculate
divergencies of the generating functional for scattering matrix. We can use (28) to derive:

lim
x→y

af
n =

1

4n
lim
x→y

∆−1/2gα
β′

(

gβ′

α ∆1/2af
n−1

)θ

.θ
(37)

Because the limx→y σµ
. = 0. Equation (32) lead to:

lim(an)µ′ν′

α′β′ =
1

n
lim
x→y

gµ′

ω gν′

δ

(

∆1/2gω
λ′gδ

ν′(an−1)
λ′ν′

α′β′

)θ

.θ
− 2Rµ′

λ′

ν′

γ′
(an−1)

λ′γ′

α′β′ (38)

In order to calculate the right hand side in these equations we need to know expressions like σ.µνγδ, which we can find

recursively from equations: σµ
. σ.µ = 2σ also σµ

. gα
β′µ = 0 and 4∆1/2 = 2∆1/2µ

. σ.µ + ∆1/2σµ
.µ . Last equation follows

from (24). Now shall evaluate covariant derivatives and use commutation rule:

(φµ).νσ − (φµ).σν = Rνσ
µ
τ φτ (39)

Let us present a table of limits:

limσ = limσµ
. = 0, lim σ.µν = gµν , limσ.αβγ = 0 limσ.νστρ = 1

3 (Rντσρ + Rνρστ ) (40)

lim σµ
.µ

ν
ν

σ

σ
= 8

5Rµ
.µ + 4

15RµνRµν − 4
15RαβγδR

αβγδ (41)

lim∆1/2 = 1, lim
(

∆1/2
)

.µ
= 0, lim∆

1/2
.µν = − 1

6Rµν , lim
(

∆1/2
)ν

.µν
= − 1

6R.µ (42)

lim
(

∆1/2
)µν

.µν
= − 1

5Rµ
.µ + 1

36R2 − 1
30RµνRµν + 1

30RαβγδR
αβγδ (43)

These limits were evaluated by De Witt in [6].

lim gµ
ν′ = δµ

ν′ , lim gµ
ν′.τ = 0, lim gµ

ν′.ρλ = 1
2Rµ

ν′ρλ (44)

lim gµ
ν′.ρλα = 1

3

(

Rµ
ρλν′.α + Rµ

ρλν′.λ

)

, lim gµ ρα
ν′.ρα = 1

2

(

R µ αβ
αβ ν′. − R µ

αβγ Rαβγ
ν′

)

(45)

Using these tables and formula (37) we calculate the coefficients

af
0 = 1, lim af

1 = 1
4δβ′

α

(

∆1/2gα
β′

)µ

.µ
= − 1

6R = 0 (46)

lim af
2 = 1

32 lim δβ′

α

[

∆1/2gα
β′gδ′

γ

(

gγ
δ′∆1/2

)ι

.ι

]µ

.µ
= − 1

10Rµ
.µ + 1

72R2 − 1
60RµνRµν − 11

240RαβγδR
αβγδ (47)

lim af
2 = − 11

240RαβγδR
αβγδ (48)

Similar for gravitons:

tra0 = 9, tra1 = 0, tra2 =
21

40
RαβγδR

αβγδ (49)

Quadratic divergencies are absent both for gravitons and fictitious particles: af
1 = 0 and aGr

1 = 0 As for logarithmic
divergencies, we should take into account the identity [6]:

∫

d4x
√

g
(

R2 − 4RµνRµν + RαβγδR
αβγδ

)

= 0 (50)

This means that
∫

d4x
√

g
(

RαβγδR
αβγδ

)

= 0

This means that logarithmic divergencies also absent. So we proved that there is no ultra-violet divergencies for
generating functional of scattering matrix on mass shell. This result was obtained simultaneously with [3].
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FINITE PART OF THE GENERATING FUNCTIONAL OF THE SCATTERING MATRIX

We can rewrite equation (26) for Fourier transform:

ff (x, x|s) =

∫ ∞

−∞
dωeisωff (x, x|ω)

∂(ωff)

∂ω
= σµ

. ff
.µ +

1

4
gα

β′∆−1/2

(

∇µ∇µ∆1/2gβ′

α

∂ff

∂ω

)

(51)

Similar for gravitons we can define Fourier transform of fGr:

fµ′ν′

α′β′ (x, x|s) =

∫ ∞

−∞
dωeisωfµ′ν′

α′β′ (x, x|ω)

We can start from equation (30) and obtain:

∂(ωfµ′ν′

α′β′ )

∂ω
= σλ

. (f.λ)
µ′ν′

α′β′ + gµ′

ω gν′

δ ∆−1/2

(

∆1/2gω
λ′gδ

ν′

∂fλ′ν′

α′β′

∂ω

)θ

.θ

− 2gµ′

θ gν′

ς Rθ
ω

ς

δg
ω
λ′gδ

γ′

∂fλ′γ′

α′β′

∂ω
(52)

These function are used in diploma [2] to represent the finite part of the generating functional of the scattering matrix

iW =
1

2(4π)2

∫

d4x
√

g

∫ ∞

−∞
dω{4ff(x, x|ω) − 1

2
trfGr(x, x|ω)}ω2 ln

ω + i0

m2
(53)

Here m2 is an arbitrary positive constant. The equations for f should be solved by perturbations starting form the
flat metric. If the functions f are analytic and decay, then we can change the integration countour:

iW =
iπ

2(4π)2

∫

d4x
√

g

∫ ∞

o

dω{4ff(x, x|ω) − 1

2
trfGr(x, x|ω)}ω2 (54)

ONE LOOP DIAGRAM WITH TWO VERTICES

The section of diploma consider insertions of one loop diagram with one and two vertices in a tree diagram. The
calculations in the diploma proves that the insertion of the diagram with one and two loops in any tree diagram
vanish. The full text of diploma [in Russian] can be found on authors web-page [2].
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