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PREFACE 

In recent years there has been a strong increase of interest in strongly corre

lated electronic systems in the Condensed Matter community. The reason for this 

development is tha t certain phenomena like high-Tc superconductivity cannot seem 

to be explained in the framework of weak interactions, that is mean-field theory and 

perturbation around it. There are mainly two different approaches in dealing with 

strong correlations: numerical studies and exact analytical solutions. Analytical so

lutions provide a complete and unambiguous picture of the dynamics of the models 

under consideration. The analytical approach is mainly limited to one spatial di

mension, but there are indications that two-dimensional systems may share certain 

features with their one-dimensional analogs (see e.g. P. W. Anderson in Ref. 1; for 

a modified Hubbard model it was recently shown that the ground state structure 

is identical in one and two dimensions2). This volume is devoted to exact solutions 

of models of strongly correlated electrons in one spatial dimension by means of the 

Bethe Ansatz. 

The first such exactly solved model is the non-relativistic continuum model of 

electrons with local interaction, solved by C. N. Yang in 19673 (see also Ref. 4). In 

the solution of the model the nested Bethe Ansatz, which is the basis for all exact 

solutions of electronic models in one dimension, was discovered. 

The most important model of strongly correlated electrons, and the central 

topic of this volume, is the Hubbard model. The first chapter is devoted to its 

exact solution in one space and one time dimension, which started with E. H. Lieb's 

and F. Y. Wu's work of 1968. The chapter starts with reprints dealing with the 

construction of eigenstates of the Hubbard hamiltonian and the determination of the 

ground state and excitation spectrum at zero temperature. The next few topics are 

the study of magnetic properties in an external magnetic field, the thermodynamics 

of the model, and the asymptotic behaviour of correlation functions. The chapter 

closes with reprints on transport properties of the model. 

The second chapter is devoted to the t-J model at the supersymmetric point 

J = ±2r. The t-J model first appeared as an effective model describing the strong 

coupling limit of the Hubbard model for H <C t). Later the model was reinvented to 

describe copper-oxide planes in high-Tc superconductors. Nowadays the t-J model 

is the most thoroughly studied model of strongly correlated electrons after the 

Hubbard model. The organization of Chapter II is similar to that of Chapter I. 

The third chapter is about other solvable models of strongly correlated elec

trons. The first half of the chapter is devoted to various electronic models with local 

interaction — the nonrelativistic continuum model of electrons with local interac-
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tion, the Luttinger model, and models which were constructed recently in relation to 

high-Tc superconductivity. The second part of the chapter deals with models with 

long-range interactions, which have recently at tracted much attention in relation to 

fractional statistics. 

The reprinted papers are complemented by a list of some 230 references at the 

end of the volume. In this list reprinted papers are marked by a bullet (•) . When 

referring to reprinted papers in the comments we first give the chapter number and 

then the number of the reprint within the chapter, e.g. [repr.lll.A.2] would refer to 

the paper by M. Takahashi reprinted in part A of chapter III under the number 2. 

The central topic of this volume is lattice models of strongly correlated elec

trons. We did not include reprints on models describing interactions of electrons 

with impurities (see the excellent reviews in Refs. 5, 6) or other excitations in this 

volume. We also did not include papers dealing with purely mathematical aspects 

of integrable models. There are many excellent books dealing with these i s sues 7 - 1 6 

and we refer the interested reader to them. We also did not include any reviews on 

the Hubbard model. 

Due to republication fees charged by certain journals we were not able to 

include a significant number of papers which we had originally planned to get 

reprinted. We are very sorry about this unfortunate development but are confi

dent that the volume in its current form will still be helpful for researchers and 

students. 

While working on this volume we have benefitted greatly from discussions 

with L. D. Faddeev, F . D. M. Haldane, A. I. Larkin, E. H. Lieb, B. S. Shastry, 

E. K. Sklyanin, B. Sutherland, F. Woynarovich, and C. N. Yang. We would like to 

take this opportunity to sincerely thank them for their help and support. 

Vladimir E. Korepin Fabian H. L. Efiler 

Stony Brook, July 1993 
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I. T H E ONE-DIMENSIONAL HUBBARD MODEL 

The Hubbard model is the basis of the modern theory of strongly correlated 

electrons. It was invented in 1963 as a short-range, one-band model for the corre

lation effects of electrons in a partially filled energy b a n d 1 7 - 2 0 . The hamiltonian 

describes electrons that hop between the Wannier states of neighbouring lattice 

sites, and which interact if they occupy the same site (in which case they must have 

opposite spins due to the Pauli principle). 

Of particular interest in the initial study of the model were the investigation 

of a Mott (conductor-insulator) transition at finite values of the coupling U, and 

the determination of the magnetic properties in an external magnetic field. More 

recently the Hubbard model has drawn a great deal of attention in relation to 

high-Tc superconductivity1 . 

This history of the exact solution of the one-dimensional Hubbard model starts 

with E. H. Lieb's and F. Y. Wu's seminal paper of 196821 [repr.l.l]. Using the formu

lation of the nested Bethe Ansatz invented in [repr.l M.A.I] they reduced the problem 

of diagonalizing the hamiltonian to solving a set of coupled nonlinear equations, 

known as the Bethe Ansatz or Lieb-Wu equations. These equations are the basis 

for most subsequent exact studies of the model. Lieb and Wu also determined the 

ground state of the system (and its energy) and gave a discussion of the nature of 

the excitation spectrum for the half-filled band. They showed that the Hubbard 

model at half-filling is an insulator for all positive values of the coupling U. Lieb 

and Wu explicitly considered the positive U (repulsive) Hubbard model, in which 

the ground state is described by means of a set of two coupled integral equations. 

The excitation spectrum was studied by A. A. Ovchinnikov22, G. V. Uimin 

and S. V. Fomichev23, C. F. Coll24, F . Woynarovich2 5"2 8 , T. C. Choy and 

W. Young29 , A. Klumper, A. Schadschneider and J. Zi t tar tz3 0 '3 1 , and 

N. Kawakami and A. Okiji32. 

In [repr.l.2.] A. A. Ovchinnikov obtained the correct dispersion for the spin-

triplet excitations over the half-filled ground state. He also studied some spin-singlet 

excitations. G. V. Uimin and S. V. Fomichev extended Ovchinnikov's results to 

less than half-filling. They also studied the magnetic susceptibility at less than 

half-filling. C. F. Coll determined the one-particle type and spin-wave type excita

tions (which only involve real spectral parameters) for strictly less than half-filling 

[repr.1.3] (the excitation spectrum at half-filling is qualitatively different). He found 

a linear dispersion relation of the spin-wave excitation for small momenta and eval

uated the corresponding spin-wave velocity. T. C. Choy and W. Young re-examined 

the triplet spin-wave excitations. F . Woynarovich gave a very detailed analysis of 
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the charge excitations (which involve complex spectral parameters) at half-filling 

[repr.1.4, 1.5], and of the spin excitations [repr.1.6]. In [repr.1.4] he studied a so-called 

A'-stringt spin-singlet excitation over the ground state, found that this type of exci

tation has a gap, and determined the dispersion relation. This paper also contains a 

very clear exposition of the Bethe Ansatz wave functions. In [repr.1.5] and [repr.1.6] 

he extended his results to the case of spin-singlet (charge) excitations with many 

A' strings and spin-triplet and higher spin-multiplet excitations respectively. He 

also studied the ground state and low-lying excitations in the attractive half-filled 

case28 [repr.1.7] (we find his discussion of the quantum numbers of the excitations 

in the attractive case somewhat confusing*). A. Klumper, A. Schadschneider and 

J. Zittartz developed a different method to solve the nested Bethe Ansatz equations 

at half-filling, rederiving all known results [repr.1.8]. The last two authors extended 

this method to small and almost half-filling. N. Kawakami and A. Okiji investigated 

a charged hole excitation in the half-filled band. 

The magnetic properties at zero temperature were studied by 

M. Takahash i 3 4 - 3 6 , H. Shiba3 7 , G. V. Uimin and S. V. Fomichev (see above), 

T. B. Bahder, K. Penc and F. Woynarovich 3 8 - 4 0 , and J. M. P. Carmelo, P. Horsch, 

P. A. Bares and A. A. Ovchinnikov41. M. Takahashi found the magnetization curves 

and the magnetic susceptibility at zero temperature for the case of the half-filled 

band for both positive and negative values of the coupling constant U [repr.1.9]. 

H. Shiba extended Takahashi's results to arbitrary band fillings for the repulsive 

case (positive U). T. B. Bahder and F. Woynarovich studied the magnetization 

curves for arbitrary filling and negative U. In [repr.1.10] F. Woynarovich and K. Penc 

derived exact analytic expressions for magnetization and magnetic susceptibility at 

arbitrary filling (and negative U). J. M. P. Carmelo, P. Horsch, P. A. Bares and 

A. A. Ovchinnikov studied magnetic properties of the Hubbard model by means of 

the Landau-Luttinger approach (see [repr.1.19]). 

The thermodynamics of the model were investigated by M. Takahashi4 2 '4 3 , 

T. R o m a 4 4 " 4 6 , by N. Kawakami, T. Usuki and A. Okiji47, and by J. M. P. Carmelo, 

P. Horsch, P. A. Bares and A. A. Ovchinnikov48. In [repr.l.ll] M. Takahashi derived 

an infinite set of coupled integral equations that determine energy, entropy, density 

and magnetization for fixed temperature, chemical potential and magnetic field. 

He solved this infinite set of integral equations in the limits of infinite and zero 

temperature and coupling U. In the first step of his derivation he classified all 

solutions of the Lieb-Wu equations by deriving the adequate form of the string 

^In the terminology of [repr.l.ll], where this type of solution to the Lieb-Wu equations was first 
discussed. 

complete set of excitations is given by the scattering states of a gapless charge doublet (without 
spin) and a spin-doublet with a gap (and no charge)33. 
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hypothesis for the Hubbard model. In his treatment of the thermodynamics (see 

also Ref. 49) the use of the string hypothes is 8 ' 4 9 - 5 2 is necessary. T. Koma initiated 

a different approach to determine thermodynamic properties, which does not make 

use of the string hypothesis and which is discussed below. In [repr.1.12] M. Taka-

hashi used his results obtained in [repr.l.ll] to compute the low-temperature specific 

heat. N. Kawakami, T. Usuki and A. Okiji performed numerical studies of the mag

netic susceptibility, compressibility, and specific heat. J. M. P. Carmelo, P. Horsch, 

P. A. Bares and A. A. Ovchinnikov studied the low-temperature thermodynamics 

of a Hubbard chain in the presence of a magnetic field by means of the Landau-

Luttinger approach5 3 '5 4 . They derived explicit expressions for the specific heat for 

a nearly half-filled band and for values of the magnetic field close to the ferro

magnetic saturated state. They also evaluated the "renormalized charge and hole 

masses" which determine the exponential decay of correlation functions related to 

the development of gaps in the spectrum of the spin-triplet excitations for large 

magnetic fields, and of the charge excitations at half-filling. The compressibility at 

zero temperature was calculated by T. Usuki, N. Kawakami and A. Okiji55. 

The issue of whether the eigenstates of the hamiltonian found by Lieb and Wu 

actually form a complete set of states was resolved by F. H. L. Efiler, V. E. Korepin 

and K. Schoutens 5 6 - 5 8 [repr.1.13]. Based on the representation of the 5 0 ( 4 ) sym

metry of the Hubbard model5 9 , 6 0 in terms of spin SU(2) and ^-pairing SU(2)61~63 

they proved that the Bethe Ansatz does not provide a complete set of states. They 

proved a lowest weight theorem with respect to the S r0(4)-symmetry for the Bethe 

Ansatz states, and constructed a complete set of states by acting with the 5 0 ( 4 ) 

raising operators on the Bethe Ansatz states. 

J. M. P. Carmelo and D. Baeriswyl studied the ground state properties of the 

Hubbard model by means of a perturbative expansion in powers of l/U for large 

U for arbitrary band filling64. A comparison of the energy gap for the half-filled 

band with the gap-equation of BCS theory was performed by A. L. Kholodenko and 

A. L. Beyerlein65. 

It is quite a general feature of Bethe Ansatz solvable one-dimensional quantum 

models that their respective hamiltonians can be embedded in commuting families 

of transfer matrices describing two-dimensional classical integrable models. The 

commuting transfer matrices depend on a spectral parameter, and upon a formal 

power series expansion in this parameter. The commutativity property of the trans

fer matrices translates into the existence of an infinite number of conservation laws, 

one of which is by construction the hamiltonian of the one-dimensional quantum 

model. 
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The Hubbard model appeared to be an exception to this rule for many years 

until B. S. Shastry succeeded in constructing a covering classical model and its com

muting family of transfer ma t r i ces 6 6 - 6 8 . In [repr.1.14] he constructed the 72-matrix 

and showed it to obey a Yang-Baxter equation. This i2-matrix has the unusual fea

ture tha t it depends on the difference and the sum of the spectral variables in the 

Yang-Baxter equation, [repr.1.14] also contains explicit expressions for some higher 

conservation laws of the Hubbard model and a conjecture for the eigenvalues of the 

transfer matrix. Subsequently R. Z. Bariev reported a Bethe Ansaiz solution for 

the diagonal-to-diagonal transfer matrix problem of the classical model and used 

this to compute the free energy and finite size corrections69 '70 . 

Preceeding Shastry's work were other a t tempts to construct a covering two-

dimensional classical vertex model starting from the Hubbard hamiltonian. 

M. Barma and B. S. Shastry7 1 used the Trotter product formula to transform 

the partition function of the Hubbard model into the partition function of a two-

dimensional classical spin model, for which the Hubbard hamiltonian is the logarith

mic derivative of the transfer matrix (at a special value of the spectral parameter) . 

However, their transfer matrices do not commute for generic values of the spectral 

parameters and it is not known whether there exists a commuting family describing 

the Barma-Shastry model. This of course raises the question of the integrabil-

ity of this model, which to the best of our knowledge has not been completely 

clarified72. However, R. Z. Bariev73 reported a diagonalization of the diagonal-to-

diagonal transfer matrix of the Barma-Shastry model by means of a Bethe Ansaiz. 

This point mystifies us to some extent because to the best of our knowledge the ex

istence of a commuting family of transfer matrices is essential for the applicability of 

the Bethe Ansaiz. Further studies were performed by T. T. Truong, K. D. Schotte 

and S. Iwabuchi7 4 '7 5 . 

In [repr.1.15] T. Koma used Bariev's results to construct the so-called ther

mal Bethe Ansaiz*4'45'76-61 for the Hubbard model4 6 . Using the equivalence of the 

partition functions of the Hubbard model and the classical two-dimensional vertex 

model of Barma and Shastry, Koma managed to describe the thermodynamics of 

the Hubbard model by a system of coupled algebraic equations, without making 

use of the string hypothesis needed in Takahashi's approach to the thermodynam

ics. Combining Koma's results with an extension of the thermal Bethe Ansaiz 

method developed by M. Takahashi8 2 , 8 3 , H. Tsunetsugu evaluated the temperature 

dependence of the spin correlation length for the half-filled band 8 4 [repr.1.16]. In 

this method the spin correlation length is determined by a set of coupled algebraic 

equations, which have to be solved numerically. 
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At zero temperature, correlation functions decay as a power of the distance 
(in the gapless situation). The corresponding powers are called critical exponents or 
conformal dimensions. They are the main objects of interest for the large-distance 
asymptotics of correlation functions at zero temperature. They were studied by 
employing a variety of different methods. 

In 1977 A. M. Finkel'shtein derived the critical exponents for several correla

tors for small coupling U and a half-filled band 8 5 [repr.1.17]. He used a bosonization 

technique to derive an effective hamiltonian describing low-lying excitations close 

to the Fermi surface. His results turn out to be exact for all values of U. 

In the limit U —> oo the Bethe Ansatz wave functions take an especially simple 
form86 (see also [repr.1.5]). This fact allows for direct studies of asymptotic proper
ties of correlation functions. M. Ogata, T. Sugiyama and H. Sh iba 8 6 - 8 8 performed 
numerical studies of momentum distribution and spin-correlation functions in the 
limit U —• oo. An analytic derivation of the asymptotics for spin-spin correlators 
in the limit U —• oo at zero magnetic field and quarter filling was obtained by 
A. Parola and S. Sorella89. 

Another method for the calculation of correlators at zero temperature is the 

so-called Luttinger-liquid approach invented by F . D. M. Ha ldane 9 0 - 9 4 , which is 

essentially based on the fact that the Hubbard model, as well as many other critical 

one-dimensional models, are certain realizations of the Gaussian model9 5 . By gen

eralizing Haldane's method H. J. Schulz96 '97 [repr.1.18] and independently Y. Ren 

and P. W. Anderson98 obtained the expressions for the critical exponents of the 

charge and spin correlators in zero magnetic field. The singularities of the electron 

momentum distribution function (which are connected to the long-distance asymp

totics of correlation functions by Fourier transform) were studied by M. Brecht, 

J. Voigt and H. B u t t n e r " in the framework of Luttinger liquid theory. 

An extension of F. D. M. Haldane's description to the case of finite magnetic 

fields is provided by the Landau-Luttinger-liquid approach of J. M. P. Carmelo, 

P. Horsch and A. A. Ovchinnikov53 '100 . In Ref. 100 the critical exponents were 

obtained in the framework of a generalized Landau-liquid theory, confirming the 

results of H. Frahm and V.E. Korepin1 0 1 '1 0 2 (see below). The concept of a Landau-

Luttinger liquid was introduced by J. M. P. Carmelo and A. A. Ovchinnikov in 

[repr.1.19]53, where the spectral properties and asymptotic behaviour of correlation 

functions of the one-dimensional Hubbard model were reformulated in terms of 

interacting charge and spin pseudoparticles. 

The modern version of the Luttinger-liquid approach is related to conformal 

quantum field theory1 0 3 . It was shown in Refs. 104-106 that the critical exponents 

can be extracted from the finite size corrections to the spectrum of the hamiltonian. 

In Bethe Ansatz solvable models it is possible to evaluate the finite size corrections 
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exactly1 0 7 n 0 . The corrections for the low-lying states in the repulsive half-filled 

Hubbard model were obtained by F. Woynarovich and H. P. Eckle111 [repr.1.20]. The 

finite size corrections and critical exponents in the attractive Hubbard model were 

determined by N. M. Bogoliubov and V. E. Korepin1 1 2 '1 1 3 [repr.1.21]. Unlike in the 

repulsive case there is only one branch of gapless excitations in the attractive case 

(note that the expression for the correlation length £ [describing the exponential 

decay of the correlator of Fermi fields] given in the paragraph between formulas (7) 

and (8) is incorrect). 

Expressions for the finite size corrections in a general solvable model were 

given A. Izergin, V. E. Korepin and N. Yu. Reshetikhin in Ref. 114. Using these 

results F . Woynarovich treated the case of the non-half-filled Hubbard model1 1 5 

[repr.1.22]. The derivation of the critical exponents from the finite-size corrections 

in the repulsive case for arbitrary values of the external magnetic field, the density, 

and the coupling U was performed by H. Frahm and V. E. Korepin1 0 1 '1 0 2 [repr.1.23]. 

They were the first to evaluate the critical exponents for finite magnetic fields. They 

found that the conformal dimensions depend strongly on the external magnetic field 

and the other system parameters like density and coupling constant. In Ref. 102 

an expression that determines the conformal dimensions for any (gapless) model 

solvable by a nested Bethe Ansatz was obtained*. They also investigated the singu

larities of the electron momentum distribution function. The case of zero magnetic 

field was also studied by N. Kawakami and S. K. Yang1 1 7 . Logarithmic ampli

tude corrections to the asymptotical behaviour of the correlators were calculated 

by T. Giamarchi and H. J. Schulz118. Other methods for determining the critical 

exponents, based on perturbation theory and a renormalization group analysis, can 

be found in Refs. 119-121. 

The transport properties of the one-dimensional Hubbard model were studied 

by B. Sutherland and B. S. Shastry1 2 2 , M. Fowler and N. Yu1 2 3 , J. M. P. Carmelo, 

P. Horsch and D. Campbell1 2 4 , and by M. J. Martins and R. M. Fye 1 2 5 . In [repr.1.24] 

B. S. Shastry and B. Sutherland showed that the boundary energy of a fermionic 

lattice system with twisted boundary conditions can be identified with the inverse ef

fective charge- and spin-carrying masses (or stiffnesses). They evaluated the charge-

and spin-stiffnesses for the Hubbard model and showed that these quantities can 

be used as a probe for a Mott-Hubbard transition. The twisting of boundary con

ditions can be viewed as the effect of a transverse ("two-dimensional") magnetic 

field. 

*An application of this formula to other models can be found in [repr.11.5] and Ref. 116 
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N. Yu and M. Fowler studied the persistent current in Hubbard rings as a 

function of the flux through the ring and the coupling U [repr.1.25]. They found that 

the persistent current is a periodic function of the flux and showed that the ground 

state is always a spin-singlet. J. M. P. Carmelo, P. Horsch and D. K. Campbell 

investigated the transport properties of the Hubbard model in the framework of the 

Landau-Luttinger-liquid approach. They evaluated the charge and spin dynamical 

form factors for arbitrary momentum in a magnetic field124. M. J. Martins and 

R. M. Fye evaluated the charge and spin stiffnesses for the repulsive and attractive 

Hubbard models with toroidal boundary conditions. 
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ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION 
OF THE SHORT-RANGE, ONE-BAND MODEL IN ONE DIMENSION 

Elliott H. Lieb* and F. Y. Wu 
Department of Physics, Northeastern University, Boston, Massachusetts 

(Received 22 April 1968) 

The short-range, one-band model for electron correlations in a narrow energy band 
is solved exactly in the one-dimensional case. The ground-state energy, wave function, 
and the chemical potentials are obtained, and it is found that the ground state exhibits 
no conductor-insulator transition as the correlation strength is increased. 

The correlation effect of electrons in a partial
ly filled energy band has been a subject of inter
est for many years.1"4 A realistic model which 
takes this correlation into consideration, and 
which is hopefully amenable to mathematical 
treatment, is the short-range, one-band model 
considered by a number of authors.2"5 In this 
model, one pictures the electrons in a narrow 
energy band hopping between the Wannier states 
of neighboring lattice sites, with a repulsive in
teraction energy between two electrons of oppo
site spins occupying the same lattice site. The 
central problems of interest have been (a) the 
possible existence of a "Mott transition" between 
conducting and insulating states as the strength 
of the interaction is increased, and (b) the mag
netic nature (ferromagnetic or antiferromagnet-
ic) of the ground state. While previous t reat
ments of this model have always been approxi
mate, we have succeeded in solving the model 
exactly in the one-dimensional case. Our exact 
result shows that the Mott transition does occur 
in the ground state of the one-dimensional model. 
Furthermore, a general theorem of Lieb and 
Mattis6 on one-dimensional systems tells us that 
the ground state is necessarily antiferromagnetic. 

It may be argued that the absence of a Mott 
transition in one dimension is irrelevant for the 
study of real three-dimensional systems because 
of the folkloristic dictum that there are never 
any phase transitions in one dimension with 
short-range interactions. In actual fact, the dic
tum is only true for nonzero temperature; the 
ground state is another matter. Generally speak
ing, when a Hamiltonian is considered to be a 
function of some parameter, U (which in our 
case is the electron-electron repulsion), singu
larities with respect to U usually do appear in 
the ground-state wave function, energy, polariz-
ability, etc., even in one dimension. A good ex
ample of this is the one-.dimensional Heisenberg 
chain (to which the present model is very close) 
which, when considered as a function of the an-
isotropy parameter, does have two singularities 

in the ground state and, presumably, no singu
larities for nonzero temperatures.7)8 

Consider a crystal (one-, two-, or three-di
mensional) of Na lattice sites with a total of N 
^2Na electrons. We suppose that the electrons 
can hop between the Wannier states of neighbor
ing lattice sites, ajid that each site is capable of 
accommodating two electrons of opposite spins, 
with an interaction energy U>0. The Hamilton
ian to consider is then2"5 

W> o- i 
(1) 

where Cjfft,c,-0 a re , respectively, the creation 
and annihilation operators for an electron of 
spin a in the Wannier state at the ith lattice site, 
and the sum 

is restricted to nearest-neighbor sites. 
Firs t of all, it can be shown that the energy 

spectrum of H is invariant under the replacement 
of T by - 7 \ 9 Therefore, for simplicity we shall 
take, in appropriate units, T = - l . Since the 
numbers JW of down-spin electrons and M' of up-
spin electrons a re good quantum numbers (M +M' 
= N), we may designate the ground-state energy 
of H by E(M,M'; U). It is then easy to derive the 
following relations [by considering holes instead 
of particles in (1)]: 

E(M,M';U)=-(N -M-M')V 

+ E{N -M,N ~M';U) 
a ' a ' 

=MU+E(M,N -M';-U) 

=M'U+E(N -M,M';-U). (2) 

Without loss of generality, therefore, we may 
take 

S z{(N-2M)>0 and N^N 
z a 

(less than half-filled band). 

1445 
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It can similarly be shown that the maximum en
ergy G(Af,M'; [/) is related to the ground-state 
energy by 

G(M,M';U)=M'U-E{N -M,M';U). 

Therefore, a knowledge of the ground-state ener
gies also tells us about the maximum energies. 

For a one-dimensional system, the lattice 
sites can be numbered consecutively from 1 to 
Na. L e t / ( x 1 , x 2 , - - - , * M > * M + 1 »••* >*tf) repre
sent the amplitude in $ for which the down spins 
are at the sites x\, • • • ,xj^, and the up spins at 
XM+ 1' * " ' XN' T n e n t n e eigenvalue equation Hip 
=Eip leads to 

N 
- E £ ftev---,x. + s,---,xN) 

i=ls=±l 

+ U £ 6(x.-x)f(Xl- --x^ 
t<) 

= E/(Xl---xN), (3) 

where it is understood that we require a solution 
of the form 

which is antisymmetric in the first M and the 
last N-M variables. 

In each region defined by 1 * * Q I *SXQ2:6' ' 'XQN 
^N, we make the following Ansatz fo r / : 

/ ( V - ' V X A / + I ' " - ' V 
N 

= £[Q,P]exp(z Tjk x ), 
P j = \ P} Qj 

(5) 

where P = (P1.P2, ••• ,PN) and Q = (<?1,Q2, • • • , 
QN) are two permutations of the numbers (1,2, 
••• ,N), {fei,*2."' 'kN^ i s a s e t o f ^ unequal 
real numbers, and [Q,P] is a set of NlxNl coef
ficients to be determined. 

The coefficients [Q,P] are not all independent. 
The condition of single valuedness (or continuity) 
of/ and the requirement that (5) be a solution of 
(3) lead to the following: 

N 
E = -2 £ cos* . (6) 

; = 1 J 

and, for all Q and P , the coefficients [Q,P] must 

be chosen to satisfy the relations 

[Q,ph-ynm
ab[Q,p'l 

In (7), 
^mn *s a n operator defined by 

Y °b -
ran sih£ -sin£ + ziV 

(7) 

n m 
sinfe -sin* 

n m pab 
(8) sink -sinfe + jz'i/ 

n m 

where, for j = i + 1, 

Qi=a = Q'j, Qj=b = Q'i, 

Qk=Q'k for all k*i,j; 

Pi=m=P'j, Pj = n = P'i, 

Pk=P'k for all £#?',;; 

and P ° is an operator which exchanges Qi =a 
and Qj = b. 

It is fortunate that the Ansatz (5) and the alge
braic consistency conditions (7) and (8) have, in 
essence, appeared before in the study of the one-
dimensional delta-function gas for particles in a 
continuum. The first solution of that problem 
was for bosons (symmetric/) by Lieb and Lini-
ger10 but this case is not relevant here, besides 
which the consistency conditions there are trivial 
to solve. The two-component fermion case was 
solved by McGuire11 for M = 1, but again (7) is 
trivial because of translational invariance. The 
next development was the solution of the case M 
= 2 by Flicker and Lieb12 by an inelegant algebra
ic method which could not be easily generalized. 
However, the case M =2 is the simplest one 
which displays the full difficulty of the problem. 
Shortly thereafter, Gaudin1' published the solu
tion of the general-M problem. The method of 
his brilliant solution did not appear for some 
time and is now available as his thesis.14 In the 
meantime, Yang15 also discovered the method of 
solution (essentially the same as Gaudin's) and 
published it with considerable detail. Here, we 
have followed Yang's notation with slight modifi
cation. 

The important point is that our Eqs. (7) and (8) 
are the same as for the continuum gas except 
for the replacement of k by sink in the latter. 
This has no effect on the beautiful algebraic anal
ysis which finally leads to the following condi-

1446 
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tions which determine the set {*i,2i* • • >^N^: 

M 
N k. = 2rrr.+ Y\ 6(2 sink.-2\.), ; = 1, 2,- • •, N, 

0 1 } 0=1 ; * 

where the A's are a set of real numbers related to the k's through 

N M 
-Y;t){2A -2sinfe.) = 2irJ - £ <9(A ~ A ). a = l , V 

j = 1 Q ' 0 = 1 a * 

0(/.)s_2tan_1(2p/C/), -n^e<ir, 

,M. 

(9) 

(10) 

(11) 

and Ij = integers (or half-odd integers) for M = even (or odd), Ja = integers (or half-odd integers) for 
M' = odd (or even). An immediate consequence is 

N 
1 

; = 1 0 . 7 « 

(12) 

For the ground state, • Ja and /.• are consecutive integers (or half-odd integers) centered around the 
origin and satisfying Z/,-^,- = 0. 

In the limit of N- •», Na - <*>, M - <*> with the ratios N/Na, M/Na kept finite, the real numbers k and 
A are distributed continuously between -<? and Q"*ir and -B and B«w, with density functions p(fe) and 
a (A), respectively. Equations (9) and (10) then lead to the coupled integral equations for the distribu
tion function p(k) and cr(A): 

2irp(k) = l + cos* I 
•B Wo(A)dA 
Bf^ + 16(sin*-A)2 ' (13) 

rQ U 
LQU2 + I 

%Vp(k)dk „ . . . rB AUa(A')dA' 
6(A- sin*)2 = 2MA) +)_B IP + 4(A-A<)2 ' 

(14) 

where <? and B are determined by the conditions 

J® p(k)dk = N/N , (15) 

/"^(AJrfA =M/N . •>-ti a 

The ground-state energy (6) now becomes 

E = -2N f®p(k)coskdk. 

(16) 

(17) 

We have established the following: 
(a) Equations (13)- (16) have a unique solution 

which is positive for all allowed B and Q. 
(b) M/N is a monotonically increasing function 

of B reaching a maximum of I at B = ». This is 
the antiferromagnetic case, Sz =0, and corre
sponds to the absolute ground state. 

(c) N/Na is a monotonically increasing func
tion of Q, reaching a maximum of 1 (half-filled 
band) at Q = n. 

For £ = » and Q = v, (13)-(16) can be solved in 
closed form by Fourier transforms with the r e 

sult 

o(A) = (2ir)-lf°°seca(&U) 

x cos (w A )J0 (u> )du>, 

p(k) = (2v)~1 + n~1cosk 

'cos(u) sinfc)Jfl(a>)<ia) Jr°°cos(u)! 

exp(5a>{/) ' 

E = E($Na,iNa;U) 

•exp( |wt0] ' 

(18) 

(19) 

(20) 

where </0 and Jj are Bessel functions. 
To investigate whether the ground state is con

ducting or insulating, we compute the chemical 
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potentials /i+ and n_ as defined in a forthcoming 
paper by Mattis16: 

li+ = E<tf+l,M;U)-E(M,M;V), 

H_^E[M,M;U)~E(M-\,M;U). (21) 

If fi+ and M_ are equal, the system has the prop
erty of a conductor. If, on the other hand, we 
find fi+>M_, then the system shares the proper
ty of an insulator. We can compute fi_ directly 
from (9) and (10) by replacing M —M-l and N 
— N-l, while letting all the k's, A's , and their 
distribution functions change slightly. The pro
cedure is quite similar to the calculation of the 
excitation spectrum of the continuum gas.10 If 
N<\Na, we can compute fi+ in the same way and 
thereby find that fi+ = j i - for all U. If, however, 
N is exactly lNa, then we must compute u+ by 
using the first line of (2) which tells us that 

H+ = U-n_ (half-filled band). (22) 

The calculation of fi_ can be done in closed form 
for a half-filled band with the result 

r°° J,(w)dw 
M - = - 4 / co[l + exp(k>a)] 

= -4S(-i)"[(i + l»V)M4 
« = i 

(23) 

It can be established from (22) and (23) that, in
deed, fi+>/i_ for U>0, and 

lim ; 
U~0 

- 0 . 

Therefore, we conclude that the ground state for 
a half-filled band is insulating for any nonzero U, 
and conducting for U = 0. That is , there is no 
Mott transition for nonzero U. This absence of a 
Mott transition is also reflected by the fact that 
the ground-state energy and the gi^and-state 
wave function are analytic in U on the real axis 
{except at the origin). 

We have also investigated the excitation spec
trum E(p) for a given total momentum £ A - -P 
and a given value of Sz. Just as in the case of a 
continuum gas for which the spectrum can be re 
garded as consisting of several elementary exci
tations,10 '15 we find three types of excitations: 
(I) a "hole" state in the A distribution, (II) a 
"hole" state in the k distribution, and (III) a 

"particle" state in the k distribution. While the 
Sz =0 spin-wave state may have any of these 
three types of spectra, the Sz = 1 spin-wave state 
is always associated with the type-I spectrum. 
The type-I excitation has the lowest energy and 
is characterized by a double periodicity similar 
to that of an antiferromagnetic chain.7 In the 
limit 17 — 0, it goes over to E(p) = I sin/) I, while 
the type-II and -III spectra have the identical 
limiting form E(p)= 12sin(i/>)l. Detailed discus
sions of these matters will be given elsewhere. 

We are grateful to Dr. D. C. Mattis for helpful 
advice and suggestions and E. L. would like to 
thank Dr. J. Zittartz for interesting him in the 
problem. 
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EXCITATION SPECTRUM IN THE ONE-DIMENSIONAL HUBBARD MODEL 
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The spectrum of the lowest (quasi-homopolar) excitations in the one-dimensional Hubbard model 
are investigated within the framework of the exact method developed in articles18"10'. The excita
tions are classified according to spin and momentum. The singlet states are states of the bound 
type. It is shown that both singlet and triplet excitations start from zero, i.e., they do not have a 
gap. The magnitude of the gap is determined for the spectrum of quasi-ionic states to which an 
optical transition is possible. Its dependence on the parameter characterizing the electron inter
action is investigated. 

1. INTRODUCTION 

IN order to describe the metal-dielectric transition 
associated with an increase of the repulsion between 
electrons, Hubbard[1] proposed a model of a Fermi 
lattice gas having an interaction of the electrons only 
at one center. In the case of a one-dimensional cyclic 
chain, the corresponding Hamiltonian has the following 
form: 

H = 2 2 r-".»«..»+«»« + V 2 2 " *-»"„-cO,,oH ".a, (1) 

where a ^ and an0- denote the creation and annihila
tion operators for an electron with spin a in atom n; 
all Tm ,n = 0 except Tn±i(n = - 0 (0 > 0). 

The Hamiltonian (1) was used in article'21 in order 
to explain the appearance of a gap in the optical spec
trum of long polymers with conjugated bonds. In this 
connection it was shown, within the framework of the 
generalized Hartree-Fock method, that an excited state 
to which an optical transition is possible is separated 
from the ground state by a gap for arbitrary values of 
the parameter y. For a suitable choice of y it was 
possible to obtain agreement with the experimentally 
observed dependence of the magnitude of the first 
transition on the length of the chain. In addition to the 
excitations of the indicated type, the Hamiltonian (1) 
has below a gap a set of singlet and triplet quasi-
homopolar excitations.E3'4) Here, as shown in the work 
by Kohn[5] and Bulaevskii'31, an optical transition to 
these states is forbidden or very weak. Meanwhile 
these states play a major role in the determination of 
the physical and chemical properties of long systems 
with conjugated bonds. For example, the fact that the 
spectrum of the triplet excitations starts from zero 
leads, for infinitely long chains, to an appreciable 
paramagnetism of these molecules. t6' 

The goal of the present article is a determination of 
the spectrum of the lowest quasi-homopolar excitations 
of the Hamiltonian (1) and their classification. We shall 
use the exact expression for the wave function of the 
Hamiltonian which was obtained in articles17"9', where 
Bethe's idea'101 was extended. 

Let us consider an eigenfunction of the Hamiltonian 
(1) with the number of electrons equal to the number of 

s ites , i .e. , N, and with the z-component of the total 
spin equal to zero (we shall assume N to be even). We 
shall seek it in the form 

Vv(n„n, »») = 2 [<?,.P]exp{i2*pjn«l, 

K » o , =£»»,<. . . < "9* < N . (2) 
Here ki, k 2 , . . . , kjj denotes the set of quasimomenta 
for which the equation will be written down; (Q,, 
Q2. • • • , Q N ) and (pi» p2> • • •, P N ) denote permutations 
among the coordinates and momenta respectively. The 
summation in (2) is carried out over all permutations 
of the momenta ki; the [Q, P] are coefficients which 
simultaneously depend on Q and P and which are 
represented by a square matrix of order NIxNI , 
which must be determined. The Schrodinger equation 
gives the following relation between these coefficients: 

where the operator Yjjjn has the form[101 

Y •* = - l̂ i* + (••"»*••-»''• M'"_?_. 

sin kn — sin km -f- i\/2 

Pt = m = />/, P, = » = /',', ( 4 ' 

Qk = Qk> Pk = Pk f o r k ^ i» J and t n e operator P3 

interchanges the sites Qj and Qj. In this connection 
the characteristic energy of the system is expressed 
in terms of the quasimomenta kj in the following way: 

.V 

1:= - 2 | i v t K t f (5) 

By successively applying the operator Y^n, one 
can express any arbitrary coefficient [Q, P] in terms 
of (a vector of dimension NI) the coefficient [Q, I], 
where I denotes the identity permutation among the 
momenta ki, k 2 , . . . ,kN. 

Utilization of the conditions for the cyclic nature and 
symmetry of the wave function leads to a system of 
equations for the coefficients [Q, I). Omitting the sub
sequent calculations which are rather completely given 
in the article by Yang,[9' let us write down the trans
cendental equations for the quasimomenta ki arising 
upon the solution of this system 
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N / 2 

A-&j«2n/J+ 2 (POP), 

.V JV/2 

2<py<i) = 2n/,, + 2i|.(f>ci)+:i. 

sin ks — Ap + ic/2 
e .«0« = i _ _ , 

sin A:J — Ap — ic/2 
Ap — Aa 4- ic v 

Ap — A« — ic 2|) 

(6a) 

(6b) 

(7a) 

(7b) 

= 0, 2, 4,. . . , 2n — 2, 2ra + 1,..., JV — 1, (12) 

Here A a ( a = 1 , 2 , . . . , N/2) denotes a set of numbers, 
all of which are different, and which in general may be 
complex. The phases ipiaP) and >p(if}) a re determined 
so that 

—Jl < Hpij:(ap), rtcq>0p) < 51, 

Ij (j = 1, 2 , . . . , N ) and J a (a = 1, 2 , . . . , N/2) a re 
integers; they label the eigenstates of the system. For 
example, the total momentum Q of the system is ex
pressed in terms of them in the following manner: 

<>=2'o=^(SM-2'«) . (8) 

2. SPECTRUM OF THE TRIPLET EXCITATIONS 

Let us consider the solution of the system of Eqs. 
(6) and (7) in the limit y — °°. As is well-known, in 
this limit all eigenstates of the Hamiltonian (1) are 
divided into groups of almost degenerate s ta tes : homo-
polar, ionic, doubly ionic, etc . The first group consists 
of 2" states with almost zero energy. The splitting of 
the energy levels among this group is described by the 
Heisenberg spin Hamiltonian. The second group con
sists of 2 N N states with energy ~y. A lowest excited 
state, to which an optical transition is possible, is 
found among this group. The third group contains 
N(N - 1)2N~1 states with energy ~2y and so forth. 
We will primarily be interested in the first group of 
states. Since the excited states of the spin Hamiltonian 
are well-known, then this makes it possible to classify 
the quasihomopolar states of the Hamiltonian (1) a c 
cording to spin and momentum. 

As y -~o°, Eqs. (6a), (6b) and (7a), (7b) go over into 
the following system of equations: 

Nki = 2nlr 
JV/2 

- 5>-
6=1 

= Clg-
2A« 

A>«=2n7c+2 f («P ) . 0 < / > « < 2 n , 

t>(P«) 
-<&»-&>). (9) 

This system agrees with the system of equations for 
the case of the spin Hamiltonian.141 For the ground 
state of the system it is necessary to choose Ja and 
Ij in the following way: 

(10) 

(11) 

/ « = l , 3, 5,..., TV — 1, 

Ij = -NI2, -iV/2 + l , . . . , A 7 2 - l . 

For the quasi-homopolar levels all kj are rea l , and 
for convenience one can reduce them to the interval 
( - I T , it). 

In order to determine the excited triplet s ta tes , 
following1111 let us choose J a in the form 

where n is a certain number which determines the 
total quasimomentum of the system. The solution of 
Eqs. (6) and (7) is obtained by changing to a continuous 
distribution of the numbers kj and A a . In this connec
tion one can use the formal equation p(k) = dj/dkj for 
the density of the numbers kj in the interval (-77, u) 
and o"(A) = d a / d A a for the density of the numbers 
A a over the entire axis ( - ° ° , °°). Carrying out the 
required differentiation in Eqs. (6) and (7) under the 
conditions (11) and (12), we obtain the following system 
of equations for the triplet s ta tes : 

cosk r 4ca(A)</A _i_ c o s f ' (13) 

2cff(A')rfA' 2* \ *"»<»"* = 2 a , ( A ) + t r ( A ) " A + g - « ( A - A . ) 
: c* + 4(A-sin/l) ! V ^ c ' + CA-A')1 N l "'' 

/ ; = — 2A'P$ p(k)caskdk. (14) 

Here A n is equal to its own unperturbed value, i .e., it 
is obtained from the solution of Eqs. (6) and (7) by 
utilization of the numbers Ja and Ij, just as for the 
ground state (10) and (11). Taking the Fourier t r ans 
form of the function cr(A), one can easily obtain an 
expression for p(k) and o"(A). Omitting this calcula
tion, we cite the answer for the energy of the triplet 
states 

£, ( , )=^+2P [ / l ( ' " ' c"S M ;V/M . (is) 

Here E0, the energy of the ground state which was 
first determined by Lieb and Wu,'101 is given by 

£o = -4A'p U •/i(cu)/o(u)Ai> 

Jo(o>) and Ji(ci>) are Bessel functions. The quantity A n 

is expressed in terms of the quasimomentum of the 
system q = 2jm/N in the following way: 

JI (• 7o(w) s i n u A „ , , „ . 

2 J
0 M ch (cDC/2) 

The system (15) and (16) parametrically determines 
the Et(q) dependence. The function Et(q) possesses 
a double periodicity and reaches a maximum at q = n/2. 
U y —<*> 

e, (?) = .E, («) - E, as (4n^ / 2Y) | sin q |, 

which agrees with the expression for the triplet exci
tations'111 in the Heisenberg model with an exchange 
integral equal to 4pz/y. 

3. SPECTRUM OF THE SINGLET EXCITATIONS 

As was shown in'41 the lowest singlet states of an 
antiferromagnetic Heisenberg chain necessarily belong 
to the bound state type, i .e., they correspond to com
plex momenta in the spin system. Our calculation of 
the spectrum of the singlet quasi-homopolar excitations 
of the Hamiltonian (1) will be entirely based on an 
analogy with a similar calculation for the spin Hamil
tonian. 

Let us choose sets of numbers Ij and Ja in the 
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following way. Let us leave the set Ij unchanged, as 
given by Eq. (11), but 

/« = 1, 3 2p, - 1 , 2p, - 1 2p2 - 3, 2p2 + l iv - 1 . (17) 

According to'41 two complex-conjugate numbers 
A a = X + i« and AD = x - i(c will correspond to two 
identical numbers Jgj. We note that the total quasi-
momentum of such a system will be determined in the 
following way: 

q = 2n(Jt,-h,)/N. (18) 

One can choose all remaining A a to be real. From 
the imaginary part of Eq. (6c) for a = a we have 
K - c /2 . Changing to a continuous distribution of the 
numbers A a and kj and introducing the corresponding 
densities according to the formulas of the preceding 
Section, we obtain the following system of equations: 

P(*) = 
1 . cos k 

2n + I: 
4co(A)dA 

r<*)= 

2JI j ^c»- f4 (A 

hjtSfsin* — A) — 

- sin A) 

2c 

2AJI 
T(k), 

c* + (sin * — ).) ==.] COS* 

+ cos* S f = — - 2j.6(sinA-A8 ) l j 
J ? - . C + 4(A. - s i n / . ) 1 - i 

(19) 

icp{k)dk 

^ c » + 4 (s in*-A)5~ 
2cg(A')dA' , g(A) 

• ^ > + £ £ £ * A W 
4c 12c 

«<A) — f a » ( A - > . ) + < ( - W ) 1 + t . + ^ _ A ) , + 9cI 

+ S r2n6(A-A„ ) ^ -1 . (20) 

In connection with the derivation of these equations we 
added to the system of real numbers A a two additional 
numbers Ag, and Ao which satisfy the same equations 
as the number A a for Jg, = 20! - 1, Jg2 = 2fi2 - 1. The 
function a(A) is represented out of the density of real 
numbers _Aa together with the two additional numbers 
Ag, and Afia. 

The solution of the system of equations is obtained 
by transition to the Fourier transform for the function 
a (A). Omitting the calculations, we write down an ex
pression for the energy of the singlet quasi-homopolar 
excitations 

£'„<«)= E. + s p J rfw/i(<i>) 
i . . ,„, (cosmAp, + coscoAp,—COSWA)- (21) 
' wcn((uc/2) 

In this connection, just as in [ 4 ] , the following restric
tion is imposed on Ag,, Ag2, and \: 

|A t,| > 1, |Afc| > I, |X| > 1. (22) 

The condition for solvability of the system of equa
tions for the number A a (here it is required that A a 

* Afl for a * 8) at once gives the equation 

A. = Afc. (23) 

The real part of Eq. (6b) for a = a together with Eq. 
(23) leads to the relation 

20i = PJ. (24) 

Finally Eqs. (18) and (24) make it possible to relate 

the total momentum q of the system to Ag : 

. . Y <fa)/0(o>)sm wAp, 
l 9 l _ n _ 2 J o,ch(o,c/2) • (25) 

Equation (25) together with the equation which fol
lows from (21) and (23), 

e , ( < ? ) = 8p r^A(. a)cosa,AB , 
Ul J o)ch(wc/2) (26) 

give the parametric dependence of the energy of the 
singlet excitations on the quasimomenta. Here one 
should keep in mind the limiting condition | An | > 1. 
It leads to the result that the singlet excitation'spec-
trum has a termination point at 

-2 I da /o(o>)sinci) 

(i) cli (<oc/2) 

For y — °° the value | q01 = ir/2. If y = 0 then q0 = o, 
which indicates the absence of bound states in this 
limit. For small q the spectra of singlet and triplet 
excitations have identical slopes: 

2p/, (it/c) 

(27) 

«...(«) = |? | -
/•(n/c) 

(28) 

where Ii and Io are Bessel functions of imaginary 
argument. For large values of q the singlet levels 
always lie above the triplet levels. For sufficiently 
large but not infinite values of N, the energy of the 
first triplet level tends to zero in the following way: 

4/tf) /,(2np/Y) 
*.(*)= JV /.<2JIP/Y) 

(29) 

Let us make several remarks about the energy of 
the singlet quasi-ionic states. A strong optical transi
tion takes place precisely to these states. The quasi-
ionic states possess a nonvanishing current. The en
ergy of the lowest current state and, consequently, the 
gap in the optical spectrum in the one-dimensional 
Hubbard model were calculated in the article by Lieb 
and Wu.t10' For its determination they obtained an 
energy Et = E0 + fi» f° r the ground state of the system 
containing N + 1 electrons and an energy E- = E0 + M-
for the ground state of the system containing N - 1 
electrons. The gap in the spectrum of the quasi-ionic 
states is then determined in the following way: 

AE = E+ — E- = u+ - (30) 

In order to determine the spectrum of the quasi-
ionic states it is necessary to determine the energy of 
a system containing N + 1 or N - 1 electrons and 
having a total momentum q. This computation is quite 

Different types of excitations of the system. c s ( l ) i s t n e spectrum 
of singlet homopolar excitations for small q, as given by Eqs. (25) an 
(26); q0 given by Eq. (27) is the point of termination of the spectrum; 
et(q) is the spectrum for the homopolar triplet excitations which are 
described by Eqs. (15) and (16); ej(q) is the spectrum for the ionic ex
citations, and AE given by Eq. (33) is the gap in the spectrum of the 
ionic states. 
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analogous to the one given in the text. Without giving it 
in detail, in the figure we show the general form of the 
spectra for the lowest excited states . Different types 
of excitations of the system. £s(q) is the spectrum of 
singlet homopolar excitations for small q, as given by 
Eqs. (25) and (26); q0 given by Eq. (27) is the point of 
termination of the spectrum; € t ( l ) *s the spectrum for 
the homopolar triplet excitations which a re described 
by Eqs. (15) and (16); €j(q) is the spectrum for the 
ionic excitations, and AE given by Eq. (33) is the gap 
in the spectrum of the ionic s ta tes . 

Lieb and Wu[10] arrived at the following expression 
for the gap AE: 

A£ = v _ 4p + 80 2 <~ ' H O + c2»2)''' - "']• (3D 

It is possible to give a more convenient expression for 
AE. For this purpose let us represent the se r ies in 
(31) in te rms of an integral along a contour Co which 
encompasses the real axis from c to «°: 

_S(- 1)..((1 + c ^ ) - - - ] = _i_ 5- i_^_ ( >??TT-,) . (32) 

Deforming the contour Co until it coincides with the 
imaginary axis, we can represent A E in the form 

AS.JO^jgEf * (33) 

For y —• «o the gap is given by AE » y - 4/3 
+ WVy) In 2 + . . . . If the strength of the electron 
interaction is decreased, i .e. , if y — 0, then 

: - D I M E N S I O N A L H U B B A R D M O D E L 1163 

A£ as 8ir'^vPe-**". (34) 
We note that to within the pre-exponential factor this 
expression agrees with the expression given in article'2 1 

for the gap as y — 0. 
In conclusion the author thanks Ya. B. Zel'dovich, 

I. M. Khalatnikov, I. M. Lifshitz, and E. Lieb (USA) 
for interesting discussions of this work. 

' J . Hubbard, Proc. Roy. Soc. (London), Ser. A276, 
238 (1963), and 277, 237 (1964). 

2 1 . A. Misurkin and A. A. Ovchinnikov, ZhETF Pis . 
Red. 4, 248 (1966) [JETP Lett. 4, 167 (1966)]. 

3 L . N. Bulaevskil, Zh. Eksp. Teor. Fiz. 51, 230 
(1966) Sov. Phys.-JETP 24, 154 (1967). 

' A . A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 56, 1354 
(1969) [Sov. Phys.-JETP 29, 727 (1969)]. 

5W. Kohn, Phys. Rev. 133, A171 (1964). 
8 L . A. Blyumenfel'd, A. A. Berlin, A. A. Slinkin, 

and A. E. Kalmanson, Zhurn. strukt. khim. 1, 1031 
(1960). 

7M. Gaudin, Phys. Letters 24A, 55 (1967). 
8 C. N. Yang, Phys. Rev. Letters 19, 1312 (1967). 
"E. H. Lieb and F . Y. Wu, Phys. Rev. Letters 20, 

1445 (1968). 
10H. Bethe, Z. Physik 71, 205 (1931). 
n J . des Cloizeaux and J . J . Pearson, Phys. Rev. 

128,2131 (1962). 

Translated by H. H. Nickle 
246 



17 

PHYSICAL REVIEW B VOLUME 9, NUMBER 5 1 MARCH lgj 

Excitation spectrum of the one-dimensional Hubbard model 
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We have extended calculations of the zero-temperature excitation spectrum of the one-dimensional 
Hubbard model to the case where the number of electrons is less than the number of sites in the 
chain. The results are computed as a function of the ratio U/t, where U represents the on-site 
Coulomb repulsion and t is the transfer integral, assumed to be nonzero only for nearest neighbors. 
Exact calculations are made for the energy and momentum of excitations having single-particle 
character. Unlike the situation for the half-filled band, we find no gap in the excitation spectrum. We 
have also considered excitations of the spin-wave type. These are shown to vary linearly with 
momentum for small momentum. The group velocity for small momentum is found to be inversely 
proportional to the magnetic susceptibility. 

I. INTRODUCTION 

There has been much interest recently in sys
tems which for some purposes may be considered 
one dimensional. For example, the system 
Cu(NHj)4S04 • H20 exhibits magnetic properties 
which are reasonably described by the linear-chain 
Heisenberg Hamiltonian.1 Our concern in this 
work is with the Hubbard model for a linear chain, 
i . e . , a model for interacting itinerant electrons. 
This model has been used to analyze results of 
studies of the salt N-methylphenazinium-tetra-
cyanoquinodimethan (NMP-TCNQ).2 Here the half-
ftiled band is the appropriate model. Other TCNQ 
salts may be described as more or less than half-
filled bands; e .g . , in quinolinium-TCNQg there 
presumably exists one electron per two TCNQ 
molecules and thus a quarter-filled band. It is to 
these types of materials that we hope the results 
of this work will prove applicable. 

The Hubbard Hamiltonian can be written as3 

ff= - E ttjClCf,+ uT}n„nt> , (1.1) 
I.) i 
o 

where tti is the hopping integral, assumed to be 
nonzero only for (i,j) nearest neighbors. We con
sider a one-dimensional crystal of Na lattice sites 
with a total of N* 2Na electrons. Since the num
bers M of spin-down electrons and M' of spin-up 
electrons are good quantum numbers, we can clas
sify states of the system by, say, the numbers N 
and M. At zero temperature the model Hamil
tonian is characterized by the parameters u = U/t, 
the ratio of the Coulomb interaction energy and the 
nearest-neighbor hopping integral, and the electron 
density N/Na. 

Lieb and Wu gave4 an exact solution for the low
est energy state of the Hubbard model for fixed 
M/Na. For the half-filled-band case [(N/Na)= 1] 
they derived an analytic expression for the ground-
state energy as a function of u. Shiba considered 

the ground-state energy for arbitrary electron 
density and gave numerical results for various 
values of u.s In addition, he calculated the lowest 
energy as a function of magnetization and was 
thereby able to obtain numerical results for the 
magnetic susceptibility for arbitrary electron 
density. 

For the half-filled band the spectrum of the low
est excitations was considered by Ovchinnikov.6 

He found S= 1 excitations of spin-wave character 
having a double periodicity similar to that of the 
antiferromagnetic chain.7 He also investigated the 
spectrum of "quasi-ionic" states, i . e . , states of 
(AT± 1) electrons with total momentum q. For the 
case of the half-filled band there is a gap in the 
spectrum of the quasi-ionic states. 

In this work we investigate some of the low-lying 
excited states of the system for arbitrary electron 
density. We find excitations of spin-wave charac
ter whose group velocity at long wavelengths is 
inversely proportional to the magnetic suscepti
bility. For the spectrum of quasi-ionic states we 
find no gap in the spectrum for N/N„ < 1. The re
sults are derived for arbitrary N/Na < 1 and u. We 
give numerical results for the quarter-filled band: 

N/N„=i. 

II. EQUATIONS DETERMINING DISTRIBUTION 
FUNCTIONS p(k) AND o(A) 

For the Hamiltonian of Eq. (1.1) it was shown 
by Lieb and Wu4 that the energy and momentum of 
a system of N electrons, M of which have down 
spin, is given by 

f . 

E=-2tT,cosk, , (2.1a) 
M 

p=hk3. (2.1b) 

The "momenta" k, are determined by the equation 

9 2150 
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^,= 2^+12 fi(2sinjfey-2A6), j = l, . . . . AT 
"-1 (2.2) 

where the A's are a set of numbers related to the 
fc'sby 

- 2 e(2A„ - 2sinjfe,) = 2vJa - E e(Aa -A , ) , 

a=l,...,M (2.3) 

and 

% ) = - 2 t a n - l ( W " ) (2.4) 

In these equations lt and J a are integers (or half-
odd integers) which we consider as the quantum 
numbers describing the state of the system. 

From Eqs. (2.2)-(2.4) we see that the momen
tum p can be conveniently written as 

p=jr(lii,+hja). (2.5) 

We are interested in solutions to Eqs. (2.2) 
and (2.3) for real fe's and A's. It was shown by 
Ovchinnikov8 for the half-filled band that there 
exist singlet (S = 0) excitations of the system for 
which some of the k's and A's are complex. We 
hope to return to a study of this case in a future 
work. 

We begin by writing the equations 

(2.6a) 

8w 

-h-h 

16(sinfe,-AJ 

4« 

= 2n(Ja.l~Ja) , (2.6b) 

where we have used a Taylor expansion for the 
function e{x), since (feM -k,)~0(l/Na), (Aa.t -A„) 
"Oil/NJ, and we are interested eventually in the 
krge-iVa limit. 

We introduce two functions p{k) and <r(A) defined 
at the points k, and Aa , respectively, by 

Xp&irk,tl~k" (2-7a) 

N-JTJ-K.1-K (2.7b) 

% means of these functions the sums in Eq. (6) 
"fcy be approximated in the limit of a large sys-
tem by an integral, 

±-&g<A,)~ f o-(A)^(A)rfA , (2.8b) 

where p(k) and a(A) obey the normalization condi
tions (in the limit AT, M, Na~°°, N/N„ M/N fixed) 

j°Qp(k)dk = N/Na, 

f»Bo(K)dA. = M/Na. 

(2.9a) 

(2.9b) 

For a large system the meaning of p(yfe) and o(A) 
is that Nap(k)dk is the number of k's in {k, k + dk); 
N„CT(A)dA is the number of A's in (A,A+dA). One 
immediate result of Eqs. (2.8) for a large system 
is, from Eq. (2.1), 

E/Na =-2tf% dk coskp(k) . 

In the following sections we proceed to deter
mine the equations satisfied by p(fe) and CT(A) for 
particular choices of I,, Ja. We repeat results 
found previously5 for the ground state, since we 
will need some of the results for the later investi
gations. Generally speaking, we will find that the 
distribution functions determining the energy of 
various excited states can be written in the form 

p(k) = p0(k)+{l/Na)Pi(k), 

o(A)=ao(A)+(l/N> l(A), 

where po(jfe) and cr0(A) are the grottnd-state distr i 
bution functions. Since we are interested in the 
excitation energy, i. e . , the difference in energies 
of the excited state and the ground state, we see 
that the excitation energy is determined by pi (k) 
and o-i(A). 

III. GROUND STATE 

As shown by Lieb and Wu,4 we take for the 
ground state 

/ , • ! - / , = ! (3.1a) 

Jatl-Ja = l . (3.1b) 

Substituting these expressions into Eqs. (2.6) and 
changing to a continuous distribution of the num -
bers kt and Aa, we find the following equations for 
the distribution functions p(k) and cr(A): 

21rp0(fe)=l + cosfe/^Aa 0(A)M 2 + 1 6 ( J n f e _ A ) S , 

(3.2a) 
°° 8M 

dkpolk)ui + l(.{s.nk_Af=2nc0(A) 1 
^ > g ° ( A V + 4(t-Af- (3' 2b) 

jfEAkj)- f p(k)f(k)dk, (2.8a) «o p^k)dk = N/Na , 

We denote the solutions of these equations with a 
subscript 0. The distribution functions satisfy 
the subsidiary conditions 

(3.3a) 
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fco0(A)dA = l>(N/K (3. 3b) 

i . e . , M/N=i. These equations have been solved 
previously for the half-filled band by Lieb and Wu4 

and for arbitrary N/Na by Shiba.5 We write the 
solutions here since we will make reference to 
them later. 

By introducing the Fourier transform o-0(a)) 
= /r» o-o(A)e"iuAdA one can show that po(fc) satisfies 
the following integral equation: 

po(k)=l- + cosk i dk'Ri-(sink-sink')) 
Zir •'-o„ \u I 

Xpo(fe') , 

where R{x) is defined as 

* W = 
1
 IA

 e ixy/2 

J F 

(3.4) 

(3.5) 

The solution for <r0(A) can then be written in terms 
of poik) as 

ob(A)=- C°dkpo(k)sech(— (A-s in*)) . (3.6) 
u J-Q0 \ u I 

For the half-filled band (N/Na = 1; Q = n) Lieb and 
Wu4 found an analytic expression for pa(k). For 
N/Na*\ one can solve for p0(fe) numerically and 
then use this result in Eq. (3. 5) to find o-0(A). 

From Eqs. (3.4)-(3.6) we can gain some insight 
into the nature of the solutions for po(k) and OD(A). 
From Eq. (3.4) we see that po(fc) is an even func
tion of k; in addition, using the fact that R is an 
even function of its argument we see that po(k) has 
a maximum at k = 0. Physically this is what we 
expect by looking at the expression for the ground-
state energy: 

E0=-ZtNaJ
Q po(k)coskdk . (3.7) 

From this we see that the energy is minimized if 
po(fe) is largest for small k. 

In Fig. 1 we show numerical results for po(k) for 
various values of u= U/t for the quarter-filled 
band. From this figure we see the effect of in
creasing u on the ground-state distribution. The 
resulting effect on the ground-state energy can be 
seen in the work of Shiba.5 

From Eq. (3.6) we see that <m(A) is an even 
function of A, it has a maximum at A = 0 and de
creases exponentially for large A. 

IV. SPIN-WAVE STATE 

This is the state which Lieb and Wu4 classify as 
the "hole in the A distribution" state. We choose 
the integers /, as in the ground state and take 

J a + 1 - J c , = l + 5 a , a o . (4.1) 

Substituting these expressions into Eqs. (2.6) and 
changing to a continuous distribution for the num-

FIG. 1. Ground-state distribution function PjOfe) for 
the quarter-filled band. Individual curves are labeled 
with the values of u = U/t. The cutoff momentum is de-
terminedby the normalization condition, j_<jj>(|(ft)<te =ff/Jft| 

bers kj and Aa, we find for the distribution func
tion p(k) and o-(A) the equations 

2ffp(*)=l + cos*£rfAa<A)- 8 + 1 6 ( ^ _ A ) F , 

(4.2a) 

r o ^P^^ + l6(stnfe-Ar2-(A) 

(4. a) 
where A0 is the value of A for which a= a0. The 
limit of the k integration, Q, is in general differ
ent from that in the ground state for a given a/a. 
If we denote the corresponding limiting momentiffl 
in the ground state by Q0 then Q will be related to 
Q0 by the condition that the ratio N/Na is fixed. 
Also note that in Eqs. (4.2) the distribution func
tions depend explicitly on A0. In general, we 
would expect the limits of the A integration in Efl* 
(4. 2) to be different from those in the ground state-
One can show, using manipulations of the form 
employed by Shiba,5 that for purposes of calculat* 
ing the excitation energy this limit may be taken 
to be as in the ground state. 

Introduce the distribution functions pj(fe) and 
ffi(A) by 

p(fe)=pok)+(l/tf.)pt(*), (4-3a) 

«HA) = OD(A)+ (l/AT.)oi(A.), (4-3"1 
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where po(fe) a n c l co(A) are t n e ground-state dis t r i 
bution functions for fixed <?. The distribution 
functions pi(k) and <>i(A) then satisfy the equations 

2*M*>=c0SfeLdA*(A^2^6(sL-A)2' 
(4.4a) 

J./^(fe)« i
 + 16(si„fe-A)s = 2"5(A - A » ) 

+ 27ra1(A) + £<fA' g l (A')M5 + 4 ( ^ _ A ) ) a . (4.4b) 

An integral equation for pi(fe) can be obtained by 
introducing the Fourier transform at(w) = SILdA 
Xff^A)^""*- This leads to the equation 

0,(k)= — cosfesechl-— (sinfc -A0)) + - cosfe K1 « \u I u 

xj_ dk'R(-(sink - sink')) pi(k') . (4.5) 

It is useful to note that the inhomogeneous term in 
the integral equation is the solution for pi (k) for 
the half-filled band. 

An integral equation for oj(A) can be found by 
substituting Eq. (4.4a) into Eq. (4.4b): 

2ff(T1(A)= - 2TT6(A -A 0 ) - fcdA'SQ(A, A')<n(A') , 

(4.6) 
where the kernel SQ(A, A') is given by5 

S 0 (A ,A ' ) % S + 4J'_A,)4 _ £ gcosfe 

x zz 
8u 

u2 + lG{.swk-t^f 

x a . " — T T T J . (4.7) 
u + 16(sinfc-A') 

We can write the formal solution for oi(A) in terms 
of the resolvent kernel SQ(A,A ' ) as 

or1(A)=-e(A-A0)+S<J(A>A0), (4.8) 

where the resolvent kernel is defined by the equa
tions 

2rtg(A, A') = S0(A, A') - /;„rfA" S0(A, A")S0(A", A') 

= S 0(A,A')-X' :dA"S 0(A,A")S 0(A",A') . 
(4.9) 

The energy of the spin-wave state is given by 

E = ~ 2tNa f?Q p(k) cosfcdk , (4.10) 
o r , in terms of pi(fe), by 

E=E0(Q)-2tj?Q(h(k)coskdk , (4.11) 

where E0(Q) is the ground-state energy for fixed 
9. The excitation energy c is then the difference 
k ^ e e n this energy and the ground-state energy 
f°r a fixed density N/N^. 

€(A0)= _ 2*/* py(h, A0)coskdk + E0(Q) -E0(Q0) . 
(4.12) 

We have explicitly indicated the dependence on A0 

inEq. (4.12). 
To relate Q to <?0 we use the condition that the 

density of electrons is fixed; i . e . , the distribution 
function p(fe) must satisfy the normalization condi
tion 

JO. .£ .S£» (4.13) 

^7+Naj_Q*(k)dk=-iTr- (4- i4) 

Equation (4.14) gives us the relation between Q 
andQo. To 0(l/Na) we find 

«-«•-& W & / > > - ) • 
(4.15) 

In order to calculate the excitation energy cor
rectly we must include all terms of 0(1). We can 
neglect higher-order terms for a large system. 
Thus for a very large system we find for the ex
citation energy 

€(A0) = - 2t /_°0°o dk pi (k, A0) cosife 

- " I o ° 0
r f * : p l ( * ; , A o ) ' 

where we have defined fi as 

IL_(l_ «go(Qo)\ / i . SNa(QB)y 
M \Na 8Q0 A ^ „ »Qo / ' 

(4.16) 

(4.17) 

It is understood that in Eq. (4.16) pi(k) is now to 
be found as a solution to Eq. (4.5) with Q = Q0. 

To complete the calculation of the dispersion 
relation for the spin-wave state we must find how 
the momentum is related to the parameter A0. 
From Eqs. (2. 5) and (4.1) it follows that the mo
mentum p is given by 

p/2i,= r°a(A)dA . (4.18) 
Ao 

Following the analogous treatment by des Cloizeaux 
and Pearson,7 we simplify this equation by replac
ing oiA) by ob(A). The omitted terms are of order 
1/NC and can be neglected. So, combining Eqs. 
(4.18) and (3.6), we find 

~L = \ j ^ P o W t a n - 1 [ « p ( - ^ (A0 - sin*)) ] . 

(4.19) 
Equations (4.16) and (4.19) determine the para
metric dependence of € on the momentum p. 

We can obtain some general properties of the 
spin-wave dispersion relations by examining the 
behavior of €(A„) and p(A0) as a function of A0. 
From Eq. (4.5) we see that pi(-k, -A 0 ) = p1(fe> A0). 
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This implies through Eq. (4.16) that e is an even 
function of A0. One can also show from Eq. (19), 
using the fact that po(fc) = po(-fe), that [p -iirW/Nj] 
is an odd function of Ao. This implies that as a 
function of momentum € is symmetric about p = iir 
x (ff/Na). Further, one can show that as A0— °° 
both p and € approach zero. We will show further 
in Sec. IV A that in the region of small momentum 
the excitation energy € varies linearly with mo
mentum. 

The procedure followed to calculate the disper
sion relation is to solve Eq. (4.5) for ptCfe) numer
ically. The value of p. is also determined numer
ically in the manner demonstrated by Shiba.5 Then 
the excitation energy and the momentum [using 
numerical results for po(fe)] are calculated as a 
function of A0. These results for various values 
of U/t are shown in Fig. 2 for N/Na = i. 

A. Spin-wave velocity 

We would like to examine the dispersion relation 
for small values of the momentum. From Eq. 
(4.10) we see that small momentum corresponds 
to large values of the parameter A0. Thus for 
large A0 

p/2„- ( l / » t f * / - * B / S ' dJfepoOfe)ca,/u)' 
On* 

One can show that l/ZirHfypoWe^'-^^I^iu), 
where the function / ^ ' ( M ) were introduced by Shiba 
in the calculation of the magnetic susceptibility.5 

Thus for small momentum 

p/2v= 2e t-*"»Ao]«>fjt) . (4.21) 

From Eq. (4.5) we see that for large A0, ^(fc) 
has the asymptotic form 

p,(*)= (- 2/w) c o s f c e ^ - ' X f t ) , (4. 22) 

where tf>{k) has been introduced by Shiba5 and, as 
shown there, satisfies the equation 

*(*) = e u w " , , , , * + P V c o s f c ' 

x y W £ ( s i n * - sin*'))] </<(*') • (4.23) 

The functions I<$(u) are written in terms of $(&) as 

o ^ X ! 0 1 * «*"**<*> (4.24) J Q » " " - - ' - 0 8 277 

Therefore for large A0, e(A0) has the form 

clA,)- J 2*(/0>)+ §/$>>)«<*'«>A» . 
(4.25) 

Thus, if we define the velocity vs as limp.0[t{p)/p)], 
we have 

4<YCM v 4"fa)\ (4.26) 

Comparing this result with the work of Shiba we 
see that v, is inversely proportional to the mag. 
netic suceptibility: 

(4.21) 

This relationship was pointed out by Takahashi8 

for the case of the half-filled band. We see that 
the relationship is valid for arbitrary electron 
density. 

B. Atomic limit of spin-wave frequency 

As U/t — °o we may approximate the distribution 
function pi(&) by 

(4.28) pi(fe)—«•- -cosfesechf — A„ ) . 
„- . u \u <>/ 

Then for large u 

€(A0) — — sechf — AQ^ / / °cos*kdk 

V- f°° \ 
+— I dkcosk 1 . 

itJ-Qif ) 
For large u the momentum p assumes the simple 
form 

(4.29) 

(4.20) p(A0) = £- sin"1 (seen — A0) (4.30) 

Therefore in the large-u limit 

,u\ 4tz/f°dk . afQdk A 

x s i n | , (4.31) 

where p=N/Na is the electron density. For a-°° 
we have Q0-v(N/Na) and n/2t--cosvWNj. So 
to first order in t/U we have for the dispersion 
relation 

FIG. 2. Spin-wave energy for the quarter-filled band. 
Individual curves are labeled with the value of w = U/t. 
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Note that for p= 1 this agrees with result of des 
rioizeaux and Pearson7 for the Heisenberg anti-
ferromagnetic chain if we identify J=4tz/U. 

V. HOLE STATE 

For this state, which is classified by Lieb and 
Wu* as the "hole in the k distribution" state we 
choose the integers Ja as in the ground state and 
take 

With these expressions for the integers Ja and ls, 
and proceeding to a continuous distribution for the 
numbers ks and A„, we find the equations 

2up(k)=^L5(k-k0) + l + coskJ dA^A) 

V+i6teJ*-Aj»» (5-2a) 

+ £ r f A ' ^ A \ ^ 4 ( A - A f » (5-2b) 

where k0 is the value of k for which j = n and I k01 
«Qo will be determined from the ground-state 
distribution. 

We again introduce distribution functions pi(k) 
and oi(A) defined by Eqs. (4. 3) and find that these 
distribution functions satisfy the equations 

2T!p1{k)=-2ii5(k-k0) + coskJ dAoi(A) 

V + 16(sL-A)*' (5-3a) 

/ « * W t e V + 1 6 < s t a A - A J l = ! 2 l K * ( A ) 

+J dA' f f l (A') 
4u 

«* + 4(A-A')F- ( 5 - 3 b ) 

We isolate the 6-function term in the equation 
for the distribution function by writing 

ni(fe)=-C(fe-fe0) + p{(fc) • (5.4) 

Then the equations determining the distribution 
functions are given by 

8a 
16(sinfe-A7' 

(5.5a) 

2jrpi (k) = coskj rfA oi (A) - j -

L.dkpiik) „a + 16(Snfe_A)2=2^(A) 

We construct an integral equation for p[(k) by 
introducing the Fourier transform of oi(A), as we 
did in Sec. IV. We find 

4 / 4 \ 4 
p!{k)=- — cosfefll—(sinfe - sin&0)) + — 
^ u \u / u cosfc 

xf_ dk'Ilf-(sink-sink')) p[(k') . (5.6) 

The energy of the hole state relative to the 
ground state is found to be 

€ = 2t cosfe0 - 2t f°Q p{{k) coskdk + E0(Q) -E0(Q0) , 

(5.7) 
where again QQ is the limiting momentum for the 
ground-state distribution for a fixed electron den
sity N/N„ and E0(Q) is the ground-state energy for 
fixed Q. 

Q is determined in terms of Q0 by the require
ment that the distribution functions p(k) describe 
the same electron density as the ground-state d is 
tribution function. Using this requirement and 
keeping all terms in € of first order we find for 
the excitation energy the result 

e(feo) = It cosfe0 - 2t fi* piik) coskdk 

+ na-f%dkp{(k)), (5.8) 

where n is as defined in Eq. (4.17). Again it is 
understood that the distribution function pi'(fe) in 
Eq. (5.8) is a solution to Eq. (5.6) with Q = Q0 

there. 
The momentum is related to the parameter fe0 

by the equation 

£=f°°p(k)dk<»£<'Po(k)dk, (5.9) 

+ 7 Z 
8u 

HZ + 16(sin&o-A)z ' 
(5.5b) 

where we may, with sufficient accuracy in the 
limit of a large system, treat the approximation 
inEq. (5.9) as an equality. 

After some manipulation we can write an expres
sion for p in terms of po(fe) as 

_p_ 1 N ^ f°° , . 

xF(-(sinifeo-sinfe)j . (5.10) 

where F(x) is defined in terms of R(x) as 

F(x)=f'dx'R(x') . (5.11) 

From Eqs. (5.8) and (5.10) we can examine 
some general features of the dispersion relation. 
From Eq. (5.6) we see that p[(- k, - k0) =p[(k, 1%). 
This implies through Eq. (5.8) that e is an even 
function of k0. From Eq. (5.10), using'the fact that 
F(x) is an odd function of its argument, we find that 
p - Tt(N/Na) is an odd function of k^. This implies 
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that as a function of momentum € is symmetric 
about p=irN/Na. 

One can also show that - [p[{k, Qo) + pii.-k, Qo)] 
satisfies the same equation as [l/po(Qo)]8po(£)/8Qo-
This implies that we can write 

cosQo - / Q ° dkcoskpUk, Qo)^ 
-o0 

It 

From this relation and Eq. (5.8) it is evident that 

e(feo) "0 . 

One can also show by integrating Eq. (3.2a) that 
p vanishes in the same limit. 

The dispersion curves are found as a function of 
U/t by solving Eq. (6) for pi(fe) numerically and 
using numerical results for po(k). 

VI. PARTICLE STATE 

Here we have in mind removing an electron from 
the highest occupied momentum in the ground state 
Qo and placing it in a momentum state k0 > Q0. We 
choose the integers Ja as in the ground state. The 
numbers It are chosen as follows: 

(6.1a) Iitl-I,= l, j = l,..., N-2 

A r - A r - i » l • 

So we find from Eqs. (2.6) 

(6.1b) 

8u 
2»p(fe,)= 1 + c ° s * , S t t 8 + 1 6 ( s . n ^ _ A B ) 8 , 

j=l,...,N-2 (6.2) 

TT £ a , , - . , .—r-ar = 2ira(Aa) Nt i=i u + 16(smfy - A s r 

4u 
+ Tr~S ~2 777 7.—vff . (6. 3) 

•N«B=I" +4(A0 - A K r 
Separating from Eq. (6.3) the term with kx = ka 

and proceeding to the limit of a large system, we 
find for the distribution function p(k) and <r(A) the 
equations 

27rp(fe)=l + cosfeJ dA<7(A)-2-j- Bu 
16(sinfc-A7' 

(6.4a) 

/
« fez 

o d t " l t ) . , V l 6 [ B l n t - A ) ' - W A ' 

>i: d A' a (A ' ) t t 4 + 4 ( A _ A , ) 2 - j 7 -

V+16fcL„-Af ' (6'4b) 

It must be recognized that in Eqs. (6.4) p(k) is 
the distribution function for N-1 electrons; i . e . , 
it satisfies the normalization condition 

C O L L , I I I 

Cdkpik)^ (6.5) 

We introduce the distribution functions px(k) an) 
<fi(A) defined by Eq. (4. 3). These distribution 
functions satisfy the equations 

8a 
<5-12) 2jrp1tt!)=cosfe_[ dAo^A)-^—j -16(sinfe-A)2> 

(6.6a) 

£dklh(k)ui + lf.^nk_Af=2T,o1(V 

+ r . ; A ' „ ° j ^ , ) 4 ^ „ 
+ J . „ r f A „2 + 4 ( A - A ' ) 2 - ^ T l 

8a 
•letsinfeo-A)2 * 

(6.6b) 
We find an integral equation for pitfe) alone by 

again introducing the Fourier transform of ^(A); 

4 / 4 \ 4 
01 (fe) = _ coskR I - (sinfc - sinfeo)} + - cosife K u \u I u 

xf dk'n(~ {sink-sink')) frik') . (6.7) 

Notice the similarity between the equation and Eq, 
(5.6). The differences are that here I ka\ 5=Q0 and 
the inhomogeneous term has the opposite sign. 

The energy of the particle state relative to that 
of the ground state is given by 

€ = - 2t cosfe0 - 2t fQ
0 cosfeft {k) dk+EQ(Q) - £0(Q0). 

(6.8) 
If we relate Q to Q0 by the condition that the den
sity of electrons is fixed, we find 

€(fe0)= - 2icosfe0 - 2t / ° ° dk coskpiik, k0) 

- n(l + J^°odkp1(k, k0)) . (6.9) 

By manipulations similar to those mentioned in 
Sec. V we can show that 

/cosQ0+ P ° dkcoskpt{k, Qo)\ 
3» . (6.10) H=-2t 

l + fQ<>dkp1(k,Q0) 

From this relation it is evident that e(fe0) — 0 a8 

feo — Qo-
The momentum of the particle state is related to 

the parameter k0 by the equation 

^=/0°po(fe)dfe, k0>Q0 
(6.11) 

We can rewrite this in terms of the function F [El-
(5.11)] as 

i==r K+kt +r*** ) '(« ( s i n*0" s i n f e ))' 
(6.12) 

From Eqs. (6.9) and (6.12) we can examine the 
general properties of e as a function of momenta"' 
Since pi{k,k0)=pt(-k, -k0) we see that e(fe0) is an 
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en function of k0. Likewise, we see from (6.12) 
*h!it h + T(N/Na) is an odd function of k0. This im-
I-PS that as a function of momentum €.(p) \s sym

metric about ± vN/Nt. 
The dispersion curves are found as a function of 

U/t by solving numerically Eq. (6.7) for pt(fe) and 
using numerical results for pa(k). 

VII. PARTICLE-HOLE EXCITATIONS 

We can combine the results of Sees. V and VI 
to calculate the energy and momentum of those 
states which arise by removing one electron from 
a momentum level kQ occupied in the ground state 
and placing it in a momentum level p0 not occupied 
in the ground state. The energy and momentum of 
this state, denoted by «(ft0,/>o) and p(k0,po), respec
tively, will depend parametrically on the quantities 
ka and po, the momenta of the "hole" and the "elec

tron, " respectively. The energy «(fe0,/>o) is de
fined as 

e(k0,p0) = [E(N+l,p0) -EB(N)] 

-[EoW-E(N-l,ko)] (7.1) 

In Eq. (7.1) E0{N) is the ground-state energy for 
N particles, E(N+ l,p0) is the energy of that state 
which arises by adding one electron with momen
tum p0 to the ground state of N electrons, and 
E(N - 1 , k0) is the energy of that state which arises 
by removing an electron with momentum k0 from 
the ground state of AT electrons. As ka (or /><>) 
-<?0, [E0(N) -E(N -l,k0)] {[E(N+l,p0) -E0W]} 
— P-. (M.). The parameters (it and fi. were intro
duced by Lieb and Wu.4 The explicit expression 
for €{k0,p0) is 

«(*o,#o>' 

. I 

= 2t cosfeg - 2t cosp0 - H /o° [pi,(k, fe0) + p,(fe>Po)]dk - It _f*° [ph(k, k0) + p„(k,p0)] coskdk , 

I 

(7.2) 

where ph(k,k0) and pp(k,po) satisfy Eqs. (5.6) and 
(6.7), respectively. The quantity n is defined in 
Eq. (4.17). 

We have calculated the energy €(feo>A>) and mo
mentum p{ko,p0) by using numerical results for the 
distribution functions p„ and pp. We then find a 
band of states for the "particle-hole" excitations. 
We show in Fig. 3 results for the quarter-filled 
band for various values of U/t. 

VIII. SUMMARY AND CONCLUSIONS 

Using the formalism of Lieb and Wu4 we have 
been able to write down the integral equations de
termining the dispersion relation for excitations 
having either single-particle or spin-wave char-

'K». 3. Electron-hole spectrum for the quarter-filled 
b»nd: (a) U/t = 2; (b) U/t = 4; (c) U/t = S; (d) V/t = ". 

acter. We have restricted attention in this investi
gation to a class of states in which the parameters 
kj and Aa of Eqs. (2. 2) and (2.3) are real . This 
is an extension of the work of Ovchinnikov6 to the 
situation in which the number of electrons is less 
than the number of sites in the chain. The results 
are found as numerical solutions to a set of cou
pled integral equations. Analytic results are given 
for some limiting cases. 

For the case of the single-particle excitations we 
have been able to demonstrate that there is no gap 
in the spectrum for N/Nt < 1, unlike the result for 
the half-filled band (N/Na=l). Thus, according to 
the criterion of Lieb and Wu,4 the system has the 
properties of a conductor regardless of the magni
tude of U/t. As a consequence one would expect a 
linear term (~yT) in the specific heat from ther
mal excitation of these modes. We have graphical
ly displayed the shape of the single-particle band 
for N/Na < 1, and the numerical results indicate 
that the shape is relatively insensitive to the mag
nitude of U/t, at least if U/t&l. 

Several interesting features emerge from the in
vestigation of the excitations of the spin-wave type. 
We find that the period of the spin-wave excitation 
energy is incommensurate with the periodicity of 
the lattice unless NjN equals an integer. For 
small momentum the energy varies linearly with 
momentum. This is the type of behavior one asso
ciates with antiferromagnetic systems. There
fore one expects2 a linear contribution (~ otuT) to 
the low-temperature specific heat from thermal ex
citation of these modes. This contribution may be 
difficult to isolate experimentally from the contri-
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button expected from the single-particle excita
tions. It has also been shown that the slope of the 
spin-wave dispersion curve for small momentum 
is a measure of the inverse of the static magnetic 
susceptibility. This relationship, first noted for 
the half-filled band by Takahashi,s is seen to be 
valid for arbitrary electron density. 

In attempting to apply the results of these calcu
lations to the interpretation of the experimental 
results one is beset by at least two difficulties. 
First , one has only partial knowledge of the spec
trum of low-lying states. Assuredly there are 
other modes, not enumerated, which need to be 
considered. In fact, Ovchinnikov* showed that for 

*Work supported in part by the National Science Founda
tion under Contract No. GH35689X. 

'R. B. Griffiths, Phys. Rev. 135, A659 (1964). 
2A. J. Epstein, S. Etemad, A. F . Garito, and A. J. 

Heeger, Phys. Rev. B 5, 952 (1972). 
3J. Hubbard, Proc. R. Soc. A 276, 238 (1963). 
4E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 

the half-filled band there exist spin-wave bound 
states which certainly contribute to the low-tem
perature thermodynamic properties of the system, 
Second, as emphasized in Ref. 2, there is the un
certainty of the contribution of each mode to the 
thermodynamic properties; i . e . , we don't know 
the spectral weight function. 
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Abstract. Those excited states of a half-filled ID Hubbard chain that are connected with 
electron pairs occupying the same sites are studied. It is argued that these states should be 
described by solutions of the Lie.b-Wu equations in which some of the wavenumbers are 
complex. Solutions of this type have been found that correspond to states in which the spin 
part is not excited. The energy-momentum dispersion is also calculated. The gap in the 
spectrum of the singlet excitations equals the discontinuity of the chemical potential calcu
lated by Lieb and Wu. 

1. Introduction 

The one-dimensional Hubbard model, being a non-trivial but exactly treatable model 
for interacting spin i fermions, is of great theroretical interest. It describes electrons 
that can hop between the Wannier states of neighbouring sites in a chain and exhibit 
repulsion if two of them (with opposite spins) occupy the same site. The Hamiltonian of 
the model is 

N N 

H = f 2 2 (c£fii+la + ct+idCia) + t / 2 n , t « . i - (1-1) 
( = 1 a i = l 

Here N is the number of sites on the chain; cta, cia and nia are the creation, annihilation 
and number operators, respectively, for an electron with spin a in the Wannier state 
centred around the site i. The problem is uniquely defined by imposingperiodic boundary 
conditions on the system. 

In the exact solution of the model the first step, providing a base for all further work, 
was made by Lieb and Wu (1968). These authors, starting from Yang's solution for the 
continuum version of the model (Yang 1967), showed that the diagonalisation of (1.1) 
is equivalent to solving a set of coupled non-linear equations. They calculated the 
ground-state energy of the system for a half-filled band, and the gap in the spectrum of 
the one-particle type excitations at this band filling (half-filled band ± one particle). 
The equations set up by Lieb and Wu provided the basis for the Ovchinnikov (1970) 
calculation of the lower edge of the continuum of the triplet excitations of a half filled 
band. Calculations for the singlet excitations were also given in the same paper. Coll 
(1974) determined the spin-wave-type and one-particle-type excitations for general 
band filling. The 7 = 0 magnetic properties of the model were worked out by Takahashi 
(1969) and by Shiba (1972); in particular Takahashi found the magnetisation curve for 
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the half-filled band and, extending this work, Shiba gave the magnetic susceptibility for 
an arbitrary concentration of electrons. 

The aim of the present work is to study those excitations of a Hubbard chain that are 
connected with charge rearrangement. In a non-half-filled band two kinds of such 
excitations exist. The first kind, which have been described by Coll (1974), differ from 
the ground state only in the momentum distribution of the electrons. The number of 
excitations of this type disappears as the band filling approaches \; a fact that suggests 
that in all these states the electrons occupy different lattice sites (at least in the large- U 
limit). The other type of 'charge excitations' is connected with electron pairs occupying 
the same lattice sites. Our aim is to find a way to describe such excitations. For the sake 
of simplicity, the half-filled band is studied first, since in this case charge excitations of 
the first kind do not exist. 

The paper is organised as follows. In § 2, after introducing the general formalism an 
analysis of the wavefunction leads us to argue that complex wavenumbers have to be 
used to describe the states in question. In § 3 we give the solutions of the Lieb-Wu 
equations, in which the A:-set has two complex ks. We restrict our study to states whose 
spin degrees of freedom are not excited. 

2. The Lieb-Wu equations; some properties of the eigenstates 

2.1. The Lieb-Wu equations and the eigenfunctions 

Using Yang's method, Lieb and Wu showed that the finding of an eigenstate of the 
Hamiltonian (1.1) (withr = - 1 ) is equivalent to solving the system of equations 

Af 

Nkj = 2itSj - 2 2 tan"1 - (sin kj - Â ) (/ = 1 , 2 , . . . AQ (2.1) 
p= i U 

N' 4 
ZJ 2 tan - 1 — (Xa — sin Ic.) 

M 2 
= 2JT3V+ 2 2 t a n - 1 - ( A a - A ^ ) (or= 1,2, . . . M). (2.2) 

0=1 U 

Here Ne and M are the number of electrons and the number of down spins, respectively. 
It is supposed that JVe =s N and M =s Ne — M. (Any state for which these conditions do 
not hold can be transformed to the required form by introducing holes instead of the 
electrons and/or changing the spin directions.) The parameters $ are integers (or half 
odd-integers) if M is even (or odd) and the parameters 3F are integers (or naif odd-
intege'rs) if Nt — M is odd (or even). In this system of equations the ks and As are the 
unknowns and the parameters $ and 2F are the actual quantum numbers specifying the 
state. Only those solutions for which all the ks and As are different are meaningful. A 
special difficulty arises because it is not clear for which sets of $ and S' can a meaningful 
solution of equations (2.1) and (2.2) be found. Thus the solving of (2.1) and (2.2) 
represents a two-fold task: the need to find the appropriate 3 and 8F sets and the need 
to find the corresponding ks and As. 
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The energy belonging to a state corresponding to a solution of equations (2.1)-(2.2) 
is 

E = - 2 2 cos Jfc/. (2.3) 
7 = 1 

The momentum is 

p = 2 */ (2.4a) 
/ = i 

which, by summing (2.1) and (2.2), yields 

If the reasoning that led to (2.1)-(2.2) is followed the wavefunction can be con
structed. One finds that the amplitude of finding the electrons at positions 
"l > "2, "3, • • • , nNc with spins oi, oj, 03,. . . , o>/e is (up to a normalisation factor) 

/(rtiCTi,rt202, • ..nNcaNc) 

= 2 (- l )Q(- l )pexp i 2 fc/yiQ/) <M<*QI, ^Q2, • • • <*Q/0 (2.5) 
p V ;'=i / 

where the permutation Q is defined by the condition 

1 =£ YIQX =£ «e2 « . . . *£ nGA,e =s N (2.6) 

and the summation is extended over all permutations P of the ks. The function q>P is 
given in the form 

M 

<PP(OQU OQ2, . .. oQNc) = 2 A(k„u A„2,. . . Â M) (11 Ff{)i„i;y,) j (2.7) 

with 

and 

vn , . m'<smkPj-k)-U/4\ 1 
FKA; y) - ^ 1 . ( s i n ^ _ A) + ^ j . ( s i n ^ _ A) + m (2.8) 

/!(. . . A„» Am-+i. . .) ^ /(A.-n+i - A,̂ ) - t//2 
A{... X*+1, X*. . .) i(A*+1 - km) + U/2 

(2.9) 

where the ys are the positions of the down spins in the series a0\, Oqi, • • •, OQN<. in 
increasing order 

l^yl<y1<...<yM^Ne. (2.10) 

In connection with the wavefunction (2.5)-(2.10) it should be noted that it is uniquely 
defined even if Q is not: if for example rc, and n; are equal, there are two permutations, 
Q and Q' = QP^ which arrange the spatial coordinates into non-decreasing order but 
the value of/does not depend on the choice of Q or Q' in (2.5). 
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2.2. The ground state and simple excitations 

According to Lieb and Wu the ground state is characterised by the parameter set in 
which both the .fys and S ^ are consecutive integers (or half odd-integers) centred around 
the origin. The ground state is a singlet (if Ne is even) with M = NJ2 or a doublet, Sz = 
± i S 2 = f(ifJVeisodd). 

The simplest excited states can be obtained by making small changes in the $ set, the 
9- set or in both. The simplest excitations with one spin turned over are triplet spin waves 
and are described by 9s sets in which one of the 3»aS of the ground state set is missing 
('hole in the A distribution' in the Lieb and Wu classification). The simplest excitations 
connected with the SF distribution may be 'hole-', 'particle-' or 'particle-hole'-type ones; 
they are all described by certain well defined modifications of the ground state 3 set. 
The 'hole'-type excitations, in accordance with Coil's description, are defined by $ sets 
in which one 3>j is removed from the bulk of the set and another one is added to the set 
at one of its ends. In the case of 'particle'-type excitations the change in the $ set is 
performed by removing one $,- from one of the ends of the set and adding to it another 
fy that is outside the region covered by the ground state set. The 'particle-hole' type of 
excitation is, as the name suggests, a combination of the other two types. 

All the above described excitations are connected with real sets of ks and As, and are 
discussed in detail in Coil's paper. Here, we would just point out that for a half-filled 
band (7Ve = N) neither of the excitations connected with the k distribution and discussed 
above can exist. This can be seen as follows. All 3>j can be taken as satisfying —N/2 
=£ 3>j =s JV/2, because changing kj by 2JT does not affect anything. In the above region 
there are N different integers or half odd-integers, thus the ground state $ set for N 
electrons just covers this region: one can displace no $ outside the ground state $ set. 
As a consequence, the excited states of the system ofNe = N electrons connected with 
the k distribution cannot be described in the framework given by Coll. 

2.3. Eigenstates with real ks in the large- U limit 

Looking at (2.2) one sees that in the large-£/ limit all ka — sin kj must be of the order of 
U. As for real k/s, (sin kj\ =s 1, the AoS must be proportional to U. Thus the sin kj terms 
can be neglected in relation to the A„s and the limiting values of the AaS must satisfy the 
equations 

M 

^ 2 t a n - ^ = 2 ^ a + 2 2 t a n - i ( ^ - ^ ) . (2.11) 

These are essentially the secular equations of an isotropic Heisenberg chain with Ne sites 
(see e.g. Griffiths 1964) independently of the actual values of the JtyS. (In fact, the 
substitution 2 tan - 1 AkJU = n — ka leads to the form of equations used in the literature 
of the Heisenberg chain.) The limiting values of the wavenumbers in the same 
approximation are (see (2.1)) 

ky«2£E*/ + l £ 2 t a n - 1 ^ . (2.12) 
' N ' Nil-1 U v ' 

They are essentially the A:s of a non-interacting spinless Fermi system with the modifi
cation that all ks are displaced by 1/N times the total momentum of the given state of the 
Heisenberg chain. 
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It is not hard to see that also the energy and the wavefunction separate into two more 
or less independent parts. The energy becomes the sum of the kinetic energy of the 
spinless Fermi system and the energy of the Heisenberg chain; for the latter the effective 
coupling is proportional to 1/C/; the wavefunction factorises into the product of the 
wavefunctions of the Fermi system and the Heisenberg chain. In this limiting process 
the ground state goes over to the ground state of both the Fermi system and the 
Heisenberg chain. Excitations connected with the 2F set correspond to the excitations of 
the Heisenberg chain while the excitations generated by the $ set and described by real 
its will be the excitations of the Fermi system. This is in good agreement with the fact 
that the number of excited states connected with the 3> set and described by real ks 
disappears as the number of electrons approaches the number of sites. 

Because in a spinless Fermi system all particles occupy different sites, in all states 
described by real ks the amplitude of finding electron pairs occupying the same sites 
must disappear as £/-» oo. All the states in which this amplitude does not vanish must be 
described by k-sets containing complex wavenumbers too. The energy of these states is 
expected to have a term proportional to U; that is these states are important if C/is of the 
order of unity, but they are also important if the band filling is near to \ being the only 
excitations connected with the charge distribution. The goal of the present study is to 
find the solutions of (2.1)-(2.2) corresponding to these states. 

3. Singlet states with one pair of complex wavenumbers 

3.1. The Lieb-Wu equations for singlet states with one pair of complex wavenumbers 

To describe Sz = 0 states in a half-filled band we need to introduce N/2 As. For this, it is 
supposed that the number of sites and thus the number of electrons is even. This 
restriction makes no difference with regard to the nature of the excitations since if iV 
were odd, both the ground state and the excited states analogous to those discussed here 
would belong to Sz = ±£, in which case both for even and odd N the excitations them
selves can be regarded as singlet ones. 

In possession of two complex A:s it is clear that each must be the complex conjugate 
of the other, otherwise the momentum would not be real. We will denote them as K ± 
\%. The equations for them can be written in the form 

N / 2 - 1 

N(K ± ix) = 2K» - 2 2 t an - 1 - [ s in (K±i^ ) -A y 3 ] 
/3= 1 U 

- 2 t a n - 1 - [ s i n ( j c ± i ^ ) - A ] . (3.1) 

Here we have separated one A (the one denoted by A) from the others. We have to do 
this for the following reason. We may suppose that the presence of an excitation, will 
modify the A distribution by terms of the order of 1/7V only. If so, the RHS of (3.1) can be 
estimated by means of the ground-state distribution of the te. It turns out that at any 
value of the K and % the difference between the two sides of (3.1) is of the order of N; 
that is the equation cannot be satisfied unless there is one term on the RHS that is in itself 
of the order of N. This term is separated. To satisfy the imaginary part of (3.1), the 
connection between K, % and A must be 

sin(jc ± i*) = A + it//4 + 0(e_ I , Y) (3.2) 
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where 
M 2 - 1 

i| = ^ I m ^ E 2 tan ' 1 JJ [sin(jc + ix) - A„]) (3.3) 

and 0(e_r ' 'v) denotes the terms of the order of e~'?A'. Since r) is a positive number of the 
order of unity, in the large-Af limit the 0(e~T,N) terms can be neglected in (3.2), and the 
remaining equation yields 

*r-sin-1[H[(t//4)2 + (A + l)2]1 / 2-[(( / /4)2 + (A-l)2]1 / 2}] ( C O S K < 0 ) (3.4a) 

X = cosh 'TO£//4)2 + (A + 1)2]1/2 + [(U/4)2 + (A - l)2]"2}! (x > 0). (3.4b) 

By means of (3.2) the real part of (3.1) can be written in a simpler form. It is not hard 
to check that the identity 

Re 2 tan"1(4/t/) [sin(*r + iX) - A] = (JV/2) sign(A - A) + tan_1(2/ U) (A - A)] (3.5) 

holds up to terms exponentially small in N. With (3.5) the real part of (3.1) takes the 
form 

NI2-1 NI2-1 

NK = 2jri - ^ 2 sign(A - kp) - 2 tan - 1 - (A - A )̂ 
2 (8= 1 0= 1 [/ 

4 
- R e 2 t a n - 1 - [ s i n ( i c + ix) - A]. (3.6) 

In the following this equation together with (3.5) will be used. 
The real ks are defined by the equations 

N/2-1 

•v 4 4 
Nkj = 2jz3>j- Z, 2 tan - 1 — (sin A:,- A«) -2 tan _ 1 — (s in&.-A) . (3.7) 

For the 3>j set, depending on the parity of N/2, one has to choose one of the sets 

-h{N-2),-i(N-4),...A(N-2),hN (NI2 even) (3.8a) 

-k(N-l),-i(N-3),...,h(N-3),i{N-1) (M2odd) (3.8b) 

with two holes left in it. Equation (3.7) additionally defines ks to the 3> parameters left 
out of the $) set, we will denote these ks as ki and km. 

The equations for the As are 

_ , 4 4 
Z, 2 tan l — (A - sin &,) + 4 Re tan"1 — [(A - sin(jc + i*)] 

j^l,m U U 
NI2-1 

•J 

= 2n® + 2 2 t a n " 1 - ( A - A « ) (3.9) 
0=1 U 

and 
_ _ 4 4 
2< 2 tan 1—;(Aa- sin&;) + 4 Re tan - 1 — [A<*- sin(je + i#)] 

jjtl.m U U 
N/2-1 

= 2;r3v+ 2 2 t a n ' 1 - ( A i r - A ^ ) + 2 t a n - 1 - ( A a - A ) . (3.10) 
0 - 1 1 / 1/ 
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This second equation (3.10) combined with (3.5) is equivalent to 

J V 7 2 - 1 

X 2tan - 1 — (A^-sin&y) = 2JT&'X+ 2 2tan"1 — (Xa- Xp) 
j&.m U 0=1 U 

9'a=9a-isiffi(Xa-A). (3.11) 

It is interesting to notice that from (3.10) both the A and the K + \% drop out and the 
remaining equations (3.11) are formally the same as the corresponding equations for a 
system ofN-2 electrons. Based on this analogy one may suppose that this is theequation 
that defines the spin state of the N -2 electrons described by the real ks. Thus to avoid 
having the spin degrees of freedom excited, we choose, for the 3*' set, the same set that 
would correspond to the ground state of a system ofN-2 electrons, i.e. the set 

-i(N/2 - 2), - i ( M 2 - 4 ) , . . . , i(N/2 - 2). (3.12) 

3.2. Solution of the system (3.6), (3.7), (3.9) and (3.11) 

In the following we suppose that in the large-N limit, as in the case of the ground state, 
both the real k set and the A set can be described by their density functionst. If we 
suppose that the number of k,s (A^) in the interval (k; k +dk) ((A; A + dA)) is 
Np(k)dk (No(X)dX) equations (3.7) and (3.13) lead to the equations 

„ , 1 2cosk C" U/4 _^,x _,, 
m = Tn + ~^T L (UlAf + (sin k - X)2 °<A) <* 

2cosfc UI4 
+ 2nN (U/4)2 + (sink-A)2 ( ' 

2Lm)>Z4-™*fP'W'^ + 2f.wa)'"l-r?*'»"•' <3"I4) 

with 

p*(k) = p(k) - (l/N) d(k - ki) - (1/N) d(k - km) (3.15) 

(p(k) being the density of ks defined by the whole (3.8) set contains additionally ki and 
km). This system can be solved by Fourier transformation giving 

o\X) = a0(X) - jjjj (cosh[(A-sinA:,)2ji/[/] + cosh[(X-sinkm) 2JZ/U]) ( 3 - 1 6 ) 

J _ UIA cosk F Q-°>m 

p{k) (*W + 2nNCaSk{U/4)2 + {smk-A)2
 2JZN J„ cosh a>U/4 

x {cos[a>(sin k - sin ki)] + cos[(w(sin k - sin km)]}d(o (3.17) 

t A description of the k and A sets by their density functions is very plausible, but it is not established in a strict 
mathematical sense. The problem is that one must be certain that the error introduced by turning the sums 
into integrals is much less than the 1/N terms that are present due to the excitations. Replacing (VN) 1k 

by / dkp(k) introduces an error of the order of 1/N2 but the replacement of (l/N) 2* by / dAo( A) may introduce 
a larger error because the integration interval is infinite. 
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where ob(A) and po(k) are the ground-state distributions 

'/o(a>)cos cok ^-sf U ,,IA dQ) (3-18) 

cosh (tillIA 

MA:) = 2lr + 2i;COSfcJo c ^ h ^ ^ / o ( w ) C O S ( < W S i n f c o ) d ( 0 (3-19) 

with/0(w) being the zeroth-order Bessel function. 
Having p(k) at hand, (3.6) and (3.9) can be reduced: on the LHS of (3.9) the sum over 

the &jS can be replaced by an integral over the k variable with density p*(k), and the 
integral can be evaluated giving 

4 4 
2Nk(A) - 2 tan - 1 - (A - sin ki) - 2 tan"1 - (A - sin km) 

+ 4 Re tan~'(A - sin(ic + ix)) 
N/2 - 1 

= 2 ^ 4 - 2 2tan_I —(A-A«) (3.20) 
/3=i U 

with 

Jfc(A) = sin-1[i{[(U/4)2 + (A + 1)2]1/2 - [(£//4)2 + (A - l)2]1'2}! 

(cos/c(A) > 0). (3.21) 

Comparing (3.6) and (3.20) one obtains that 
JV/2-1 

2JI{N sign A - ( 9 + 2$ - i 2 sign(A - A^)' 

4 4 
= 2 tan - 1 — (A - sin ki) + 2 tan - 1 — (A - sin km). (3.22) 

This equation may have two non-equivalent solutions 

A = |(sin kt + sin km) if the LHS is 0 (3.23a) 

A -> oo if the LHS is 2jr. (3.23b) 

It can be seen that k\ and km enable all the other unknowns to be expressed: (3.23a) 
or (3.23b) gives the connection between A, kt and km, and through these three variables 
all K, x, <Kfy a n d p(k)can be given by (3.4a), (3.4b), (3.16) and (3.17), respectively. The 
equations defining ki and km are obtained from (3.7) through eliminating the A,jS by 
means of o(A) and by eliminating A using either (3.23a) or (3.23b): 

-u>UH f°° e_a,(;/4 2K 
*'(m> + J0 cocoshcoU/4 U(0) S i n ( t ° S i n k,(m)) dC° = ~N '*"> 

1 Too fi-eo3C//4 

+ NI co cosh ctiUIASin[w(sin * * " > " Sin *m(/))] d W ( 3-2 4 3 ) 

**"> + Jo a, cosh coU/4 U0}) S in (W Sin * * - > > = AT (5 '(m) + i } 

i /-co e - tuC/ /4 

+ 5v Jo a» cosh o,t//4 S i n [ w ( S i n k'(m) ' Sln ^ W ) ] dW- ( 3 - 2 4 b ) 
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To characterise the above described excited states we have to fix three prameters, 
$1, 3m, and the LHS of (3.22), that is ?F + 23>. It seems that we have one parameter i.e. 
$, which can take any value without affecting the state. This is not so. It can be checked 
that if we calculate the exponentially small correction to K and x this parameter will also 
be fixed: for the phase of the terms denoted by 0(e"T,Ar) in (3.2), (3.1) gives a solution 
only at a given value of $. 

In connection with the states corresponding to the solution given by (3.23b) and 
(3.24b) we note the following: in these states both the real k and normal Asets are exactly 
the same as those for states of N - 2 electrons in which the spin part is in its ground 
state. If we substitute these A:s and As together with a complex k pair satisfying (3.4a) 
and (3.4b) into the wavefunction, and take it to the A —* oo limit, we obtain a wavefunc-
tion that is the same as that corresponding to the state obtained from the N - 2 electron 
state through acting on it by the operator 2^= i[(— l)"c^ c+j ]. As the commutator of this 
operator with H of (1.1) is a number (U), solution (3.23b), (3.24b) indeed corresponds 
to an eigenstate of the system. 

3.3. The energy and momentum 

The energy of the states is easily calculated by means of p* (k): 

E = —N 2 cos k p(k) dk — 4 cos K cosh % 

J-.T 

= £ 0 +£(*/) + e(km) + U (3.25) 

with £ 0 and e(k) given by 
f- e~MC//4/0(aj) J,((o) 

Eo=~2N\ °̂  ' r \ }dco (3.26) 
Jo cocoshaj£//4 

f" Q-<»m 

e(k) = 2 cos k + 2 • 77rJ\(ui) cos(wsin k)do>. (3.27) 
Jo cocoshcot//4 

The momentum, according to (2.2b), (3.8), (3.11) and (3.12) is 
NIZ-l 

p = -£(-It-Im+ j£ isign(A^-A)+9+2A+po. (3.28) 

Hereto, the momentum of the ground state, is jrif M2 is even andOif A//2isodd. This, 
combined with (3.23) and (3.24), yields 

P ~Po = -p(k,) - p(km) (3.29) 

where we understand 

J
rx g-a>£//4 

——-/0(<u)sin(a)sinfc)da). (3.30) 
o a» cosh OJU/4 

The energy-momentum curves defined by (3.27) and (3.30) for different values of 
U are shown in figure 1. Figure 2 displays the continuum of the excitations discussed in 
this section. For the sake of comparison in the same figure we have also plotted the 
energy of a spin wave. It can be seen that at the given value of U (U = 2) the energy band 
of the spin waves and the band of the excitations with one complex k pair overlap, i.e. 
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P 
Figure 1. sip) dispersions for different values of V. The individual curves are labelled with 
the values of U. 

both kinds of excitations have the same order of magnitude energy. For increasing values 
of [/this overlap gradually disappears, since the lower edge of the band of the excitations 
with complex wavenumbers increases roughly like U - 4, while the maximum energy of 
a spin wave decreases like 1/U. 

3.4. Comments 

The number of states described above is N(N — 1) since there are N(N - l)/2 choices of 
the 3>i and $m parameters and for each choice we have two solutions (3.23a) and (3.23b). 

Figure 2. Representation of the continuum of the states with two complex wavenumbers in 
the energy-momentum plane for U = 2. Cross-hatched areas represent degenerate states: 
to one (e;p) point there are two non-equivalent pi, p2 pairs for which p\ + pj = p and 
e(p\) + elpi) + U = e. The broken curve shows the lower edge of the continuum of the 
triplet spin waves. 
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On the other hand, it can be verified that these states in the large U limit correspond to 
states in which one site is doubly occupied and one site is empty, and the Heisenberg 
chain of the spins belonging to the singly occupied sites is in its ground state. As the 
number of these states is also N(N - 1) we have found all of them. 

It is interesting to note that the state with lowest energy is the one in which kt — 
km —JZ . Here the energy is 

o ^ h ^ 4 / l ( w ) d a J <3-31) 

which is exactly the same as 

p+ - p. = (EQ(N + iy- E0(N)) - (£o(AO - E<{N - 1)) (3.32) 

(Eo(N ± 1) being the ground state energy of a system with N ± 1 electrons) calculated 
by Lieb and Wu. In other words the gap calculated through the one particle excitations 
coincides with the gap in the spectrum of particle number conserving charge excitations. 
A detailed discussion of the results of this chapter is given in the second part of the 
present work (Woynarovich 1981), where solutions corresponding to an arbitrary num
ber of complex pairs are found for the case of an arbitrary number of electrons. 

4. Summary 

The main points of the present study can be summarised as follows. 

(i) Based on the analysis of the U-* °° limiting form of the eigenfunctions of the ID 
Hubbard chain it is shown that all those states in which the amplitude of finding electron 
pairs occupying the same sites is finite (even if U is large) can be described by solutions 
of the Lieb-Wu equations in which some of the wavenumbers are complex. 

(ii) Solutions with one pair of complex wavenumbers, corresponding to states in 
which the spin part is in its ground state (singlet) are found. These states are characterised 
by three parameters (kt, km and A) and these parameters are coupled to each other by 
(3.23) and (3.24). In the energy and momentum only the parameters k\ and km appear 
explicitly ((3.25), (3.27), (3.29) and (3.30)). In the spectrum a gap is found Which is of 
the same magnitude as that calculated by Lieb and Wu for the one-particle-type 
excitations. 
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Abstract. States of the ID Hubbard chain with several pairs of complex wavenumbers are 
studied. The original set of Lieb-Wu equations is replaced by an equivalent set in which only 
real wavenumbers appear. These equations are reduced for the states in which the spin 
degrees of freedom are not excited. The energy-momentum dispersion for these states is 
also found. 

1. Introduction 

In the first part of the present work (Woynarovich 1982, hereafter referred to as I) those 
eigenstates of the ID Hubbard Hamiltonian 

N N 

H = - 2 2 {cU Xcfiio + ct<fi+ lo) + C/ 2 nt T/I,-1 (1.1) 
i = l a /=1 

have been studied that correspond to states in which the amplitude of finding electron 
pairs occupying the same site does not vanish even if U is large. It has been established 
that these states are to be described by such solutions of the Lieb and Wu (1968) 
equations 

Ntn-s* 
Nkj = 2jr$j- 2 2tan_1 —(sin&y-A^,) (1.2) 

jS= I U 

N, Ne/2-S» 

E2tan- 1 - (A a - s infc / ) = 2;r3v+ S 2tan~ !-(A ( r- Xp) (1.3) 
;'=1 U 0=1 U 

in which some of the wavenumbers k are complex. Solutions with one pair of complex 
wavenumbers corresponding to states of the half-filled band (Ne = N) in which the spin 
part is not excited were discussed in I. 

In this work we intend to generalise our results in two directions: we look for states 
with several pairs of complex wavenumbers, and at the same time we do not fix the band 
filling; the number of electrons can be less than the number of sites. We wish to derive 
a system of equations in which, instead of the parameters of all electrons, parameters 
referring only to the excitations appear. As a first step (§ 2) we deduce from the original 

0022-3719/82/010097 + 13 $01.50 © 1982 The Institute of Physics 97 
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set of Lieb-Wu equations an equivalent set that contains real wavenumbers only. In 
§ 3 the equations will be further reduced to describe states in which the spin part is not 
excited. The resulting equations will provide a connection between parameters that can 
be attributed to the excitations only. The energy and momentum of these states will be 
found too. It will be seen that both the energy and the momentum of the excited states 
in question can be expressed as the sums of energies and momenta of a set of 
quasiparticles. 

Throughout the present paper the formulae of I will be prefixed with a roman I. 

2. Equations for states with several complex wavenumbers 

2.1. Elimination of the complex wavenumbers from the Lieb-Wu equations 

In this section we deal with states described by a A: set containing several pairs of complex 
wavenumbers. We do not fix the band filling. It can be less than half, that is Ne =£ N. The 
number of electrons needed to make the band half-filled is denoted by H: H = N - Ne; 
the number of complex k pairs is L and the number of down spins is M (M s= L). The 
spin state will not be fixed. 

It is supposed that, similarly to the case discussed in I, for each complex k pair there 
is one A among the M As, for which 

s i n ^ ± i#>) = A„ + iU/4 + 0(e-"^)N) (2.1) 

(As coupled to complex k pairs by (2.1) will be denoted by A to distinguish them from 
'normal' As). These equations are the generalisations of (I. 3.2) allowing for the possi
bility of A being complex (in a complex k pair the *4+) + i^,+) and the JCJ,-) - i#i_ ) are the 
complex conjugates of each other only if A„ is real; if A„ = A£, then K^+) + i ^ + ) = 
( J 4 - ) -lafc0)*)- Substituting (2.1) into (1.2): 

M-L 

N(^ ± i£*>) = 2n*P - 2 2 tan"1 - [sin(4±) ± i*^) " H 
P= I U 

L 

- 2 2 tan"1 y [sin(4± ' ± i*^) - Am]. (2.2) 
m= 1 U 

One finds that the terms denoted by 0(e~^')N) are indeed exponentially small in N, if 
the numbers defined as 

rf^ = £* ± ^ I m { 2 2 t a n " 1 1 [ s i n ^ ± &*>) - A„] 

+ 2 2 tan"1 - [sin(jt<*> ± i^») - A m ] | (2.3) 
m*n (J J 

are positive and of the order of unity. Whereas in the case discussed in I (one pair of 
complex A:s, spin part not excited) r\ could be estimated without solving the system 
completely, now, as we are dealing with a more general case, we cannot tell anything 
about the T ^ ' S . We suppose, however, that all the r/^'s are positive and of the order of 
unity. Since the following treatment will be consistent only if this supposition is correct, 
after solving the equations one has to check the validity of this assumption. 
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If the t e rms 0(e~^~ N) a re neglected, the solutions of (2.1) are given in the form 

*&*> = sin- 'IHKC/M + Im A„)2 + (Re A„ + 1)2]1/2 

- [(U/4 + Im A„)2 + ( R e A„ - 1)2]1/2}1 

jtf> = c o s M H K t / t t + Im A n ) 2 + (Re A„ + l ) 2 ] 1 ' 2 

+ [(U/4 + Im A„)2 + (Re A„ - 1)2]1/2}] 

^ ± ) > 0 sign(cos JC^-') = - s i g n ( U/4 + Im A„). (2.4) 

T h e equa t ions for the real A:s are 
M-L 

NL = 2JT3>J - ( 2 2 t a n " l — (sin kj - kfi) + 2 2 tan ~' — (sin kj - A m ) ) 
\ 0 = 1 L/ m = l t / /discont. 

M-L L 

- ( 2 2 t a n - 1 - ( s i n fcy - A„) + 2 2 t a n - 1 - ( s i n fcy - Am) J (2.5) 
\ / 3 = l C m = l U /Cont. 

where we have split 2 tan_1(4/C7) (sin /c — A) into two parts: 

/„ , 4 , . , , . \ , sin fc — Re A . sin k - Re A 
2 tan-1 — (sin k - A) = tan"1 — - — - — - + tan-1 ———-—-

V UK 7 com. £//4 + ImA £//4-ImA 

1 (£7/4 + Im A)2 + (sin ft - Re A)2 

+ 2i (£//4-ImA)2 + (sin£-ReA)2 ( 2 ' 6 a ) 

/ , 4 \ r^sign(sinA:- Re A) if llm Al > t//4 
2 tan"1 - (sin k- A) = (2.6b) 

V £/ 7discom. 10 if |Im A| < U/4. ' 
In (2.5) it is more convenient to introduce an 3>' set instead of the J set with the 

definition 
M-L 

*'i = h ~ T" f 2 2 tan"1 - (sin kj -kp)+ 2 2 tan"1 - (sin *,- - Am)) (2.7) 
Z ; T \ 0 = 1 1/ m = l t / /discont. 

Because both the A and A sets are assumed to consist of real numbers and complex 
conjugate pairs, then $j is an integer if 3>j is an integer (that is if M is even) and &\ is 
half an odd-integer otherwise. For the $' set we choose N — 2L — H different numbers 
from one of the sets 

-i(N - 1), -i(N -3),...,i(N-3),i(N-l) (2.8a) 

-i(N - 2), -W -4),...,i(N- 2), IN. (2.8b) 

(The particular set to be used is decided by the parities of the numbers N and M.) 
Equation (2.5) additionally defines ks to the 2L + H $'s left out from (2.8a) or (2.8b). 
We will denote these ks by the index h (for 'hole'). The density of the ks satisfying (2.5) 
is 

M-L 

1 2 cos k I ^ U/4 1 2 cos k I 
2n 2JVN V ~ i (U/4)2 + (sin k - A„)2 

y UI4_ \ 
+ £i(U/4)2 + (sink-Am)2)- ( 2-9) 
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As this p(k) also contains the kh variables, the density of the &;s is 
H + 2L 

p*{k) = p{k) - - 2 t <5(* - kh). (2.10) 

It should be noted that the introduction of p(k) in the form (2.9) makes sense only if it 
is positive, but whether it is positive for all k or not depends on the distribution of the 
As and As. As we do not know these distributions, let us suppose for the time being that 
p{k) of (2.9) is positive; of course this must be checked for any given solution. 

Although the equations for the normal As and As have a common form in the original 
system (1.3), in our case it is worthwhile to treat them differently. Substituting (2.1) into 
the equations for the normal As: 

L 

2 2 tan - 1 - (A* - sin kj) + 2 2 tan"1 - [A, - sin(*i+) + i^+))] 
j*h U m = l U 

L 

+ 2 2 tan"1 - [A. - s i n ^ - ' - i^_))] 
m=l U 

M-L 

= 2jz&a+ 2 2 tan - 1 — (A*- A«) 
P=i U 

L 

+ 2 2 tan- 1 f (A,-Am) (2.11) 
m=l U 

and using the identity 

2tan-1(4/C/)(Aa- Am - i UIA) + 2tan"1(4/L0(A t r- A m + i C//4) 

= 2tan-1(2/ t / )(A a- Am) + ^sign[Re(A a- Am)] (2.12) 

one has (up to exponentially small terms) 

M-L 

2 2 t a n " 1 - ( A « ~ sin A:,) = 2n®'a+ 2 2 tan - 1 — (Aa-A«) (2.13) 
;XA U 0=1 U 

with 
L 

9'a=9a- 2 isign[Re(Aa - Am)]. (2.14) 

The <F'a parameters are integers if Ne - (M — L) is odd, otherwise they are half odd-
integers. 

The equations for the A„s coupled to the complex wavenumbers 
L 

2 2 tan"1 - (A„ - sin k,) + 2 2 tan"1 - [A, - sin(4,+) + i^+ ))] 
i*h U m = l U 

L 

+ 2 2 tan"1 - [A. - s i n ^ - i^»-))] 
m=l U 
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M-L 

= 2n&„ + 2 2tan_ 1-(A„-A^) 

L 

+ 2 2 tan- 1 - (A„-A m ) (2.15) 
m = l U 

need a different treatment. In the first term of the LHS we replace the continuous part of 
the sum over the real ks by an integral over the ks with density p*{k). In this integral 
only the constant and the 6-function terms of p*{k) contribute, and it can be evaluated 
in closed form giving 

H + 2L 

£/S (2 tan" v(A- -sin *>>L --- h £ (2 tan~̂ (A- -sin **>L 
+ sign(£//4 - Im A„) sin_1[H[(C//4 - Im A„)2 + (Re A„ + l)2]1''2 

- [{UIA - Im A„)2 + (Re A„ - 1)2]1/2}I 

+ sign(f//4 + Im A„) sin'%{[(U/4 + Im A„)2 + (Re A„ + l)2]1'2 

- [{UIA + Im A„)2 + (Re A„ - 1)2]1/2}J - i(d+) - *<">). (2.16) 

This identity holds up to terms of the order of 1/N2 (also calculating the discontinuous 
part by means of p*{k) would introduce an error of the order of 1/N). Substituting (2.16) 
into (2.15), and summing (2.15) and (2.2) (this latter twice: once with the upper and 
once with the lower signs) one obtains 

H + 2L L 

2 2 t a n - 1 - ( A n - s i n ^ ) = 2jr^;+ 2 2tan-1-(A„ - A ,) (2.17) 

h = \ (J m = \ U 

with 

9'n = JVsign(Re A.) -9n- 3>i+) - $<"> + 2 sign[Re(A„ - Am)] 

+ i 2 sign[Re(A„ - A ]̂ + 2 i 
all/: 

signf—- |ImA„|) - 1 

x [sign(Re A„) - sign(Re An - sin k)] 

1 4 
+ -Re tan - 1 —(ifaiAa). (2.18) 

Jt U 

The parameters S'iare integers ifNe-L is odd; otherwise they are half odd-integers. 
To summarise the result of this subsection, we conclude that the actual system to be 

solved is the system of (2.5), (2.13) and (2.17). The solution of these equations deter
mines ((through (2.4)) a solution of the original Lieb-Wu equations with an error of the 
order of 1/N2 if the r/^'s defined by (2.3) are positive and of the order of unity, and the 
p{k) function given by (2.9) is positive. 

2.2. Symmetry of the system (2.5), (2.13) and (2.17) 

The system (2.5), (2.13) and (2.17) is entirely symmetrical in the variables kj, Aaand kh, 
A„. Changing the role of these variables one obtains another solution of the system. In 
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this subsection we wish to show that this symmetry is present in some form in the 
momentum and energy as well. 

Let us define the complex wavenumbers*4+) +i^i+) and *4_) - i^a
_) for the variables 

Aa, analogously to (2.1), and calculate 

M-L 

2 k + 2 [(#> +#/>) + (jcir> - &->)] 
alii a=l 

i. 

+ 2 [(*i+) + f^+)) + (*if > - i^_ ))] . (2.19) 
n = l 

Summing (2.5) for all indices; and h,-and evaluating the expression obtained in this way 
by means of (2.16) (with the difference that now, as the sum is over all ks, the first term 
on the RHS of (2.16) is omitted) one obtains that the value of (2.1) is (up to nlri) 

2JT ^ f 0 if N - M is odd 
— 2 r = (2.20) 
iV mi*' Vn if N- M is even. 

If we calculate the sum 

M-L 

2 ( - 2 cos *) - 2 2[COS(A4+) + ixi+)) + c o s ^ - i*^)] 

a= 1 

L 
- 2 2[COS(K<+> + i*<+>) + cos(ici-> - i^"))] (2.21) 

all* a= 1 

L 

we find that this is equal to MU. Thus, in some sense the states in which the roles of the 
variables kj, Xa and kh, A„ are interchanged are 'complementers': both the sum of their 
momenta and the sum of their energies are constants that depend only on the number 
of the down spins, but not on the structure of the states. 

The above-established complementarity can be used to calculate highly excited states 
of the Hubbard chain or to calculate the low-energy states of a chain with negative U. 
From this, for example, one knows that the highest-energy state of N electrons is the 
one in which all wavenumbers are complex and the distribution of the A„s is the same as 
the distribution of the AaS in the ground state. Because the Hubbard Hamiltonian with 
negative U is essentially the same as a Hubbard Hamiltonian with positive [/but with an 
overall minus sign, the above state is also the ground state of a Hubbard chain with 
negative U. 

This complementarity is probably connected with the property of the Hubbard 
Hamiltonian that if we introduce holes instead of the up spin electrons, then 

H->uJ,nn-H' (2.22) 
!=1 

where H' has the same structure as H. Taking into account the parallelism that in the 
complementary states the parameters Xa describing the spin part change roles with the 
parameters A„ connected with the charge distribution, and that the transformation 
which connects H and H' introduces doubly occupied or empty sites instead of the singly 
occupied ones (uncompensated spins) and vice versa, the above-suspected connection 
seems very probable. 
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2.3. The U-* » limit of the wavefunction 

Taking the U-* »limit in the wavefunction (see expressions (1.2.5)—(1.2.10)) one finds 
that some of the amplitudes diverge. As in the normalised wavefunction only the terms 
with the strongest divergence will give finite contributions, picking out the most divergent 
terms we can separate those configurations that can be realised even if £/ is very large. 
In this way we get the result that for large U only those configurations remain in which 
the number of doubly occupied sites is equal to the number of complex k pairs. In the 
amplitude of these configurations only those permutations P and JZ in which the*i+) + 
i^+) and jci_) -i^i_) wavenumber pair belongs to one doubly occupied site, and the 
A„ belongs to the down spin at this site give contributions. Using the fact that for large 
U all the sin kp can be neglected compared with the XgS and A„s, which are of the order 
of U, and also using (2.1) the amplitude of the configurations in question can be given 
as 

L 

(-l)Q[exp(iZnf)<pl(yi,yl...,yl)] 

N-H-ZL 

x[(2(-l)pexp(i 2 kPin^q>z(y\,ys2,...,yl,-L)j. (2.23) 

Here the permutation Q arranges the coordinates ni,n2,..., /z#_# into non-decreasing 
order with the restriction that from two equal coordinates that of the electron with down 
spin must come first. The n$Qjs refer to singly occupied sites, the nfs to doubly occupied 
ones and P goes over all permutations of the real wavenumbers. The functions <p\ and 
q>z are essentially the Heisenberg eigenfunctions: 

-Y *n i i , f(iknl + U/4)\y\ / ( iA, .^ + E//4 y„ , 
t V(iA„i - U/4)/ V(iA,M_L - t//4)/ 

A(. .. , A„j, A,ri+i,. . .)/A{.. . , A,ri+i, A,n, • • •) 

= [i(A„> i - X*) - W2]/[i(A„-+, - kj) + U/2]. (2.24) 

The numbers vs are the coordinates of the down spins in the chain of singly occupied 
sites in increasing order. cp\ is formally the same as (pi with the difference that U must be 
replaced by - U, the AaS by the A„s, and the numbers vd are the coordinates of the doubly 
occupied sites in the chain containing only the doubly and unoccupied sites. The ampli
tude of the configurations in which the number of doubly occupied sites is more or less 
than L vanishes at least like 1/f/as U-* °°. 

To understand (2.23) let us consider a configuration in which the first N — H — 2L 
sites in the chain are singly occupied, and the remaining H + 2L sites are the empty or 
doubly occupied ones. In this configuration the electrons cannot move (except for the 
last one) as either the Pauli principle or the large onsite repulsion prevents it. Although 
in this configuration there is no direct interaction between the electrons, through an 
intermediate state with energy U neighbouring electrons can see each other's spins, and 
electrons with different spins can change position, i.e. the spins can move in the same 
way as do those in a Heisenberg chain; the distribution of the spins will correspond to 
the eigenstates of the Heisenberg Hamiltonian. The situation with the empty and doubly 
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occupied sites is similar: neighbouring sites can observe each others occupancy through 
an intermediate state of relative energy - U; moreover the same intermediate state 
makes it possible for an empty and doubly occupied site to change position. Thus the 
distribution of the empty and doubly occupied sites will be the same as the distribution 
of up and down spins in a Heisenberg chain. It is clear that neither the spin distribution 
nor the relative distribution of the empty and doubly occupied sites does change if the 
chain of singly occupied sites is 'diluted' by empty and doubly occupied sites making 
possible also direct propagation for the electrons. 

In connection with the £/—» °o limiting form of the wavefunction we have to note 
that in general we have no reason for regarding the states with complex wavenumbers 
as some sort of bound states. This notion is right only if the chain consists mainly of 
empty and doubly occupied sites; then the electrons occupying the same site can be 
regarded as bound ones. Otherwise the neighbours of a doubly occupied site are most 
probably singly occupied ones, one of the electrons of the two can move, and the 
situation is rather similar to having one free electron hopping from a site to a site already 
singly occupied. 

3. Singlet states with only charge excitations present 

3.1. Solution for the distribution of the normal As 

The system of equations reduced from the original Lieb-Wu equations may have many 
solutions depending on the choice of the parameters Wtt. In this section we want to deal 
with those solutions in which the spin degrees of freedom are not excited. For the sake 
of simplicity we suppose that these states are singlet, i.e. the number of uncompensated 
spins, N — H - 2L, is even. It is not hard to see ((2.23), (2.24) and the {/—> » form of 
(2.13)) that to have the states in question, we have to choose theSF^ set in (2.13) that is 
characteristic of the ground state oi N - H - 2L electrons, that is, the set 

-i[(N -H- 2L)/2 - 1], -i[(N -H- 2L)/2 - 3 ] , . . . , i[(N -H- 2L)I2 - 1]. 

(3.1) 

With this choice of SF̂ s, the density of the As must satisfy the equation 

••r 
J—7\ 

U/4 

,T([//4)2 + (A-sinA:) 
p*{k) dk 

f°° U/2 

•*t«» + 2L(Ulf + VL-X?«'">M'- <3'2) (U/2Y + (A - A') 

The solution of (3.2) is easily obtained by Fourier transformation: 

«k)=U 1 fF,(o,)cgs(gjA)da>_ 1 Y 1 ( 3 3 ) 
'o cosh(to£//4) NU h=i cosh[(X-sin kh)2rc/U] 
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This o(A) allows us to eliminate the A^ from p(k) of (2.9), with the result 

1 / fx e "^ ' 4 \ 
p{k) = — 1 + c o s k \ — F0(cu)cos(cosin k)dco 

2K \ Jo cosh(coi7/4) / 
Jo cosh(coi7/4) 

c o s f c p Q-am H + 2L 
r» e-«""4 

— u / rfMN -^ cos(w(sin k - sin £/,)) dco 
M cosh(co£//4) A=I 2nN JQ cosh(co£//4) A=I 

z. 
2 cos A; Y UIA 

2KN m = i([//4)2 + (sinA:-Am)2 ' ( 3 ' 4 ) 

By means of o(A) from (2.5), equations for the variables kh can be obtained too: 

^ + £ ^:w:_ WW™™ da, cosh(coi7/4) a> 

F/ + 2C 2 f 
*' = 1 Jn 

=2^ +Tr ^ . . ^ ^ " ^ d . 
'o cosh(coL//4) co 

- 2 2 tan - 1 — (sinA:,, - A„). (3 5) 
m = l 1/ ' " y 

As by the kh and Am variables all the other unknowns are determined, the problem is 
reduced to the solving of (2.17) and (3.5). This system is very similar in structure to the 
original Lieb-Wu equations ((2.17) is formally the same as (1.3) while (3.5) is the 
analogue of (1.2)). The main differences are that it contains only the parameters of the 
excitations (instead of the parameters of all electrons) and that the variables kh, being 
the positions of the holes in the distribution of the real ks, are always real. 

3.2. Energy and momentum 

The energy is calculated by the formula 
L 

E = -N \" 2 cos kp"(k) dk - 2 2[cos(/d+) + i*L+)) + c o s ^ - #„">)] (3.6) 
J-jt m = l 

which yields 
H + 2L 

E = E0+ 2 e(kh) + LU (3.7) 
h = \ 

with E0 being the.ground-state energy, of JV.(!) electrons 

r-e-'
B£"4Fo(ai)F1((»)d(u 

= -2N ("" 
Jo 

(3.8) 
Jo cosh(co{//4) co 

and 

s(k) = 2 cos k + 2 f" 6 °™ F1MI cos(o)sin k) — . (3.9) 
Jo cosh(ajt7/4) to v ' 
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The momentum evaluated by means of the formulae (I. 2.4), (2.7), (2.8), (2.14), 
(2.18), (3.1) and (3.5), is (up to an integer multiply of lit) 

H + 2L 

p = 2 ~p(kh) + ip (3.10) 
h — 1 

with 

p e - ^ F o t a O s i n ^ s i n A Q d a j 
p(fc) = fc+ (3.11) 

Jo cosh(a>t//4) a> 

and 

V = «[1 + N + (N - H)/2] (3.12) 

(we wish to mention that the appearance of xp is not connected with the presence of the 
complex wavenumbers. It is connected with the fact that even the ground state momen
tum of a Heisenberg chain can be 0 or it, depending on the parity of the number of sites, 
and that even the ground state momentum of a half-filled Hubbard chain can be 0 to it 
depending on the parity of N/2). 

It is worthwhile to compare the (3.7), (9.10) energy-momentum dispersion with that 
for states with more than N electrons. A state with N + H' electrons can be obtained by 
acting o n a state with N — H' electrons by the opera to r t 

e x p ( - i 2 M " + 2){CnlCU +Cn]Cni)\. 

This operation introduces holes instead of the particles, and changes the energy by H' U 
and the momentum by itH'. According to this, the energy and the momentum of a state 
with H' extra electrons and with L pairs of complex wavenumbers is 

E = E0+ 2 e{kh) + (H' + L)U 
h=l (3.13) 

H' + 2L 

p= 2) -p(kh) + 41 + N + (N + H')/2]. 
h = 1 

Comparing (3.7), (3.10) with (3.13) we see that the energy momentum dispersion is very 
much like the energy of a state with L + H (L) holes in a subband with dispersion 
—e(k(p)) and L(L + H') particles in another band with dispersion e(k(p)) + U. Thus, 
the form of the energy momentum dispersion suggests that if pairs of complex wave-
numbers are introduced instead of real ks it acts like exciting a number of carriers from 
one band to the other. This picture, however, reflects only the apparent additivity of the 
energy and the momentum, and jives the right coefficient of U. The excitations, if we 
treat them as quasiparticles, should be regarded as interacting ones. This is reflected in 
the fact that the momenta of the quasiparticles are not free parameters; they are 
connected with the actual quantum numbers through the system of equations (2.17) and 
(3.5). 

In figure 1 we have represented the energy bands as functions of U for a half-filled 
band (H = 0) for one, two and three pairs of complex wavenumbers. The lower and 

t The state with H' extra electrons can be constructed in this way only if N is even. If N is odd, the 
transformation between particles and holes changes the periodic boundary condition into antiperiodic or 
changes the sign of the kinetic energy. 
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Figure 1. Energy bands for excitations with one, two, and three pairs of complex wave-
numbers as functions of U. The different bands are differently shaded; the numbers in them 
indicate the numbers of complex wavenumber pairs. 

upper edges of the bands can be obtained through (3.7) and (3.9) taking all the khs as 
jrand 0 respectively. 

3.3. A special solution for the A„s 

The equations (2.17) and (3.5) are highly non-linear but there is one case when they can 
be replaced by a linear integral equation. This is the case when H = 0, L is macroscopic 
(comparable to N) and we choose for the Wn set the numbers 

-i(L - 1), -h(L - 3 ) , . . . , i(L - 1). (3.14) 

With this choice of S^s all A„s will be real, and the number of A„s between A and 
A + dA can be given as (2L)£(A)dA, where 

1 2L 1 1 
^ A ) = 2L4=i Z/cosfa[(A - sin kjlnlU\' ^ ' 1 5 ^ 

Combining this with (3.3) one finds that the density of all As and As is the same as the 
density of As in the ground state: 

*»+f5W" s{"^«y c o s M ) "" - "«• <3'16) 
Using the §(A) to evaluate the sum over the Ams in (3.5), we find that 

p{k„) = (2riN) 9„ (3.17) 
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i.e. in this special case the quasiparticles are not interacting. We should emphasise that 
this holds only if L is large, i.e. the error introduced by using |(A) in the summations 
(for which 1/L is an upper limit) is sufficiently small and if we choose (3.14) to characterise 
the system. 

3.4. On the conditions 

Any solution of the system (2.5), (2.13) and (2.17) is meaningful only if, on substituting 
the As and As into (2.3), all of the rffh are positive and of the order of unity; and p{k) 
of (2.9) is positive. We are not able to show in general that these conditions are satisfied 
for all solutions, but in two cases: one in which the number of excitations is small 
compared with N (i.e. the number of As is not macroscopic, and at the same time the 
spin part is near to its ground state). The other case is when although the number of 
As is macroscopic, the system is near to the state described in § 3.3. In both cases the 
sums in (2.3) can be estimated by integrating over the As (all As and As) using the 
ground-state density. (The error of this estimation is of the order of (In N)IN). This 
estimation shows that both rji+) and rf„~) are definitely positive and do not vanish as 
N—* oo. p{k) can be estimated in the same way with an error of the order of \IN; it is also 
positive for all k. It is also true that for a small number of complex k pairs for each pair 
there must exist a A satisfying (2.1). (If a complex k pair without A existed, then for that 
pair r/+) and r/_) should be zero; this is however, according to the above-described 
estimation, impossible.) 

4. Summary 

In the present work we have investigated those eigenstates of the ID Hubbard model 
for which in the wavenumber set there are several pairs of complex wavenumbers. Our 
results are the following. 

(i) It has been shown that for states with several pairs of complex wavenumbers the 
solving of the Lieb-Wu equations is equivalent to solving (2.5), (2.13) and (2.17). This 
system is very similar in structure to the original Lieb—Wu equations, with the difference 
that there are no complex wavenumbers. Auxiliary variables appearing instead of the 
complex ks are the positions of the holes in the distribution of the real wavenumbers. 

(ii) A complementarity between different solutions of the system (2.5), (2.13) and 
(2.17) has been established. By one solution of the system two eigenstates can be 
described. In the complementary states the parameters connected with the charge and 
spin degrees of freedom change roles. This complementarity can be used to find the 
eigenvalues and eigenstates of the Hubbard Hamiltonian with negative U too. 

(iii) It has been shown that for large U, in a state with L complex k pairs, there are 
L doubly occupied sites. In this limit the distribution of the empty and doubly occupied 
sites is the same as the distribution of the up and down spins in a spin { Heisenberg chain. 
The distribution of the spins belonging to the singly occupied sites is also described by 
an eigenfunction of the Heisenberg Hamiltonian. 

(iv) To describe states in which the spin degrees of freedom are not excited, the 
(2.5), (2.13) and (2.17) system has been reduced to a simpler one ((2.17) and (3.5)). 
This system is the analogue of the original Lieb-Wu equations with the difference that 
it contains the parameters of the excitations only. For these states the energy and the 
momentum can be given as the sum of the energies and the momenta of quasiparticles. 



States with several pairs of complex wavenumbers 109 

These quasiparticles are, however, interacting ones. The energy bands belonging to 
different numbers of complex k pairs are given. 

We have concentrated on the 'charge excitations'. To isolate charge rearrangement 
effects we examined in detail those states in which the spin part was in its ground state. 
Similar calculations can also be performed for those states in which the spin part is 
excited too. Preliminary results show that, as expected, the presence of spin excitations 
does not effect drastically the results connecting the states studied so far, just in addition 
a new type of 'elementary excitations' must be introduced. 
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Note added in proof. The derivation of the system (2.5), (2.13) and (2.17) presented in §2.1 is correct only if 
there are no A, and A„ with | Re A(A)| =s 1 and| C//4 - |Im A(A)||<4l/Af. It can be checked that a solution of the 
system (2.5), (2.13) and (2.17) generates a solution of the original Lieb-Wu equations even if some of the A 
and A have imaginary parts very near to C//4. In this case: 

(a) For the N different / ' equation (2.5) has more than N different solutions. Among these solutions to 
each A and A pair satisfying the above inequalities there is a pair of real k with sin klll> = Re A(A). This k 
should be ignored, and the kf and kh are given by the remaining N solutions. 

(b) Two of the fom fccoupfedto a complex A pair satisfying the above inequalities and defined by (2.4) are 
real and equal. Instead of these k the two different solutions of sin fclU) = Re A are to be used. 

Since in the p{k) of (2.9) the real A:-pairs connected with the A and A in question appear as 6-like peaks with 
opposite signs, p(k) automatically takes care of the alterations connected with the A. The only point where 
care must be taken is the calculation of the spin excitations, thus no results and conclusions of the other 
sections are affected. 
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Abstract. The spin excitations of a Hubbard chain are calculated on the basis of the Lieb-
Wu equations. A system of equations, which contains the parameters of the excitation only, 
is derived. It is found that both the energy and the momentum of the spin excitations depend 
only on the positions of the holes in the real Adistribution. The energy-momentum dispersion 
for a half-filled band is given. The structure and degeneracy of the lowest energy excitations 
are also discussed. 

1. Introduction 

As is well known, the one-dimensional Hubbard model can be treated exactly by the 
Bethe ansatz. Lieb and Wu (1968) showed that the diagonalisation of the Hamiltonian 
can be reduced to solving a set of coupled non-linear equations and they also found the 
solution corresponding to the ground state of this system. Following this work, Ovchin-
nikov (1970) calculated the triplet spin waves for a half-filled band while Coll (1974) 
calculated the spin-wave-type and one-particle-type excitations for general band filling. 
Recently Choy and Young (1982) re-examined the triplet spin wave excitations and the 
present author analysed the charge excitations for a half-filled chain (Woynarovich 
1982a, b). In the latter paper (Woynarovich 1982b) the original Lieb-Wu equations 
were replaced by an equivalent system in which the parameters corresponding to the 
charge and spin degrees of freedom were separated. This system has also been solved 
for the case when the spin part was not excited. In the present work we intend to 
complete these studies by giving those solutions of our equations which correspond to 
states which also include spin excitations (singlet, triplet and higher multiplet 
excitations). 

This paper is divided into two parts. In § 2, after reviewing the formalism, we reduce 
our system to another one establishing connections among the parameters of the exci
tations only. In § 3, we give an account of the low-energy spin excitations of a half-filled 
chain and also describe the structure of the spin excitations for a band which is less than 
half-filled. 

Throughout this study we will use the results of our previous paper extensively 
(Woynarovich 1982b, hereafter referred to as II). 

© 1983 The Institute of Physics 5293 
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2. Equations for the excitations 

2.1. Basic formalism 

It is well known (Lieb and Wu 1968), that the diagonalisation of the ID Hubbard 
Hamiltonian with periodic boundary conditions 

N N 

H= - 2 2 (ct+laCio+ ctaCi+ia) + £/2n,t«,J CjV+la = C\a (2.1) 
i = \ a i'=l 

(cio(Cio) creates (destroys) an electron with spin a at the site i; niais the number operator 
of the electrons with spin o at the site i) is equivalent to solving the system of equations 

M 4 
Nk; = 2nh - 2 2 tan"1 — (sin k, - Xa) (2.2a) 

or= l U 

N' 4 M 2 
2 2tan_1 — (Xa - sin k,) = 2nJa + 2 2 tan"1 — (Xa - XA. (2.26) 
1=1 U a' = \ U 

Here the parameter sets /; and Ja consist of integer or half odd-integer numbers, the 
parities of the numbers 27/ and 2Ja being the same as those of the numbers M and 
(Ne — M — 1) respectively. A solution of equation (2.2a) and (2.2b) corresponds to an 
Sz = iNe - M(N^ yVe 3= 2M) eigenstate of Ne electrons with an energy and a momentum 

E= 2 (-2 coski) (2.3a) 

N, Ne M 

respectively. 
In II we were searching for such solutions of equations (2.2a) and (2.2b) in which the 

wavenumber set kt also contains complex wavenumbers, especially pairs of wave-
numbers of the form 

kf = sin"1(An + 1C//4) + 0(exp(-r?n
±Ar)) (2.4) 

(with the set of A„ being a subset of the Xa of equation (2.2£>)). We found that the k„ 
pairs of (2.4) drop out of equations (2.2a) and (2.2b), but instead of these the positions 
of the holes (kh) left in the real k(kj) distribution appear and one has to solve the system 

M~L 4 L 4 
Nkm = 2nlm - 2 2 ldxTl-(smkm - Â ) - 2 2 tun'1-(sin km - A„) (2.5a) 

/3=1 U n = l U 

Ne-2L M-L 

2 2tan_1 - (Â  - sin fc;) = 2 ^ + 2 2 tan'1-Up- Xp) (2.5b) 
;'=1 U P~^ U 

H+2L L 

2 2tan"1 —(A„-sinA:/l) = 2 ^ + 2 2 tan _ 1 - (A n -A„-) - (2.5c) 
h = \ U n' = l U 

Here H is the number of electrons needed to make the band half-filled (H = N - Nc), 
L is the number of fc* pairs, and the parities of the numbers 2J'p and 2J'„ are the same 
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as those of the numbers Ne - (M - L) - 1 and Ne — L - 1 respectively. Equation 
(2.5a) (at fixed Xp and A„ sets) is an equation with one unknown and has (for appropriately 
chosen h) N non-equivalent real solutions, provided that for no A or A 

|Re A(A) | < 1 and ||Im A(A) \-U/4\< 1/N. 

If for a A or A 

|ReA(A)|<l and| | ImA(A)|- U/A\<l/N, 

then in addition to the above real solutions (2.4a) also has real solutions of the form 

k = sin-1 (Re A(A)) + 0(lm A(A) - 0/4). (2.6) 

(These ks are the special cases of (2.4)). The elements of the sets k; and kh are given by 
the N non-equivalent real roots of (2.5a), which are not of the form (2.6). Then the set 
Aaof (2.2a) and (2.2b) is the union of the sets Xp of (2.5b) and A„ of (2.5c), while the set 
ki of (2.2a) and (2.2b) is given by the union of the set k, of (2.5a) and the set of ks defined 
as 

kf = sin"1(An + iL/4); ± Im k* > 0 

if 11Im A„| - C//4 |>l/Nor|ReA„|>l (2.7a) 

K = sin_1(A„ - iC//4); k~ = sin_1(Re A„); Im k$ > 0 

K. = n-k-; k-. = (K)* (2.1b) 

if |lm A„ + L/4| < 1/N, |Re A„| < 1 and A„ = A*.. 

It is also possible to give those // and Ja parameters which define the above solution for 
(2.2a) and (2.26). Since, however, these parameters may appear explicitly only in the 
momentum, it is more useful to determine the momentum in terms of the new parameters 

2n 
WL24. + |/i-2/; 

2|ImAj>£//4 
I 2 sgn(Re Ah - sin kj) + 2 sgn(Re A„ - sin kh) J (2.8) 

Equations (2.5a) to (2.5c) make it possible to treat the charge and spin degrees of 
freedom separately: in II it was shown (using an argument based on the U—> °° limit of 
both the equations and the wavefunction) that the set A„ is characteristic of the charge 
distribution (the relative distribution of doubly occupied and empty sites), while the 
distribution of the uncompensated spins is described by the set Â  only. In II the Xp 
distribution, characteristic for those states in which the spin degrees of freedom are not 
excited, was also determined. In this paper we intend to describe those solutions which 
correspond to states where spin excitations are also present. In the first step we will take 
the set kj as a given one and we will reduce equation (2.5b) to a simpler one which 
contains the parameters of the spin excitations only. In this procedure we will determine 
the distribution of the real A^ as well. In the second step we will eliminate both the real 
Â s from equation (2.5a) and the kfi from the distribution of the real Xps. In this way, we 
will obtain the set of equations determining the parameters of the charge and spin 
excitations and we will also find the distributions of the k/S and the real A ŝ. 
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2.2. Reduction of equation (2.5b) 

In a state with no spin excitations present, all the k^ are real and their number is 
Ne/2 - L (for JVe even). To describe states with excited spins, we have to suppose that 
the number of A^ is less than Nj2 - L and/or some of the A^ are complex. To find such 
solutions for equation (2.5b), the same strategy can be used that was applied to reduce 
the secular equations of a Heisenberg chain (Woynarovich 1982c, Babelon et al 1982). 
The essence of this method is that the distribution of the real Â s can be calculated 
supposing that the complex Â s are given. By means of this distribution the real Â s can 
be eliminated from the equations of the complex A ŝ. In this way one obtains a set of 
equations which contains the complex Â s and the holes in the real kp distribution only. 
Since this method is described in sufficient detail in the papers referred to above, we 
give here the main steps only. 

(i) Suppose that the number of complex As (later on, the complex As will be denoted 
by Aj,) with 0 < |Im AM| < U/2 and U/2 < |Im Aj is 2mi and 2m2 respectively. Then we 
have to introduce Ne - 2M + 2m i + 4m2 holes in the real kp distribution (later on, the 
positions of the holes will be denoted by A,). Solving the equations of the real Â s 
(equation (2.5b) with a real kp on the LHS) for the density of these variables yields 

o(k) = -r—;- —.—-7T77 ( 2 exp(-ia)sin/c,) - 2 exp(|(u|£//4 - ia>A„) ) da> 

1 f°°exp(i(uA + \co\U/4)s? „, „ r T /„, , ,„ „x 

—— ' / 2jf((o, L, U/2) do. (2.9) 
2JTAU-OO 2cosh(coU/4) fjy>i»i> v > 

Here we have used the notation 

1 f°° U/2 

/(«,, A„ U/2) = - J__ ^-^)2{U/2)2^X_K)2^. (2.10) 

(ii) From the equations for the complex As (equation (2.5b) with a AM in the LHS) the 
real As can be eliminated by means of o(k). The equations obtained in this way can be 
satisfied (at least if the number of excitations i.e. the number of Â s is small compared 
with Ne - 2L) only if to each Â  with |Im AM| < U/2 there exists another k^ for which 

|Im A„'| < U/2 and A„ - A„. = ±iU/2 + 0(exp(-Ne + 2L)). 

This makes it convenient to represent the set AM by a set of auxiliary variables AJ, in the 
following way: 

(a) one k'^ with |ImA^,| <U/4 represents a pair of Â s with |ImA^| <U/2: 

Â  = A^±it//4 (2.11a) 

(/?) a k'^ with | Im AJ, | > U/4 represents a single kp with | Im AM | > U/2 

A„ = A; + iC//4 sgn(Im A^). (2.116) 

The number of the variables k'^ is n%\ + 2m2 and substituting them into the equations of 
the Â s it turns out that they have to satisfy the equations 

2 2tan"1 yUl- A,) = 2JTT',+ S 2 t a n " 1 | - ( A ; - A -̂)- (2-12) 
n U n' U 

Here the/^s are integers if Ns - 2M - (mi + 2m2) is odd and they are half odd integers 
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otherwise. Their connections with the parameters 7^are 
1 1 

/ ; = / ; + - 2 sgn(Re A; - k„) + - 5) sgn(Re AJ, - A,) 
2 /» 

1 1 
- 2 s g n ( R e A ; - s i n ^ ) + - E sgn(Re(A^ - AJ,)) (2.13a) 
2 ;' 2 |ImA |̂<C//4 

and 
1 1 

/ ; = Jt + / ; - x 2 sgn(Re A; - sin kj) + - S sgn(Re(A^ - AJ, ))• (2-136) 
2 /' 2 n' * M 

Here, (2.13a) is for |Im A;| >U/4 , while (2.136) is for A^swith |Im A;| <t//4. 
(iii) With the introduction of the A^sthe last term in CT(A) of (2.9) can be simplified: 

e x p ( i c A + i c | £ / / 4 ) 2 

, 2cosh(wt//4) X ' "' ' ' 

2jr7V^Z(C//4)2 + (A-A; ) 2 - (2-14> 

The equations for the A,,s (equation (2.56) with a A,, substituted instead of Ap) can be 
given (after eliminating the A ŝ by means of a(A)) in the form 

exp[iw(A,, - sin kj) dco _ V f°° exp[ieo(A,, - A,,-) - |cw|t//4] dco 

1 f' 

2JTNJ-

Y (°° exp[iw(A^ - sin kj) dco _ y f °° 
; J-oo 2cosh(cof//4) iw ^ IJ' J_„ 2cosh(cof//4) ia> i)' J_„ 2cosh(co(//4) ico 

+ 2 2 t a n - 1 - ^ ( A I I - A ; ) . (2.15) 

2.3. Equations for the parameters of the excitations 

As a next step we calculate the density of the variables kj. Since some of the AJ, can be 
real, meaning that the corresponding Xj; have imaginary parts very near to +C//4 or 
- U/4, we have to be careful to filter out the additional real solutions of equation (2.5a) 
(those of the form (2.6)). This can be done by splitting the tan " * functions into continuous 
and discontinuous parts in the following manner: 

/„ , 4 , . , , A _ , s in /c -ReA H , s inA:-ReAH 2 tan"1 — (sin k - A„) = tan l — 7 - — - — - ^ + tan"1 —7-—-—r^ 
V UK M7com. £//4 + ImA„ (7/4-ImA^ 

1 ( t / ^ + I m A ^ + t s in f r -ReA, ) 2 

2i (Lr/4 - Im A,)2 + (sin * - Re A,)2 K Wa) 

, 4 „ f;rsgn(sinfc - Re A„) if llm A„ I > C//4 
(2tan~1-(smk-Xll))aiKOBt.= \ * " " (2.166) 

U to if |Im A |̂ < C//4. 
This splitting is to be used for Â s with | |Im A |̂ - U/4\ > l/N. If | |Im AJ - £//4| <? l/N, 
then for a sin kj or a sin kh one term in (2.16a) is +jt/2 or - jr/2 with an accuracy of 
0 ( | lm Â I - C//4), but this is not true for the corresponding k of (2.6). Thus for a AM with 
|ImAM| ~ [//4 we take 

Re(2 tan"1 4£T1(sin it - A„))cont. = tan"12[/_1(sin k - Re AM) (2.16c) 

(2 tan - 1 4£/_1(sin fc - A/J))diSCOnt. = i;rsgn(sin /: - Re A^). (2.16d) 
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With these definitions equation (2.5a) can be written in the form 

Nkm = 2jd'm - S (2 tan"1 - (sin km - A)) 
all* \ U /com. 

- 2 (2 tan"1 - (sin A;W - A„)) n. 17) 
n \ C /cont. v ' 

where 
1 1 

//(*) = lm _ ; 2 sgn(sin fc/(A) - Re A;,) - - 2 sgn(sin A,w - Re A„). (2.18) 
Z ^ Z |ImA„|>(7/4 

The set of possible non-equivalent real solutions of equation (2.17) coincide (with an 
exponential accuracy) with those real solutions of (2.5a) which are not of the form (2.6) 
i.e. with the union of the kj and kh sets. Taking Ne - 2L different integers (or half odd 
integers) between + N/2 and -N/2 we find that the density of the A;s is 

^=2^-^?6 ( f c-^+li(^ s i^-A )^?^ s i^-A)) <2-19> 
where 

*w-s(2"»-,H-- (2'20) 
Using p{k) to evaluate the sum over A, in (2.9) we have 

1 p / o ^ c o W ^ 1 2 
2JTJ0 cosh(cut//4) N v 

1 V 1 1 V 2 ^ r 2 2 n 

M / T cosh[(A - sin kh)2q/U\ 2nN if (U/4)2 + (A - A;)2 V ' J 

where /o(o>) is the zeroth-order Bessel function and we have used the notation 

, , . 1 r<°exp(-ft)f//4)cos (ox , 
/ i W = - — ^ — ' ' dco. (2.22) 
^ v ' 2jtJ0 cosh(a)U/4) K ' 

In turn, by means of cr(A) the coefficient of the cos A: term in p(k) of (2.19) can be 
evaluated yielding 

p(A) = f ( l + cos k I" ^P(-^4)/o(a>)co s (a> sinfe) X 
KV ' 2JT V Jo cosh(<wC//4) / 

- — 2 {<5(A - kh) + cos A/i(sin A - sin kh)} 

cos A y 1 
M7 T cosh[(sin A - A„)2Vf/] 

\2 COS A y (C//4)2 

2riV « (U/4)2 + (sin A - A „ ) r ^ ^ 

In a similar way the Ays and the real A^ can be eliminated from (2.15) and (2.5a) 
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respectively with the results 

Jo cosh(coU/4) CD i,' ' ' 

+ 2 2 tan_1{tanh[(A^ - sin kh)n/U]} + 2 2 tan" 1 — (A, - A;) (2.24) 
h \i U 

KW„' 

Here 

and 

Jo(co) exp(-coU/4)sm(cosmkh) dco\ „ T„ v „ , . , • . ^ 
i . / Fr/xN ~ = 2jrI* + 2 Fx (sin fcA - sin **.) 

cosh((wt//4) co ] w 
+ 2 2 tan_1{tanh[(sin fcA - A„)JT/£/]} - 2 2 t a n - 1 — (sin fcA - A„). (2.25) 

i) n U 

r. / N - T exp(-o>I//4) sin(cux) da> 
F l W ~ J0 cosh(a>[//4) ~̂ 7 ( 2"26) 

i* = /*- -2sgn(s infc*-ReA;) . (2.27) 
I \x 

As a result, for the complete description of an eigenstate, the system of equations 
(2.24)-(2.25) together with the equations (2.5c) and (2.12) should be solved. This 
system may seem more complicated in structure than the original system of Lieb-Wu 
equations, but it contains the parameters of the excitations only. 

2.4. Energy and momentum 

To calculate the energy, according to (2.3a) one has to sum up the contributions of the 
complex ks (which are given by (2.7a)-(2.7ft)) and those of the kts. These latter can be 
done using the density (2.23). As a result one obtains 

E = E0 + 2 ec{kh) + LU + 2 es{kn). (2.28) 
h ?) 

Here EQ is the ground-state energy of N electrons 

= _2N f- crt-»U/4)M»)«») d(o 
Jo co cosh(coU/4) 

(/i(co) being the first-order Bessel function) and ec{kh) and ^(A,) are given by 

*(*) = 2 cos k + 2 f°° ^ ( - ^ ^ y c o ^ s i n / c ) 
Jo a) cosh(<oi//4) 

' Ji(co) cos(eoA) 
f(A) = 2 f" 

Jo cocosh(a>£//4) d(o. (2.31) 

The momentum should be calculated according to (2.8). Following carefully the 
redefinitions of the / a n d SF parameters ((2.13 (2.18) (2.27)) one obtains that 
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Figure 1. The energy-momentum dispersion for the spin excitations of a half-filled chain. 
The individual curves are labelled by the value of U. 

which, summing up equations (2.5c), (2.12), (2.24) and (2.25), yields 

p = JZ(N - Ne/2 + 1) - ^pc(kh) + 2/?s(A,) mod 2JT 

where 

and 

Pdk) =k+\ 
' exp(-caU/4)Jo((o) sin(<osin k) dco 

0<Pl 

cosh(coU/4) 

K ' ' Jo cosh((oU/4) co 

CO 

< n 

(2.33) 

(2.34) 

(2.35) 

Figure 2. The variation of max e, (p) as a function oft/. 
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The ec(pc) dispersion is given in II. The es(ps) dispersion for different values of U is 
given in figure 1. The variation of max es(p) as a function of i/is displayed in figure 2. 

3. Spin excitations 

3.1. Spin excitations of a half-filled chain 

For a complete description of an eigenstate the system (2.5c), (2.12), (2.24) and 
(2.25) should be solved. If the band is macroscopically half-filled (H <£ N), and both 
the charge and spin parts are near to their ground states (N - Ne + 2L <t N and 
Ne - 2M + 2(mi + 2m2) <S N) this sytem becomes simpler: since the only terms on the 
RHS of equations (2.24) and (2.25) comparable with N are the2jzJ'n and 2nFh ones, the 
kv and kh variables can be treated as free parameters (up to an error of the order of 1/N) 
and only equations (2.5c) and (2.12) should be solved for the A„s and A^s. These 
variables, however, do not appear explicitly in the energy-momentum dispersion, thus 
to give an account for the excitations it is sufficient to establish what kind of solutions 
exist for equations (2.5c) and (2.12) for a given kh and A, set. The charge excitations 
(those connected with the khs and A„s) were described in II, here we will discuss the spin 
excitations in more detail. 

It is convenient to classify the excited states according to the number of A,s (in 
analogy with a Heisenberg chain). The number of A,s is always even if Ne is even and it 
is always odd if Ne is odd. For the sake of simplicity, we will suppose that Ne is even. 

The simplest excitations are those with two A ŝ. In one class of them there is no A ,̂, 
these are the Sz = 1 triplet excitations analysed by Choy and Young (1982). In the other 
class there is one real Â  (fixed by the values of the A ŝ: k'^ = (Am + km )/2 ) corresponding 
to a two-string. These states are singlets. The energy-momentum dispersion for the two 
classes are the same: 

E& = es(pm) + es(pm). (3.1) 

The excitations with four A,s can be grouped into four classes. In the first there is no 
kjt, the states of this class are of Sz = 2, S2 = 6. In the second class there is one real k'^ 
which (at fixed A,s), according to the three different choices for/£, assume three different 
values. These states are triplets with one two-string. In the third class there are two real 
A/,s which are fixed by the A ŝ. In the fourth class, depending on the actual values of the 
A,s, there are either two realA^s or there is a complex conjugate pair of A ŝ. The states 
of the third class are singlets with two two-strings, while the states of the fourth class are 
singlets either with two two-strings (real A/,s) or with one quartet (if |Im A'M| < £7/4; 
A% =k'm ± iU/4, k%=k'ftl ± W/A = k'^ ± iU/A: these complex A configurations can be 
regarded as two two-strings with complex conjugate centres) or singlets with one complex 
kf, pair for which |Im A |̂ > U/2 (if |Im A |̂ > U/A ). The energy-momentum dispersion 
for all the four classes are 

4 

£<4> = 2 e,{p„). (3.2) 

Taking into account that the degeneracy of S2 = 6 states is fivefold while the 52 = 2 states 
are threefold degenerate, the (3.2) dispersion is sixteenfold degenerate. 
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Introducing more and more A ŝ, the situation becomes less and less transparent. In 
any case, however, for %tC3t <t Afe) A,s we expect different solutions for equation (2.12) 
in which the number of Â s is m as much as 

3K\ / 9 

ml \m • 

These solutions should correspond to Sz = "3t/2-m and S2 = (2C/2 - m)(3£/2 -
m + 1) states and the degeneracy of the 

£<,*>= 2 «r,(p„) (3.3) 
i - i 

dispersion should be 2*. 

J.2. On the spin excitations of a less-than-half-filled band 

The fact that the energy (2.31) and the momentum (2.35) depend on the A,,s, i.e. on the 
parameters of the spin excitations only, would suggest at first sight that the spin excita
tions of a half-filled and a non-half-filled band are the same. This is, however, not true: 
although the structure of the spin excitations is the same, the energy and the momentum 
carried by the Ans are different from those given by (2.31) and (2.35). 

The ground state of Ne(N — Ne ~ Ne) electrons is characterised by a certain kh set. 
Introducing a small number of spin excitations, although the connection between the 
A,s and /,,s, due to the khs, will be different from that in the half-filled case, it remains 
true that the A,,s are free parameters (up to an error of the order of 1/N, equation (2.24)). 
Thus the possible A,, and AJ, sets characteristic for the spin excitations are the same for 
both the half-filled and the non-half-filled band. 

The form of the energy-momentum dispersion implicitly depends on the band filling: 
the introduction of a small number of Â s changes each element of the set of khs in the 
ground state by a term which is linear in 2 tan-1{tanh[(sin kh - A,,)JT/U]} and is of the 
order of 1/iV (equation (2.25)). If the number of khs is of the order of N these modifi
cations sum up to a finite value both in the energy and in the momentum. This is most 
apparently seen in the momentum: in the ground state according to equation (2.25): 

-2/>c(**) = - ^ ? f i (3.4a) 
h J\ h 

while in a state with spin excitations also present 

- 2/>C(*A) = - ^ 2 rh - - S 2 tan-1{tanh[(sin kh - A,)Vf/]}. (3.46) 
h IS h TV h,ri 

Here in the second term the ground-state values can be taken for the &/,s ahd this term 
can be joined to the contribution of the A ŝ. Thus the momentum to be attributed to a 
single spin excitation is 

PsiK) - T ; 2 tan-1{tanh[(sin kh - X^n/U]}. (3.5) 
TV h 

This momentum changes by a value of (NjN) jr while kv runs from + oo to - oo. 
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The change in the energy can not be expressed explicitly but it is not 
it has the form: 

8E = 2 — Seh tan-1{tanh[sin kh - Xn)n/U]}. 
h,r\N 

This implies that the energy of the spin part is of the form 

Es = ZJ £J (A,,) 
i 

also for a general band filling but £j'is different from (2.31). 

4. Summary and comments 

In the present work we have studied the spin excitations of a Hubbard chain. The basis 
of our study has been the system of equations (2.5a)-(2.5c) which was derived from the 
original Lieb-Wu equations in an earlier work and in which the charge and spin degrees 
of freedom were separated. 

We have reduced our basic equations by eliminating the larger part of the parameter 
set to obtain a system (equations (2.5c), (2.12), (2.24), (2.25)) which couples the 
parameters corresponding to the excitations only. In this way we have established that 
the spin excitations are characterised by the set of holes in the real A distribution and by 
a set of auxiliary variables, this latter representing the set of complex As. We have also 
found that both the energy and the momentum of the excited states depend explicitly on 
the positions of the holes in the real A distribution only, but they do not depend on the 
actual values of the complex As. 

The lowest energy spin excitations have been described in more detail: the energy-
momentum dispersion, the number of possible states and the structures of the parameters 
describing these states have been given for the cases when the number of holes is two 
and four. We have also established that the structures of the spin excitations of a half-
filled and a less-than-half-filled band are the same, the only difference between the two 
cases is in the functional form of the energy-momentum dispersion. 

Finally we note that similarly to the Heisenberg model, in the low-energy excitations 
in the A set the maximal length of strings is two. Instead of the longer strings, quartets 
(two two-string with complex conjugate centres for which the modulus of the imaginary 
parts is not larger than U/4) and wide pairs (complex conjugate A pairs with 
|Im A| > U/2) appear. All these have been expected on the basis of the analogy between 
the spin part of the Hubbard model and the isotropic Heisenberg chain. As far as the 
complex As are concerned, in the low-energy excited states of a macroscopically half-
filled band they have no special configurations in the complex A plane. This is due to the 
fact that in these states the number of fc/,s is small and equation (2.5c) determines the 
A set directly (but not a set of auxiliary variables of the type (2.1 la)-(2.11 b) like equation 
(2.12)). In a macroscopically less-than-half-filled band {H ~ N) the complex-A configur
ations are of strictly string form. 
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Abstract. The structure and energy of the eigenstates of a ID Hubbard Hamiltonian with 
negative U is studied. Solutions for the Lieb-Wu equations corresponding to U < 0 are 
constructed from those for U > 0. It is found that the ground state is continuous, while the 
ground-state energy, although continuous, is not analytic at the [7 = 0 point. In the excited 
states, in contrast to the U > 0 case, both kinds of excitation are connected with the charge 
distribution and the state of the spins does not affect the energy explicitly. It is also found 
that the distribution of parameters can change discontinuously in the excited states as U 
crosses zero. 

1. Introduction 

The aim of the present work is to study the ground state and the low-energy excited 
states of a Hubbard chain with on-site attraction, i.e. we intend to study the eigenvalues 
and eigenstates of the Hamiltonian 

N N 

H(U) = -^/
,Z(ctaCi+1a+cUiaCia) + u'Zni^nil (N + l=l) (1.1) 
i = 1 a i=\ 

for the case when U < 0. In (1.1) c,^(c,0) creates (destroys) an electron with spin a at the 
site i and nia =CiaCio . 

The problem for U > 0 has been already worked out to a large extent. Lieb and Wu 
(1968) reduced the diagonalisation of (1.1) to the solution of the coupled system of 
equations 

M 4 
Nki = 2nli- 2 2tan_1 — (sin A:, - ka) l=l,...,Ne (1.2a) 

a= 1 U 

Nt 4 M 2 
2 2 t a n _ 1 —(Aa.-sinfc,) = 2JF3V+ 2 2 t an _ 1 - (A a . - Xa.) 
1=1 U a' = l U 

a=l,...,M (1.2b) 

where Ne and M are the numbers of electrons and the number of down-spin electrons 
respectively and the quantum numbers // and 3^ are appropriately chosen integers or 
half odd-integers (21, = M(mod 2), 2&a = Ne - M + 1 (mod 2)). They also calculated 

© 1983 The Institute of Physics 6593 
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the solution of (1.2a)-(1.2b) corresponding to the ground state of a half-filled chain (Ne 

= N). Based on this work, Coll (1974) calculated the spin-wave-type and one-particle-
type excitations for a general band filling. Recently Choy and Young (1982) re-examined 
the triplet spin wave excitations and the present author studied the excitations connected 
with the charge (Woynarovich 1982a, b) and spin (Woynarovich 1983) degrees of free
dom of a macroscopically half-filled band. The T — 0 magnetic properties have been 
worked out by Takahashi (1969) and Shiba (1972). 

Studying the U < 0 case does not, in principle, require a complete new calculation 
since there are many possibilities of reducing the problem with U < 0 to the one with U 
> 0 : 

(i) As is well known, by introducing holes instead of the up-spin electrons H(-U) 
can be transformed into H{U) (the form of this transformation will be used later), and 
thus the spectrum of H(U < 0) can be given without performing new calculations. The 
problem of this method is, however, that in this way one does not have the wavef unction 
in an explicit form and it is hard to find the meaning of the parameters appearing in the 
spectrum. 

(ii) Another possibility, which also allows one to construct the wavefunction, is 
provided by the facts that equations (1.2a)-(1.26) are also the secular equations for 
U< 0 and if the sets {&/} and {Xa} satisfy equations (1.2a)-(1.2Z>) for U then the sets 
{ki + JV} and {-A} give a solution for —U. To take advantage of these facts, however, 
one should know the solutions of (1.2a)-(1.2b) corresponding to high-energy states: 
owing to the shifting of all momenta by n, the energy, which is 

£ = - 2 2 cos A: (1.3) 

changes its sign, and the low-energy solutions for U > 0 generate high-energy solutions 
for U < 0 and vice versa. A tool for overcoming these difficulties is provided by the 
complementary properties of the solutions for equations (1.2a)-(1.26) (Woynarovich 
1982b, referred to as II hereafter). From a solution of equations (1.2a)-(1.2b) another 
solution can be constructed trivially, and if one of these solutions corresponds to a 
low-energy state, then the other describes a high-energy one. This way it is possible to 
connect, through the complementary solutions and the property of the Lieb-Wu equa
tions mentioned in point (ii), the low-energy solutions for U> 0 with those for U< 0. 
Actually, it will turn out that in this way from a solution for U < 0 one obtains the same 
solution for U < 0 as one would obtain applying the transformation mentioned in point 

(0-
In the present paper we would like to describe the ground state and excitations for 

U < 0. In the first part (§ 2) we rederive the properties of the complementary solutions 
for the Lieb-Wu equations in an exact way and give the connection between the low-
energy states for U > 0 and U < 0. The second part of the paper (§ 3) is devoted to 
describing the ground state and excited states, and analysing their continuity at U = 0. 

2. Relation between the eigenstates in the repulsive and attractive cases 

2.1. Complementary solutions for equations (1.2a)-(1.2b) 

The complementary properties of the solutions for the Lieb-Wu equations has been 
derived earlier (in II) by means of techniques permittable only in the N-* °° limit. Now 
we will show that the complementary solutions exist for any finite N. 
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Let us first consider equation (1.2a). At a fixed Aaset this is an equation with a single 
unknown. For the different choices of / it has N + 2M non-equivalent solutions. This is 
easily seen, if we write equation (1.2A) in a polynomial form: 

P(x) = 0 (2.1a) 

where P(x) is a polynomial of the order of N + 2M 
M M 

P(x) =xNH [x2 - 2i( Aa + iU/4)x - 1] - I I [x2 - 2i( A „ - iU/fyc - 1] (2. lb) 

of the variable 

x = exp(ifc). (2-lc) 

Ne of the N + 2M roots for equation (2. la) constitutes the set of x$ (kfi). Let us 
denote the rest of the roots by xg(kg). Now we show that if {&/} and {A a] satisfy equations 
(1.2a)-(1.2ft), then {kg} and {ka} is also a solution (for which the 22?oS are also equal to 
Nt - M + 1 (mod 2)). Since the kgs satisfy equation (2.1a), and thus equation (1.2a), 
we have to show that they also satisfy equation (1.2ft). To do this we write equation 
(1.26) in the form 

v 1, x2 - 2i(Aa - \U/A)xl - 1 , v 1, ka - ka. - i£//2 . , „ . 
Z,-\x\—r—-yr2-—.',' — - = Jt+ Z r l r i T 5 — r 2 n-^-(mod 2;r) (2.2) 
/ l xj - 2i(ka + \U/4)x, - 1 * i ka- ka- + iU/2 v ' y ' 

and evaluate the sum on the LHS by means of residues: 

y l xj-2i(Xa-iU/4)xi-l 
T i n xj - 2i(ka + it//4)jt, - 1 

v U l . * 2 - 2 i ( A a - i £ / / 4 ) ; t - l / d , n / \ ,„ „ x 
= ?2* tlln x2 - 2i(A. + it//4), - 1 feln P ^ ) ^ ^ 

where the contour Q encircles the root */. Deforming the contour in (2.3a) to encircle 
the roots xg and the cuts of the integrand we have 

y l xj - 2i(ka - \U/A)xi - 1 _ y 1 x2
g-2i(ka-iU/4)xs-l 

i \ n ^ - 2 i ( A a + i t / / 4 > ; - 1 ~ g i nx2
g-2i(ka+iU/4)xg-l 

+ ? 2 In * * " * * ' " 1 ^ 1 + ^ ( m o d 2w). (2.3ft) 
i * A a - Aa. + iU/4 K ' v ' 

Comparing (2.2) and (2.3ft) and rewriting the logarithmic terms in tan"1 form we have 

2 2 t a n _ 1 — (ka- sinjy = 2jzWa+ ^ 2 t a n - 1 — (ka- Aa) (2.4) 
g U a' U 

where the 2¥fNe - M+ l(mod 2). ^ 
Let us denote the eigenstate of H(U) corresponding to {&/} and {ka} by \ki, ka, U) 

and the state built up according to the same prescription but using {kg} and {ka} by 
\kg, ka, U). The \kg, ka, U) describes a state ofNe = N + 2M - Ne electrons, and this 
state is an eigenstate of H (U) if the {kg}, {ka} satisfy a system analogous to (1.2a)-(l. 2ft). 
According to the former paragraphs, this is true if 23v = JVe - M + l(mod 2) i.e. if N 
is even (otherwise \kg,ka, U) fails to satisfy periodic boundary conditions). In the 
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following we will take N to be even, thus both \ki,ka,U) and | kg, A „., U) are eigenstates 
of the chain, and these are the states which we call complementary ones. 

Using the properties of the P(x) polynomial it is easy to see that the momenta of the 
complementary states complete each other to JT(N + M + l)(mod lit) while the energies 
add up to MU. For the sum of the momenta 

+ p = ^kl + ^2kg = lln( II A p+p = Z,k, +Z,kg = -\n 11 x . (2.5a) 
/ g I \ all roots ) v ' 

The product of all the roots of P(x) is ( - \)2M+N times the zeroth-order term in P{x) i.e. 

p+p = -An((-l)2M+N(-l)M+1) = jr(N + M+l)(mod2jt). (2.5b) 

The sum of the energies is 

E + E = - Z/2cos ki~ 2 2 cos kg = - 2 x- 2 - . (2.6a) 
; g all roots all roots X 

These terms can be expressed by the coefficients of the (N + 2M - l)th-order and 
first-order terms in P(x) yielding 

E + E = MU. (2.6b) 

2.2. Construction of complementary solutions 

If we want to describe a state \kh ka, U) which is near to the ground state of a half-
filled band, we may suppose that the A distribution deviates from that of the ground 
state only by small terms. If this is so, as can be checked, 2M of the possible 
JV + 2M ^-values satisfying equation (1.2a) are of the form 

k% = sin~1(Aa,+iC//4)± l m ^ > 0 , 

sign(cos(Re k^)) = -sign(C//4 + Im ka) (2.1a) 

(if | | lmA a | -£ / /4 | > l/Afor|ReAa | > l ) ,o r 

K = sin" \Re ka) k~ == sin" :(Re A „ + i U/2) 

-lmka>0 cos(Reka)<0 k^ — k«" k^ = n-k^ (2.7b) 

( i f | I m A a - U/4\^l/N, |Re A„| < 1 and A„. = A^). 
These equalities are correct up to terms exponentially small in N. (Note that (2.1b) 

is the refinement of (2.7a) for the case when |lm A| — U/4 and (2.7a) would yield two 
equal real ks for A and A *.) These 2M ks, although in special cases some of them can turn 
out to be real (see (2.1b)), we will call complex ones. The rest of the ks are always real, 
and in the large-/V limit, they are disturbed continuously in the region (-JT, JT). These 
ks will be referred to as real ones. 

In II it has been shown that if {&/} is such that if a ka (ka) is an element of it then 
ka (ka) is also in {&/}, then equations (1.2b) can be replaced by the equations 

S 2 t a n _ 1 — (kp-sinkj) = 2n^+ E 2 t a n _ 1 — (kp- kp) (2.8) 
i U P' U 

and 4 2 
E 2 t a n - 1 - ( A m - sinkh) = 2jt&'m + *Z2tan~1-(km - Am.). (2-9) 
h U m' (J 
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Here kj denote the real elements of {£;} and the A^ are those elements in {Xa} which are 
not associated with complex kfi. The kh refer to the real elements of {kg} and the Ams are 
those A^ which are connected with the complex kp (are not connected with complex 
kgs). 2&'p = Ne-(M-L)-l (mod 2) and 29'„ = Ne-L-l (mod 2), L being the 
number of complex k pairs in {&/}. Now this equation can be obtained easily from 
equations (1.2b) and (2.4) respectively, by using the equality 

4 4 
2tan _ 1 —(A-sinfc+) + 2 tan - 1 —(A - sinfc+) 

2 
= 2tan"1 — (A-A*) + ;rsign(Re(A - A*)) X±Xa (2.10) 

which is valid up to an exponentially small error. 
Thus to find a solution for equations {l.2a)-(\.2b) one has to solve the system (2.8) 

and (2.9) simultaneously with the equation 

Nkm = 2nlm - 2 2 t a n - 1 —(sinfcy(A) - kp) - ^ 2 tan"1 —(sinfc;W - Am). (2.11) 
P U m U 

This system is simpler than equations (1. 2a)-( 1. 2b), since here the kj s and kh s are always 
real (being the N solutions which are not of the form (2.7a)-(2.7fr)), and once it is 
solved, it provides an easy way to construct the complementary solutions: for one 

{k,} = {kj\k*} {Aa} = {A^,;Am} (2.12a) 

and for the other 

{kg} = {kh;k$} {Xa} = {Xp;Am}. (2.12ft) 

2.3. Relation between the structures of the complementary states 

It is apparent that the variable sets {kj, Xp} and {kh, Am} change role in the complementary 
states. As can be seen in the U-* °° limiting form of the wavefunction (see II) this means 
that in the complementary states the charge and spin degrees of freedom are inter
changed. To be more quantative let us consider the unitary transformation 

£/i = exp(i5i) 

N/2 

Si = (JT/2) 2 [ (c „ t -cJv-«+ i t ) (c« t -C j v_ „ + 1 T ) 
n = l 

+ (C„J, + icN-n + n)(Cni ~ lCN-n + ll) 

+ (2n - l)(cnlCn\, +cN-n + liCN-„ + n)]. (2.13) 

With this transformation 

f71c„T(/r1 = c^_„+1T ulcnlUi1 = (-i)N+n+1
CN-n+li (2-14) 

i.e. this transformation reflects the chain through its centre, and changes the up-spin 
electrons to holes. Applying this transformation to H{U) and/5 we find that 

N N 

UxH{U)U^ = U^nii-H{U) tiiptiil= JI(N + 1) +Jt^Lnn-p (2.15) 
i = i i = i 
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thus 

HiUJUi'lk,, Xa, U) = EU^\kh Xa, U) (2.16a) 

and 

pJJTl\k,, Xa; U)=pUT1\kh Xa, U). (2.16b) 

This suggests that f/f1 \kt,Xa, U) and |kg, Xa, U) are identical or degenerate. As can be 
checked Uil\ki, Xa, U) and \kg, Xa, U) coincide in the U-* °° limit; thus, supposing 
continuity in U, we may conclude that 

\kg,Xa,U) = Ui1\k,,Xa,U). (2.17) 

Now the charge-spin symmetry between the complementary states can be understood 
on the basis of (2.17): if at any site there is an up- or down-spin electron, U\ changes it 
to an empty or doubly occupied site respectively, while if a site is empty or doubly 
occupied, U\ puts to this site an up-spin electron or taking off the up-spin electron creates 
an uncompensated down-spin electron. Thus U\ is a transformation between the charge 
and spin degrees of freedom. 

In connection with (2.17) we would like to note the following also: the fact that the 
RHS is an eigenstate of H(U), is a symmetry of H(U), and, if the solutions of the Lieb-
Wu equations yield a complete set, £/rx|&/, Xa, U) should also be of the Bethe ansatz 
form. What is interesting is that \ki, Xa, U) and f/f1 \ki, Xa, U) have the same A set and 
for the momenta they share the roots of the same equation. 

2.4. The low-energy states of (1.1) with negative U 

According to (ii) of the Introduction, solutions for equations (1.2a)-(1.2b) with -U, 
corresponding to low-energy states, can be obtained from the high-energy solutions for 
these equations with U, simply by the transformation k-* k + n\ X—* —X. Thus, if {ki\ 
and {Aa) is a low-energy solution for U, its complementary solution {£g} and {Aa) is a 
high-energy one, and {kg + n), {—Xa} is a low-energy solution for equations (1.2a)-
(1.26) with - U. The energy and momentum belonging to this state (according to (2.5b) 
and (2.6b)) are 

H(-U)\kg+ n;-Xa;-U)= I - Z,2cos(kg+ n) j \kg+ JT; -Xa; -U) 

= (-MU+E)\kg+Jt;-Xa;-U) (2.18a) 

p\kg + n; -Xa; -U)= (2 (kg + n)\ \kg+ n; -Xa; -U) 

= ((M + 1 - Ne)n - p) \k8 + n; -Xa; - U) (2.186) 

where E andp are the energy and momentum denned by 

H(U)\kl;Xa;U) = E\kl;Xa;U) (2.19a) 

p\k,;Xa;U)=p\kr,Xa;U). (2.19b) 

It is not hard to see that applying the operator which transforms H(-U) into H(U) 
leads to the same result. If U2 is the trasnformation which shifts all momenta by n, 

N 

U2 = exp(i52) ^2 = JT X X mhma (2.20) 
m = l a 



A Hubbard chain with on-site attraction 6599 

then 
N 

U2H(-U)U2
l = -H(U) U2pU2^ = JiX^nia + p (2.21) 

i' = l a 

which combined with (2.15) yields 
N 

{UlU2)H(-U){UlU2)-' = H{U)-uJ,hi[ 
; = i 

(ti\O2)p0iO2)-
1 = 7i- J T 2 « , T ~P- (2.22) 

i = l 

On the other hand, applying U2
J on both sides of (2.17) and using the explicit form of 

the wavefunction (see equations (2.5-10) of Woynarovich 1982a) one has 

(UlU2)-
1\kl;Xa;U) = \kg + Jt;-Xa;-U). (2.23) 

Equations (2.22) and (2.23) also yield equations (2.18a)-(2.186). We note, however, 
that equation (2.22) in itself would only give the spectrum, and (2.23) gives the explicit 
form of the corresponding eigenstates. 

3. The low-energy states of a macroscopically half-filled band as functions of U 

3.1. The ground state 

The ground state of a half-filled band (Ne = AO with positive t/has already been described 
by Lieb and Wu (1968). In this state the number of down spins is M = N/2, and all the 
kis and Xas are real and their distributions are described by the densities 

1 / , , f*exp(-<wl//4) T/ s , . , , , \ „ « 
PoW = r - 1 + cos fc , , TJ ., Jo(a>) cos(w sin k) do (3.1) 

in \ Jo cosh{coU/4) / 

v ' 2JC)Q cosh(cof//4) v / 

The ground-state energy per site is 

with/0(ft>) and/i(w) being the zeroth-and first-order Bessel functions. 
It is clear that the ground state of a half-filled band with negative f/is to be constructed 

(by the transformation (fAL^)-1) from the ground state for U' = | U\ (this is not true if 
the band is not half filled). Thus, the A set again consists of M - N/2 real A s distributed 
according to (3.2) ( ob( a>) is an even function), but since all of the N real roots of equation 
(1.2d) belong to the ground state with U', the k set of its complementary solution consists 
of the 2M = N complex roots 

k% = sin_1(Aa + it//4) ±Im k$ > 0. (3.4) 

Thus the k set of the ground state for U < 0 is {k% +n}. 
As far as the structure of the ground state is concerned, we know that for £/-» + oo 

all sites are singly occupied, and the spins are distributed in the same way as they are 
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distributed in the ground state of a Heisenberg chain. In the opposite limit ([/—»-<»), 
according to the spin-charge symmetry discussed in § 2.3, half of the sites are empty and 
the other half are doubly occupied, and the distribution of empty and doubly occupied 
sites is the same as the distribution of up and down spins in the ground state of a 
Heisenberg chain. The transition between these two opposite limits is continuous: to 
see this we have to note that for £/—» +0 all k%become real, and since 

ijr^w |A|<1
 (35) 

0 |A |>1 

lim ob(A) = -

the density of the limiting values of the k% s is 

pi lim Jk±(A)) = n-lSt(\k\ - n/2). 
Vf/^+o / 

Hence, the distribution of the momenta in the U—> - 0 limit is 

7t~l St{n/2 - \k\) 

that is, exactly the same as the U—> +0 limit of (3.1). 
The ground-state energy for U < 0, according to (2.19ft), is 

E0(U<0) = E^\U\)-\U\/2. 

(3.6) 

(3.7) 

(3-8) 

It is not hard to establish that both E0 and dE0/dU are continuous functions of U even 
at U = 0, but the calculation of the higher derivatives of E0 at U = 0 encounters diffi
culties (after the second differentiation with respect to U in E0 of (3.3), the order of 
integration and the l/-» 0 limit can not be changed). What we were able to establish is 

Hi 

I"2 

-4 

/ S 

^—""' 

(a) 

Figure 1. (a) The ground-state energy £o, and (b) its derivative with respect to V as a function 
oft/. 
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that E0 as a function of U must have a singularity at U = 0 since it can not be expanded 
into a convergent power series around this point. The form we have found (valid for 
both positive and negative U) is 

M 

E0(U) = -(4/jt) + (C//4) + 2 an(U/4)2" + 6(£/2M+1) 
n = l 

2 ^ - 1 V (-1)* r(| + ft)r(f+(2n-!-£)) 
°» = 8 T ^ T T «2» + 1) 2, ,,(2„ - ! - fc)I r ( i _ fc)r(f _ ( 2 n _ x _ , ) } • (3"9> 

(Here £ is Riemann's ^-function and <3(U2m+l) denotes terms for which €(U2M+1) 
jy-(2M+i) j s bounded in a finite interval containing £/ = 0). Since the coefficients a„ 
generate a divergent series for all finite values of U, the expansion (3.9) is an asymptotic 
one. E0 is plotted as a function of t/in figure 1(a). 

It is also worth examining the first derivative of E0 with respect to U (figure 1(b)). 
This quantity gives the expectation value of h,: j n\ \, i.e. the number of doubly occupied 
sites divided by the chain length in the ground state. For U-* ±°°, dE0/dU approaches 
its limiting values (0 and \ respectively) as 1/C/2 and for small values of Uit is linear. The 
transition between the different regions takes place through inflections situated at about 
| U\ = 2,1. What is interesting is that this is about the same as the value where the gap 
starts to grow drastically with U. 

3.2. The excited states 

Excitations connected with the charge degrees of freedom can be obtained by: (i) 
allowing for Ne to be smaller than N, Ne = N - H (introducing 'holes'); and (ii) intro
ducing complex wavenumbers instead of a number of real ones. Spin excitations can be 
introduced by: (iii) taking M < Ne/2 (this leads to a total magnetisation Sz = Ne/2 -
M > 0); and (iv) allowing for some of the A s being complex. As has been shown (II and 
Woynarovich 1983) to find solutions of equations (1.2a)-(1.2b) corresponding to such 
excited states the equation 

M + 22 

2 2tan-1-(A;-A,) = 2ff^+S2tan-1-(A;-A%.) (3.10) 
r\ U p' U 

together with equation (2.9) should be solved. Here the Â s are the holes in the distri
bution of real A^s, their number is 9€ + 2SE, where "3t = Ne- 2M = 252, and ££ is the 
number of auxiliary variablesX'̂  which generate the complex elements of {A }̂ (denoted 
by A,): 

A±=A;±i[//4 if | ImA;|<t/ /4 

X„ = A; + (it//4)sign(Im A;) if |Im AJ,| > U/A. 

In equation (2.9) for the number of kh s H + 2L should be taken, where L is the number 
of complex k pairs (the number of Ams). In as much as both H + 2L and W + 2!£ are 
non-macroscopic (much less than N) the positions of the holes in the distribution of real 
AJSS(A^) and the holes in the kj distribution (kh) are free parameters. Once equations 
(2.9) and (3.10) are solved, the distribution of the kjS and real A ŝ can be given by 

H + 2L 

p(k) = p0{k) - (1/AO 2 ( 8(k - kh) + cosit/(sinA: - sinA:,,)) 
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, X + 22 

cos A: -^ 
NU i cosh((smk-X„)2jt/U) 

L 
cos k y (U/4)2 

+ 2JTN m 2 (U/4)2 + (sink - Am)2 ( } 

and 

a(A) = CTO(A) - (1/AO 2 ( < 5 ( A - A „ ) - / ( A - A „ ) ) 

9C + 22 

1 

H + 2L 

with 

- ^ - 2 
NU h cosh((A-sin&*)2n/£/) 

_J_y2 (a/*) ,313. 
2 ; r Jv f Z(C//4)2 + ( A - A ^ ) 2 KiAi) 

exp(-a , [ / /4)cos(aK) d w 

cosh(a>£//4) 
1 f" 

The energy and momentum of the corresponding state is 
H + 2L 3C + 22 

E = NE0(U)+ 2 £C(^) + LC/+ 2 e,(A„) (3.15) 

H + 2Z. 3f + 2i£ 

2 p = tz(N/2 + H/2 + 1) - 2 p c ( ^ ) + 2 ps(A„) (3.16) 

with 

„ f°° exp(-coC//4)/1(co) cos(«sin fc) , 
£< = 2 C O S * + 2 J 0 J c o s h ( c W d " 

+ f- exP(-a,L//4)/o(e»)sin(a>sin/c) ^ 

Ji(co) cos(coA) 

Jo 
•dco 

Jo (ucosh(a;C//4) 

/„ f°° M°>) sin(wA) j .„ .„. 
ps = n/2- ,., ;7 / /xdt». (3.18) F ' Jo a> cosh(wf//4) v ' 

In the C/ < 0 eigenstates, generated by the above U > 0 excited states, the {kh + n) 
is the set of real k and the set of complex k is given by{A:jf +JI) . The - A m s and -A^s 
describe (in the U-* - ° ° limit) the distribution of the uncompensated spins (the spins 
of electrons with real wavenumbers) and the distribution of empty and doubly occupied 
sites respectively. The total number of electrons is N - %£ while the magnetisation is \H. 
The energy and momentum of such a state are easily obtained from (2.18a)-(2.18b) and 
(3.15)-(3.16): 

H + 2L "X + 22 

E = NE0(U<0) + \U\(Vt + H + 2L)/2+ 2 £<(**)+ 2 eJA,) (3.19) 
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H + 2L W + 2X 

p = jt(N-W/2)+ 2 Pcikh)- 2 Ps(A„). (3.20) 
h r) 

Formally this dispersion is (apart from the signs of the momenta) the same as that for 
U > 0 (3.15)—(3.16), but in principle it has a very different feature: while for U > 0 £c 

and £s could be attributed to the excitations in the charge and spin degrees of freedom, 
respectively, for U < 0 both ec and % are connected with the charge distribution. % is 
due to the deviation of the distribution of empty and doubly occupied sites (i.e. the 
bound pairs) from that of the ground state, while £c can be regarded as the kinetic energy 
of the non-bounded electrons (those which occupy their sites alone). The details of the 
state of uncompensated spins do not appear explicitly in (3.19): since in the ground state 
all electrons are bound, i.e. all spins are compensated, to excite the spin degrees of 
freedom, some of the bound pairs must be broken up, and (3.18) contains only the 
energy needed for the pair-breaking and the 'kinetic' energy of the resulting 'free' 
particles. 

3.3. On the continuity of the excited states atU = 0 

The U > 0 and U < 0 excited states described by the same sets of A, and kh in general are 
not the continuation of each other through U = 0 (for Ne + N/2 + M even the numbers 
of particles are not the same in the two states). Finding the continuation of one state 
from U > 0 to U < 0 encounters difficulties, and the possibility that the parameter sets 
(k, A distribution) is not continuous at U = 0 can not be ruled out. 

Let us consider the most simple triplet states of N/2 electrons (H = 0, 3£ = 2, L = 
<£ = 0). The [/-> +0 limit of the A distribution is 

lim o0-(iN)(6(X-Xm) + d(k-Xm)) (3.21) 

u-»+o 

and the same limit of the excitation energy is 

2sin(p(A,1)) + 2sin(p(AIB)). (3.22) 
The U < 0 continuation of such a state should be sought among those states which are 
obtained through (2.23) from the U> 0 states with H' = 2;3T = 0. If in these states L' 
and ££' are 0, the limit of the energy is 

4 cos(p(khi)/2) + 4 cos(p(kh)/2). (3.23) 

Since (3.32) and (3.33) do not overlap, the energy can be continuous through U = 0 
only if !£' is at least one for U < 0. If so, for U < 0, some of the A ŝ are complex. Even 
in the simplest possible case (i.e. if we suppose that ££' = 1, then Â , =( Xm + km)/2 and 
the corresponding Â  became real as U—* 0) the limit of the A distribution is 

lim ob - (1/2A0(6(A - Am) + 6(A - A,2)) + (1/JV)<KA - A',) 

-(l/2JV)(o(A - sin km) + <5(A - sin A:„2)) (3.24) 

which is different from (3.21) and it is easy to see that looking for the U < 0 continuation, 
for a state with H = 0 , ^ = 2,C/>0in more complicated form (L' > 0, T > 1) leads to 
larger differences in the limiting A distributions. Thus we conclude, that even if we 
suppose that the energy of a given state is continuous as Ucrosses zero, the parameter 
sets describing the state are not necessarily (in the present example are not) continuous. 
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We would like to note that the above conclusion concerns only the behaviour of the 
parameters in the N—><*> limit: for any finite N all parameters are expected to be 
continuous (equations (1.2a)-(1.2b)) in the form (2.1) and (2.2) are continuous in U) 
but in the regime \U\< 1/JVthe structure of the parameter sets can change significantly 
(a relatively small change, shifting all A in different directions by 1/N, may result in the 
discontinuities demonstrated above). 

4. Summary 

In the present work we have studied the ground state and the low-energy excited states 
of a Hubbard chain with an on-site attraction. The main tool of this study has been the 
complementary property of the solutions for the Lieb-Wu equations. 

In the first part we rederived the properties of the complementary states in an exact 
way, and we have found that the existence of the complementary solutions of the 
Lieb-Wu equations is a reflection of the particle-hole symmetry in the Hubbard model. 
Since, to obtain the complementary states, only the up-spin particles should be replaced 
by holes, in the complementary states the spin distribution and charge distribution 
change role. Using the complementary solutions we have described how to find the 
low-energy solutions of the Lieb-Wu equations if U < 0. 

We have given the ground state and ground-state energy for U < 0. We have found 
that the parameters describing the ground state are continuous, and the ground-state 
energy is continuous, although not an analytic function of U at U = 0. 

The structure and excitation energy of the low-lying states is also given. We have 
found that although the energy-momentum dispersion of the excitations is the same as 
that for U > 0, it has a different meaning. In contrast to the U > 0 case, where the two 
kinds of excitations could be connected with the charge and spin degrees of freedom, for 
U < 0 both kinds of excitations are connected with the charge distribution: one with the 
distribution of the bound pairs, the other with the motion of the 'free' electrons. The 
state of the uncompensated spins does not affect the energy explicitly. 

Finally, we have demonstrated in a simple example that by taking the N—* °° limit 
first and then the U—* 0 limit, the parameter sets describing the excited states are not 
continuous for all states in U = 0. 
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We present a new method to solve the nested Bethe Ansatz equations for the one-
dimensional Hubbard model. First the "spin problem" is solved completely by using 
inversion/functional relations and an equivalence to the eight-vertex model. Secondly 
we solve the "electronic problem", i.e. we determine the ground state of the half-filled 
band and all finite energy excitations relative to this case. Apart from the calculation 
of the energy bands we also derive basic equations for the characteristic parameters 
which determine the excited states. 

I. Introduction 

The one-dimensional Hubbard model is one of the 
few exactly solvable models for spin-£ fermions. Lieb 
and Wu [1] showed that the Hamiltonian can be 
diagonalized by a Bethe Ansatz. They derived a 
nested set of nonlinear equations, also called nested 
Bethe Ansatz equations, which determine the eigen
states and the corresponding energies and momenta. 
From these equations they calculated the ground 
state of the system for the half-filled band case. Subse
quently various types of excitations relative to this 
ground state have been investigated. Spin excitations 
were considered in [2^4], while charge excitations 
which involve complex wave numbers have been stud
ied in some detail by Woynarovich [5, 6]. 

Common to all these investigations is that the two 
nested sets of Bethe Ansatz equations are solved si
multaneously by setting up integral equations for den
sity distributions of the Bethe Ansatz variables. This 
procedure is very cumbersome, as it also requires 
some preknowledge of the location of the variables, 
and makes the classification of the excited states a 
difficult problem. 

In this paper we present a new method for the 
solution of the Bethe Ansatz equations by splitting 

* Dedicated to Professor W. Brenig on the occasion of his 60th 
birthday 
** Work performed within the research program of the Sonderfor-
schungsbereich 341, Koln-Aachen-Julich 

them up into two problems which can be treated sepa
rately. In Sect. II the basic equations for the two prob
lems which we call "spin problem" and "electronic 
problem", respectively, are derived. The "spin prob
lem" is then completely solved in Sect. Ill for all ener
gy eigenstates in the thermodynamic limit. Here we 
make essentially use of inversion/functional relations 
for characteristic excitation functions. Similar inver
sion relations have been successfully used recently in 
solving corresponding Bethe Ansatz equations for the 
eight-vertex model [7, 8]. In fact we shall show very 
briefly in Sect. HI and Appendix A that the present 
problem is a special case of the eight-vertex model 
problem. 

After having solved the "spin problem" it turns 
out that the remaining "electronic problem" can be 
treated easily and systematically for the ground state 
of the half-filled band and for all finite energy excita
tions relative to this case. In Sect. IV we treat subse
quently first spin excitations characterized by gapless 
spin-wave dispersions, secondly so-called "hole exci
tations", and thirdly "charge excitations". Apart from 
recovering all results on excitations known so far we 
obtain a complete classification of the eigenstates. The 
states are characterized by sets of parameters vx and 
2a which satisfy basic equations derived in Appendices 
A and B. Section V contains a summary. 

We believe that our new method to solve Bethe 
Ansatz equations will also prove useful for other mod
els which can be solved by the Bethe Ansatz. 
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II. Model and Bethe Ansatz equations 

The simplest model describing hopping of electrons 
on a one-dimensional chain plus repulsion of two 
electrons on the same site due to the Coulomb inter
action is the Hubbard model with Hamiltonian 

j = l 17= ± 1 3=1 

(1) 

ct" (CJ») c r e a t e s (annihilates) an electron with spin a 
on site; and nja = CjaCja is the corresponding number 
operator. As usual periodic boundary conditions are 
imposed, cL+la = cla, where L is the number of sites. 
t is the hopping matrix element and U is the interac
tion energy of two electrons occupying the same site. 
Because of various symmetries [1] of the Hamiltonian 
(1) it is sufficient to consider the model for t= + 1, 
U ^ 0, and to restrict the number of electrons JV and 
the number of electrons with down spin JV_, which 
are both conserved, to 

N<L, JV_< 
JV 

(2) 

For convenience we assume JV to be even in the fol
lowing. 

In 1968 Lieb and Wu [1] could explicitly con
struct the eigenstates of (1) under the restriction (2) 
via a double Bethe Ansatz (BA). Their method traces 
back to [9] and is described in detail in [10, 11]. 
The integrability of a many particle system like (1) 
requires that two particles interact only on the same 
site and that their scattering matrix satisfies the fac
torization equation (or Yang-Baxter-, Star-Triangle-
Equation). 

In each fundamental region characterized by a 
fixed sequence of the particle coordinates, i^xQl 

^ ...^XQK^L where Q is a permutation of 
{1, ...,JV}, a superposition of plane waves with JV 
"wave numbers" kj is a suitable ansatz for the wave 
function 

\j/(xl,a1; ...;xN,<rN) 

= £ AP.QK,..., aN) expI( £ kPj xQ\. 
p \ j = i / 

(3) 

The sum is over all permutations P of { 1 , . . . , JV} and 
APQ are functions of the spin variables. If no two 

particle coordinates are equal the ansatz (3) satisfies 
H\ij/y = E\tl/y with energy and momentum 

E=-2 Y, cosfej, 
J=I 

N 

3=1 

(4) 

The requirement that H\Wy = E\\ji)> is also satisfied 
on the boundaries of each fundamental region (where 
at least two particles scatter) imposes a set of linear 
equations for the coefficients APQ. Other equations 
arise from the symmetry property of fermions as well 
as from the periodic boundary conditions. This re
quires the diagonalization of an appropriate operator 
T acting on the functions AtI: 

T-Aj,,-- ki. A ' Al,l- (5) 

Actually T is related to the transfer matrix of an inho-
mogeneous six-vertex model. This problem again can 
be solved by a suitable Bethe Ansatz with JV_ "mo
ments" vx which leads to the equations* 

* p , - i g i n f c j - l / / 4 _ _ jL: p . - „ , - u / 2 

} m \ v„-i sin kj + J7/4 } = \ va-v, + U/2' 

« = 1, ...,JV_. (6a) 

Equating the corresponding eigenvalue of T with elLkj 

(see (5)) yields 

j = = i i ismkj-va-U/4 

}=\ismkj-va+U/4' J=U . JV. (6b) 

The two sets of Eqs. (6) constitute the nested Bethe 
Ansatz equations for the one-dimensional Hubbard 
model. It is generally assumed that all possible solu
tions of these equations provide the complete solution 
of the energy eigenvalue problem. 

In the following we cite (6a) as the 'spin problem' 
because it arises from the diagonalization of the oper
ator T acting on the space of all spins. We regard 
(6 a) as a set of equations determining the variables 
ya as functions of the "wave functions" kj. Equations 
(6b) will be called the 'electronic problem' because 
it will be used to determine the "wave numbers" kj 
once the "spin variables" i>a are known (as functions 
ofthefcj). 

Usually (see [1]) the logarithmic form of (6) is 
used to derive a set of coupled integral equations 
which determines the densities p(k), a(v) of the wave 
numbers kj, va, respectively, in the thermodynamic 

* Our parameters u, are related to the parameters A, in [1] by 
D„ = iyia 
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limit. We shall not follow this procedure here. Instead 
we consider an alternative version of Eqs. (6) which 
will turn out to be more convenient. First we intro
duce the functions 

$(v)= n (u~ i s m kj), 

N-

q(v)=Y\ (v-Vn), 

(7 a) 

(7b) 

depending on the complex variable v. The BA equa
tions then read 

* k+-

qlismkj--) 

q[ismkj+—j 

) 4 ° + T ) 

*("•--?) 4 " ~ T ) 

(8 a) 

(8 b) 

The key step now is to observe that (8 b) guarantees 
the analyticity of a function A(v) which is defined 
- ad hoc - by * 

A(v)q(v) = $[v-—\q(v+— 

+ ^[v+-Aq(v—^ (9) 

This is clear because A (v) is the ratio of two analytic 
functions where the zeros vp of the denominator are 
cancelled by zeros of the numerator (see (8 b)). 

Inserting v = i sin kj+— into (9) and observing 

that <P(i sin fc,) = 0, (8 a) can be written as 

^ i s i n k j + —J 
piLkj z 

<P (isinki + ! ) 
(10) 

The problem can now be stated in principal as-to 
find all analytic functions A (v) which satisfy (9) (" spin 
problem") and then to solve (10) for all variables kj 
("electronic problem"). Energy and momentum final
ly can be calculated from (4). We remark that (7), 
(9) are the eigenvalue equations for an inhomoge-

* Here A(v) seems only to be an auxiliary function. But indeed 
it has the meaning of an eigenvalue of the vertex model transfer 
matrix T mentioned before 

neous six-vertex model which can be treated very 
much in the same manner as the homogeneous six-
vertex model (or the eight-vertex model [7, 8, 12]). 
The program is carried out in the following sections 
by using the method of inversion/functional relations 
[7, 8]. 

III. Solution of the spin problem 

In this section we solve the "spin problem", i.e. we 
determine the functions A (v) in terms of a given distri
bution of wave numbers kj. There are two possibilities 
to do this. The first possibility is to solve the above 
equations directly which we shall do in the following. 
The second possibility is to view the present problem 
as a particular scaling limit of the corresponding 
problem for the transfer matrix eigenvalues of the 
eight-vertex model. This second method relies heavily 
on results obtained in [7, 8] and is briefly discussed 
in Appendix A. 

We shall solve the "spin problem" under the con
dition that the number of electrons AT is a macroscop
ic parameter, i.e N/L tends to a non-zero value in 
the thermodynamic limit, and that the magnetization 
M = N/2—N- remains finite in this limit. For the dis
tribution of the wave numbers kj we require that most 
of them should be real while a finite number of them 
may be complex. As we shall see this includes the 
energy ground state for each N as well as all states 
of finite energy excitations. 

With a view to (7 a) it is easily seen that <plv+—I 

= 0(e~N) for v out of some neighbourhood of v = —— 

where 0(e~N) means a quantity which decreases ex
ponentially with JV -> oo. Then it follows from (9) that 
we have 

+^)^-^o<-"» 
(11) 

Obviously (11) gives rise to the following fundamental 
inversion relation for A(v): 

A(v)A(v+^y<p(v-^<p(v + ^Pj-(l+0(e-N)). 

(12) 

This functional equation for all possible /((^-func
tions has been derived for some neighbourhood of 
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v= ——. We remark, but we omit the detailed proof, 
4 U 

that the validity can be extended to the region —— 
<Re(o)<0. 2 

Now we are going to solve (12) for all possible 
/l(t))-functions. This has the advantage that we need 
not determine the distribution of the variables va 

which characterize the "spin states" q(v) (7b) before
hand as the right hand side of (12) obviously depends 
only on the universal function <P(v), but is indepen
dent of q(v). The investigation of the "spin states" 
q(v) can thus be postponed, this problem will be con
sidered in Appendix A. 

There are various solutions of (12) corresponding 
to the ground state with magnetization M = 0 and 
to the excited states with arbitrary M. We first look 
for the largest function A0(v), which will turn out later 
on to correspond to the ground state and thus has 
M = 0, and then for the next-largest functions. From 
the investigation of the corresponding problem for 
the eight-vertex model [7, 8] it is reasonable to as
sume that the function A0(v) is analytic and non-zero 

in the "physical regime" —— <Re(t>)< —. The fun
damental relation (12) together with this property and 
the asymptotic behaviour obtained from (9), A(V)^LVN 

for v-> ±ioo, uniquely determines A0(v) up to a sign. 
The final result is 

A,(t>) = (-lf'2 EI z(f-isinU (13) 

where 

U 
^M'+tJ^-f) 
<HV)>= n 

An-2-Av/U An + Av/U 

n
l
=\An-2 + Av/U An-Av/U 

(14) 

We omit the detailed derivation, but mention that 
(12) can be checked easily and that the ultimate sign 
(—l)w/2 has been determined from the limit (7->oo. 
/ N 
(Remark that N-=— for M 

The next-largest functions A(v) are characterized 
by the excitation function l(v) in the thermodynamic 
limit 

-a) 

l(v)-.= \im 
A(v) 

t->a> A0(v) 
(15) 

which satisfies the functional equation (see (12)) 

*(lOj(l> + y ) = l . (16) 

In contrast to A0(v) the excitation function exhibits 

zeros in the physical regime —— <Re(u)<—-. Rela

tion (16) together with the asymptotic behaviour 

lim l(v) = 1 now implies 
v -» ± i oo 

l(v)=±f\tanf^(v-@Jj (17) 

where the &„ are the zeros of /(«). A detailed deriva
tion of the result (17) has been given in [7] and in 
particular in Sect. (IV.3) of [13]. As in [13] v turns 
out td be an even number and each ®„ is a parameter 
which can take arbitrary imaginary values. From 

lim l(v)=l we determine the sign in (17). This 

yields the final result 

J(o) = ( - l ) " 2 r i t a n ( £ ( P - i 0 « ) ) , (18) 

where now all 6a =—0a are real parameters. 

Equations (13) and (18) constitute the solution of 
the "spin problem". One should observe that A0(v) 
explicitly depends on the wave numbers ks whereas 
l(v) is completely independent of them. We have al
ready remarked that the magnetization of the state 
corresponding to A0(v) is M = 0 . In Appendix A we 
investigate the degeneracies of all functions l(v) (18) 
and classify the excitations. It will turn out that M 
is not determined uniquely but can take the values 
M = 0,1, ..., v/2. The case v = 2 for instance comprises 
one singlet and three triplet bands (which are degener
ate). As a further result a classification scheme for 
higher v is presented. 

IV. The electronic problem 

In the last section we have determined the functions 
A(v) in dependence of the wave numbers kj. These 
functions enter (10) from which finally all wave 
numbers have to be calculated. First we insert A0 

from (13) into (10) and we get the set of equations 

=(_ i)"/2. r j 0(i sin kj-i sin k,). (19) 
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Secondly we use (15) in order to take into account 
also spin excitations. In this case we obtain the set 
of equations 

' = (-!> , " /2 . Y\ </>(i sin kj—i sin kt) / ( i sin &,-+-— J. 

(20) 

In the following we first derive an integral equation 
for the density of wave numbers kj in the ground 
state of the Hubbard chain with JV electrons. In case 
of the "half filled" band, i.e. N = L, the integral equa
tion can be solved trivially. Then we treat various 
excitations above the ground state: spin excitations, 
hole excitations where N<L, and double occupa
tions. 

a. The ground state 

The ground state is characterized by JV real wave 
numbers kj centered around the origin [1]. Their ac
tual positions are determined by (19). We therefore 
introduce the density p(k) of wave numbers in the 
interval [ — K, K] which is filled densely in the ther
modynamic limit 

P(kj)-
1 

L(kj+1-kj) 
(21) 

K (-K) is the maximum (minimum) value and the 
kj are assumed to increase with increasing index. Tak
ing the logarithm of (19) we obtain 

iLkj = 2ni-Ij+ ]T ln</>(i sin kj — i sin/c,) (22) 

where the Ij are consecutive integers (half-odd in-
JV 

tegers) for — even (odd). By taking the difference for 

consecutive kJ+ j and kj, this leads to an integral equa
tion for p(k) in the thermodynamic limit L->oo 

2np(k) + cosk \ (In </>)'(i sin k—i sin £)p(£)d£= 1. 

~K (23) 

This equation is easily solved in the case K = n where 
we denote the density by p0(k)- First the substitution 
k^m — k shows that 

Po(k) + Po(x-k)=-. 
7E 

(24) 

A first consequence of this equation is j p0(k)dk = l 
— K 

(p is 27r-periodic!). According to the definition (21) 
this implies that K = n corresponds to N = L, i.e. the 
case of the half-filled band. Splitting the integration 

interval into two parts —, — and —, -— and sub-
2 2J [2 2 J 

stituting in the second one « - m - k we immediately 
find 

1 cos k %l2 

Po(fe) = ^ = - r I (ln</>)'(isinfc-isin£)d£. (25) 
- 7 T / 2 

Using (14) explicitly this can be rewritten as [14] 

1 cos/c f J0((o) cos(m sink) , 
Po(k)=^~+—— J - ^ , ... ;da> 

Zn % £ 1+exp ffl 
(26) 

where J0 denotes the Bessel function. Equation (26) 
is the well-known result of [1]. 

The corresponding ground state energy follows 
from (4) and is given by 

K 

£ 0 = — 2 L \ p0(k) cos kdk 
— jr 

LU 
K-D" 

u/2 Ji/2 

J I 
- JI/2 - n/2 

An cos2 k 

= - 4 L j 

nU\2 

-^-1 + (sin k — sin k)2 

Jo(a)Ji(co) 

dk~dk 

• -(1+-»(¥)) 
dm (27) 

in terms of Bessel functions. For illustration E0 is 
plotted in Fig. 1 as a function of the interaction ener-

&3 

4 6 8 
U 

Fig. 1. Groundstate energy £ 0 per electron as function of the interac
tion U according to (27) 
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gy U. The corresponding momentum P0 (4) of the 
ground state is 0 or % depending on whether N/2 
is odd or even. 

b. Spin excitations 

Now we determine the "spin excitations" above the 
ground state of the half filled band, N = L. Instead 
of (19) we have to consider (20). As for the ground 
state we look for purely real wave numbers, now de
noted by fcj. Proceeding as before we take the loga
rithm of (20) and obtain 

iLfcj=2n'\-tj+ Y_, ln<£(i sin £7— i sink",) 

The excitation energy is from (4) 

E — E0= — 2 £ (cos£j—cosfej) = 2 f ff(fe)sinfedfe 
j = i - i 

_ 2 "2 

K 

"l2 I U\ 
J (ln/)'lisinfc+—)cos2kdfc. 

The latter result follows by partial integration. Using 
(18) explicitly we can write 

+ lnJ ( i s i n ^ + ^ ) - (28) 

We assume that the difference between the wave 
numbers £, and k} of the (low-lying) excited states 

and the ground state, respectively, is 01 — I.'. 
ing the quantities ^ ' 

, Introduc-

Xlkj-Utj-kj), 

ff(k) =x(k)-Po(k), 
(29) 

choosing Ij = Ij, and subtracting (22) from (28) we 
obtain the following integral equation for a(k) 

2na(k) + j (In<jj)'(i sink—i sink")cos£o-(fc")dk~ 

-1 In I l sin k + (isinfe + ^ j . 

The substitution k^n — k shows that 

o(k) = o(n — k). 

(30) 

(3D 

The integral in (30) is again reduced to the interval 

——^k"^— and is easily seen to vanish by using (31). 

Thus the solution of (30) is simply given by 

a (k)=——r In /1 i sin k4-—-
27ri \ 4 J 

nisink+—1. (32) 

E-E0= £ %(#a) 
a = l 

with 
4 '12 

«S(0)'=77 I 
cos2k 

dk. 
U -"2 c o s h ( ^ ( s i n f c - 0 ) | 

The corresponding momentum (4) is 

P - P 0 = £ ( £ , - * ; ) = f (T(k)dk 

1 */2 / U\ 
= — f In/ isinfc + — dk. 

™ -lit \ 4 / 
Again we can write 

P-P0= t ps(e«) 

with 

n 2 *12 r In V 
Ps(6)'=^+- f arctan tanh[—(sink-9)) 

2 n -nil L \U /. 

(33 a) 

(33 b) 

(34a) 

dk. 

(34b) 

These are the results found in [2, 3] after lengthy 
calculations. In Fig. 2 the dispersion (33 a), (34 a) is 

I 

P-P0 
Fig. 2. Excitation energy (33a) as function of total momentum (34a) 
for the v = 2 spin-wave continuum with interaction [7 = 2 
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Fig. 3. The spin-wave dispersion es (33 b) as function of momentum 
ps (34 b) for different values of U. This corresponds to the lower 
curve in Fig. 2 

shown for [7 = 2 and v = 2. In Fig. 3 the dispersion 
(33 b), (34b) which corresponds to one half of the 
lower curve in Fig. 2 is plotted for different values 
of U. The strictly positive values of £s rigorously prove 
that the ground state is characterized by A0(v) and 
that the excited states are determined from the next-
largest functions A(v). 

The spin excitations (33), (34) may be viewed as 
spin waves above the singlet ground state. Their 
number is always even as v = 2,4, . . . and the corre
sponding spin wave bands are 2v-fold degenerate as 
we argue in Appendix A. For each v they comprise 
various multiplets of the magnetization M. 

c. Hole excitations 

Here we calculate energy and momentum of another 
type of excitations from the ground state of the half 
filled band (N = L). We allow for a slightly different 
number of particles, i.e. H>=L—N may be positive, 
but finite in the thermodynamic limit. To treat these 
hole excitations (apart from spin excitations) we must 
solve (19) for JV real wave numbers, now denoted 
by £,, 

L-H L-H 

e i lJJ = ( - l ) 2 . f ] <£(isin/c,-isin£,)- (35) 

where 

/»(»)•= I l P M - i a*kM-1- (37) 

Comparing with (20) we see that the present problem 
is almost the same as the problem of spin excitations 
treated before, the difference being only that the spin 
excitation function / in (20) is replaced by the hole 
excitation function /,, (37). Thus we can proceed as 
in b). The distribution a(k) (29), (32) is now given 
by 

oh(k)=~-^\nlh(isink). 
2%\ 

(38) 

Energy and momentum are again derived from (4): 

L-H L 

E — E0= — 2 ]T cos^j + 2 ^ cosfej-
J = I j = i 

L H 

= — 2 £ (cos fcj—cos kj) + 2 Y, cos fcj 

9 t /2 H 

= - } (ln/ft)'(isinfe)cos2fcdfc + 2 £ cosfcj 
-iz/2 

= 1 (39 a) 

., U The hole dispersion Eh including a shift — to render 
\ ^ 2 

eh positive! is given by 

32 H2 

2 
n = 

n cos2 k 

n U - n / 2 n = l 

(2 »Hv 
•dk 

(sin k — sin kh) I 

+ 2 cos it*-!-—. 

The corresponding total momentum is 

(39b) 

This equation has L solutions for the N = L—H vari
ables Hj. Denoting also the "empty" hole positions 
k\, ..., kH by R (thus we have a set of L wave numbers 
(cj) (35) can be rewritten as 

= (-•i)L/2- n w 
sin tcj—i sin £,) lh(\ sin £y), 

u=i J 
(36) 

P-P0= I £,- I fc,.= !(£,-*,)- I *» 
j=l j=l j = l a = l 

1 t /2 H 

= - ^ f lnlh(ismk)dk- X fcJ 
7 1 1 - 1 / 2 « = 1 

= IP*(fcJ)-H-T, (40 a) 
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Fig. 4. The hole dispersion -eh (39 b) as function of momentum ph 

(40b) for different values of U. It exhibits a gap at ph = n 

such that 
JI/2 oo 

Ph{k*)~-k*-- j S ( - i ) -

' ( * 
arctan [ —yr(sin k—sin kh) I d k. (40b) 

Inverting ph(k
h) and inserting kh(p) into eh(k

h) yields 
the dispersion sh(p). This can only be done numeri
cally, the result for different values of U is represented 
in Fig. 4. In contrast to the spin wave dispersion the 
hole dispersion (39b) exhibits a gap eh(n)>0 at kh = n. 

In [1] Lieb and Wu introduced the two chemical 
potentials /i± 

H+-.=E0(L+1)-E0(L), 

H--.=E0(L)-E0(L-l), 
(41) 

where E0(N) is the ground state energy for N parti
cles. They concluded from the nonvanishing differ
ence, n+ — n_ >0, that the ground state of the half-
filled band, N = L, is insulating for all U>0 (with 
a Mott transition at 17 = 0). This is easily rederived 
from the above results. First it follows from the sym
metries of the Hamiltonian (1) mentioned before that 
H+ = U — IJ._ [1]. fi_ is the energy gain by creating 

one hole, i.e. /x_ =——mmeh(kh)=——s,,(n). Thus we 

obtain n+—^i_=2eh(n) which is strictly positive for 
[7>0. 

By calculating the hole excitations (39 a) we have 
obtained the energy eigenvalues of those states which 
differ from the half-filled band case by adding a finite 
number H of holes to the system. To derive the full 
spectrum of energies which differ from the ground 
state energy of the half-filled band by a finite amount 
in the thermodynamic limit we only need to consider 

one more class of excitations, namely solutions of the 
basic equations (19), (20) where some wave numbers 
kj take on complex values. This problem is considered 
in the following. 

d. Excitations with double occupation 

States with complex wave numbers kj have been in
vestigated in [5, 6]. Their energies scale with E — E0 

~U, l/->oo, relative to the ground state energy of 
the half-filled band which means that we have real 
(rather than virtual) double occupations of individual 
lattice sites in these states. This explains the terminol
ogy. 

In Appendix B we derive the conditions under 
which complex wave numbers are allowed in (19), (20). 
We consider JX pairs fcf, . . . ,k* which satisfy (B.l), 
i.e. * 

i sin k * = A. + 
U 

(42) 

To treat the Eqs. (19) for the remaining L — 2fi real 
wave numbers tcj we then proceed as follows. Starting 
from the half-filled band case, N = L, we first create 
2\i holes k\, •••,kh

2ll and then we add the complex 
pairs (thus N = L is unchanged). As in the treatment 
of hole excitations before we count the "empty" hole 
positions twice, once among the set of real £,- and 
then separately by "subtraction". Equation (19) can 
then be written as 

-iLt, = (" - 1)L/2 • f f l 4> (i sin Kj - i sin £,)] • I"(i sin fy, 

(43) 

where the "excitation" function Tis now 

^[Hi^- i r in^p.f i fZJ^. (44) 

The first product describes the holes (compare with 
(37)), the second product describes the complex pairs 
and we have used (B.3) to simplify the expression. 

Comparing with (20) or (36) we see that again 
we can proceed as in b) to calculate energy and mo
mentum. With a view to (39 a) we obtain 

2 "/2 

E-E0 = - f (lnI)'(isinfc)cos2kd/c 
n -mi 

2*1 V 

+ 2 £ cos kj - 2 X (cos k„+ + cos k~). (45) 
a = l a = l 
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Then using the "hole results" (39a) and (39b) to treat 
the first part of (44) in (45) and using (B.2) to treat 
the second product of (44) in (45) we easily derive 
the final result 

E-E0= £ £„(/#. (46) 

Similarly the momentum is 

P-Po= I PM). (47) 
s t = l 

The quantities eh and ph have been defined in (39 b), 
U 

(40b). As obviously E ^ ~ — for [/->oo, the energy dif
ference E — E0 ~ \i U (n = 1,2, ...) proves that real dou
ble occupations of lattice sites characterize the eigen
states which was mentioned before. In contrast to 
the spin excitations of IV.b) which are gapless, the 
present excitation bands are separated from the 
ground state by the gaps 2nsh(n) (ji= 1,2, . . .). They 
may also be viewed as charge excitations because the 
states may carry a charge current. Finally we remark 
that the excitations always involve an even number 
of " s-particles " (2 ft = 2,4, ...). 

V. Summary 

In the foregoing we have presented a new method 
to solve the one-dimensional Hubbard model. Start
ing point is the set of Bethe Ansatz equations (6) con
sisting of the "spin problem" (6a) and the "electronic 
problem" (6b). By introducing the characteristic A-
functions (9) and investigating their analytic proper
ties we could determine all possible /(-functions in 
the thermodynamic limit by using the fundamental 
inversion relations (12), (16). The complete solution 
of the "spin problem" in Sect. Ill is contained in Eqs. 
(13) and (18). The remaining "electronic problem" 
(Sect. IV) is described by (19), (20) for the ground 
state and excitations. 

The method of solution then proceeds by first de
termining the ground state of the half filled band, 
which serves as reference state. We remark that the 
calculation of the ground state distribution p0(k) (25) 
is trivial in our method and energy (27) and momen
tum are obtained easily. However, the main advan
tage of our new method is then shown in the treat
ment of all possible excitations of finite energy in the 
thermodynamic limit. There are three types of excita
tions (and this exhausts all possibilities), namely spin 
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excitations (IV.b)), hole excitations (IV.c)), and excita
tions with double occupation (IV.d)) which are char
acterized by complex wave numbers. 

The spin excitations are spin-wave "particles" 
which occur in even numbers v, the corresponding 
bands are 2v-fold degenerate (Appendix A) and the 
spin wave dispersion (33 b) is gapless. 

The hole excitations treated in IV.c) refer to states 
where the particle numbers JV differ from the half-
filled band case, N = L, by an arbitrary number H 
of holes which, however, must remain finite for L->oo. 
The characteristic energies and momenta of these ex
citations are given by (39) and (40). 

The excitations with double occupation are treat
ed in IV.d) and are characterized by complex wave 
numbers fc* which must satisfy the conditions (42) 
(also Appendix B). The corresponding (charged) "par
ticles" have the dispersion (39 b), (40 b) and contribute 
to energy and momentum with expressions (46), (47). 
The number of 8,,-particles again is even in all excita
tions, but their energy-bands are separated from the 
ground state by a finite gap - in contrast to the spin 
waves. 

We have seen by the way of solution in Sect. IV 
that the different excitations contribute independently 
to the total energy and total momentum. This means 
now that the most general excitation is a simple su
perposition of independent contributions of the form 

E-E0= i £s(0j+ x EM)+ Y " [**(*a-yl. 
ct=l ot=l » = 2 ) i + l L Z J 

(48) 

p-p0= ips(flj+1?*(**)+ " i " Uw-fl , 
a = l a = l « = 2 / i + l L Z \ 

(49) 

with v spin waves (from (33), (34)), 2ju "charged parti
cles" (from (46), (47)) which correspond to n pairs 
of complex fc*, and additional H — 2/i holes (from 
(39), (40)). The v parameters 0a and the H{^2fi) pa
rameters fcj are free continuous variables in the ther
modynamic limit, they give rise to the energy-bands. 

Although the excitations contribute to (48), (49) 
by a simple superposition, this does not mean that 
the corresponding energy eigenstate is likewise a sim
ple product state. The eigenstates depend and are 
classified by the moments vx (occurring in (7 b)) and 
the A„ parameters (42) which characterize the complex 
pairs fc* (B.l). The vx parameters (or their associated 
string parameters x«) are all correlated to one another 
and satisfy the set of Eqs. (A.2). The A„ parameters 
also are all correlated to one another and satisfy the 
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set of Eqs. (B.5). This shows that the one-dimensional 
Hubbard model describes a strongly correlated Fermi 
system. 

Appendix A 

We give a brief survey over the distributions of 
^-parameters corresponding to the functions A0(v) 
(13) and l{v) (18). A0(v) is characterized by N/2 purely 
imaginary numbers vx. For classifying the spin excita
tions l(v) there are two possibilities. First one could 
try to determine the ^-distributions, or the "spin 
states" q(v), directly from the basic equations (7) and 
(9). Secondly one can use the intimate relationship 
to an (inhomogeneous) eight-vertex model. We choose 
the latter way since we have studied the eight-vertex 
model in some detail in [7, 8] and several results 
can be taken over immediately. 

To set up the relationship one has to perform a 
certain scaling limit r\ -»• 0 of some relations used in 

U 
[8]. Substituting v-*rjv, ya->^t)a, and X-*rj — in the 

Eqs. (1), (2), (4) of [8] and letting r\ -»0 one recovers 
the Eqs. (7) and (9) of the present paper. [In addition 
the function $(v) should be defined in (2) of [8] as 
a product of h(...) functions (Eq. (3) of [8]) rather 
than a simple power. This slight alteration, however, 
does not change the analysis and results of [8].] The 
scaling procedure actually recovers (7), (9) with N-
= N/2, the general case iV_ ̂  N/2 will be treated be
low. 

In order to calculate excited states we looked in 
[7, 8] for ^distributions similar to the state corre
sponding to A0(v). While most ua remain on the 
imaginary axis, a finite number of them is allowed 
to take on "complex" values. In the strip 
- 2 X S Re (v) ̂  2 X (here - [7/2 ̂  Re (v) ^ 17/2) all com
plex vx must occur pairwise as so-called 2-strings with 
a fixed distance 2X (here (7/2). Outside this strip there 
is no such requirement and complex va occur as sin
gles or 1-strings. 

As in [8] it is convenient to introduce string vari
ables Xx by defining the complex vjs of a 2-string 
or a 1-string, respectively, as 

U I U U \ 
Z ± j ( - - ^ R e ( Z ) ^ - , 2-string), 

x+-u <u ; Re Of), 1 -str ing , (A.1) 

U I U 
x~~4 I R e ( z ) ^ - ^ > 1 - s t r i n g 

which one obtains from the appropriate definitions 
in [8] by scaling x^VX- The string variables are de
termined by the set of Eqs. (55) of [8]. Performing 
the scaling limit (also setting 0-^>r\0 in (55) of [8]) 
then yields the following set of equations 

n x.-e ,+ i//4 
J7/4' Aa" -er 

-n X*-Xi,+ U/2 
Xz-Xp-U/2' 

(A.2) 

where vt = —. From this set of vx equations, one for 

each string variable x*> one can determine the posi
tions Xx m terms of given excitation parameters 0 = id 
occurring in (17), (18). 

This is our final result as long as JV_ = N/2. The 
number of solutions of (A.2) for fixed v( = 2,4, ...) 
and given 0,- determines the degeneracy of the excita
tions. However, in this way we only find the singlet 

N 
excitations, as M = 0 for 7V_ =—. 

2 
To treat triplets, quintets etc. one must allow for 

JV_ < N/2. In this case the appropriate relationship 
to an eight-vertex model is set up by scaling only 
N- variables va in (1), (2), (4) of [8] with r\ whereas 
v2—iV/2 —JV_ complex v^'s are kept finite. Of course, 
also the corresponding v2 string variables x remain 
finite in the scaling limit and it is easily seen from 
(55) of [8] that they do not contribute to the right 
hand side of (A.2) after scaling. Thus (A.2) is also 

v 
valid for the case vt=—— v2 (v2>0). 

The magnetization of the state corresponding to 
a particular distribution of vx is just M = v2. This state 
has maximum weight of the associated multiplet [15] 
which therefore has dimension 2v2 + 1 . This together 
with (A.2) enables one to classify the excitations. For 
instance v = 2 allows (v!,v2) to be (0, 1) or (1, 0). In 
the first case (A.2) admits one solution / = (01 + 02)/2 
whereas in the second case there are no equations 
to be satisfied. Hence there is 1 singlet and 1 triplet 
for v = 2. If v = 4 three possible choices for (v1;v2) ex
ist: (2, 0), (1, 1), (0, 2). In the first case (A.2) admits 
2 solutions, in the second case 3 solutions, whereas 
in the last case there are no equations. Therefore one 
has 2 singlets, 3 triplets, and 1 quintet for v = 4. In 
both cases the degeneracy of the excitation function 
l(v) is 2V, 4 for v = 2 and 16 for v = 4. As in [8] we 
conjecture that the result is true for general v. 

Appendix B 

We investigate the conditions under which complex 
wave numbers kj are allowed in the basic equations 
(19), (20). We consider one particular fc+ with positive 
imaginary part and the corresponding equation (19), 
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elLk* = Since the left hand side vanishes exponen
tially for L->oo like 0(e~L), so must the right hand 

side. As <^(^r) = 0 (according to (14)), we conclude 

that there should be another wave number k~ such 

L). Thus we may 

(B.1) 

that i(sink+—sink )=—+0(e~ 

write 

isink±=X±— + 0(e~L). 

Each pair k* is therefore characterized by one param
eter X. (Vice versa the same reasoning can be applied 
to fe" and its Eq. (19) e'"~ = ....) 

In Sect. IV.d two integrals involving the quantities 
(B.l) as parameters are needed. These are 

It/2 

1 cos2/c 
-dfc 

"• -i/2 (sink —sin fc+) (sink —sink 

2(cosfc++cosk~)+t/ 
"/2 ' s i n k - s i n k 4 , , , „ . , x 

dk = (fc +k ) mod27c. i- J ,n(* 
[sink —sink 

Furthermore we note the relation 

4>(v — i sink"1")-<j>{v—\ s ink~)= — 
i sink"1" 

- i sin k 

(B.2) 

(B.3) 

which follows from (B.l) and (14) explicitly. 
If we consider several complex pairs fcf, ...,kf 

with parameters X1, ..., X^ we need equations to deter
mine these parameters. We shall briefly indicate how 
these equations are obtained. We consider the most 
general excitation of the half-filled band, N = L. First 
we have spin excitations (discussed in IV.b)) charac
terized by the /-functions (18), secondly we insert H 
holes with "empty" positions k\, ...,kH

H, thirdly we 
consider /i complex pairs k*. For each pair we have 
to create two holes beforehand as a complex k re
places a real kj. Thus we have H^.2fi to satisfy our 
general condition N^L for the excitation case. The 
Eqs. (20) for a particular pair k 1 (with parameter X) 
are then written as 

Y[ [i <£ (i sin k * — i sin kj)] 

Y\ i<p(i sin k* — i sin k+) i(j>(i sin fc* —i sin fc~) 

Y[ i</>(i sin k 1 —i sin fc£) •/(isinfc±+—J 

(B.4) 

where the L real wave numbers kj again include also 
the H hole positions fcjj. We multiply both Eqs. (B.4) 
and evaluate the products on the right hand side by 
using formulas of the foregoing sections (for instance 
Z+ • /" = 1 because of (16)). Omitting details (which can 
be found in [14]) we arrive at 

JL i sin k\ — X •w.__fi4z£m. (B.5) ! i s inkl-X+U/4 t=\ Xa-X+U/2" 

This set of equations, one for each X, determines the 
Xa parameters in terms of the hole positions k\ which 
therefore may be taken as free parameters. 
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Magnetization Curve for the Half-Filled Hubbard Model 

Minoru TAKAHASHI 

Department of Physics, University of Tokyo, Tokyo 

(Received June 3, 1969) 

The lowest energies of the one-dimensional half-filled Hubbard model as a function of 
the total spin are computed from the exact solution of one-dimensional interacting fermions. 
The lowest energies are used to calculate the magnetization curve at zero temperature. In 
the case of repulsive interaction our work is an extension of Griffiths' theory for the Heisenberg 
model to the itinerant electron model of antiferromagnet. In the case of attractive interaction 
it is shown that the magnetic susceptibility in zero field vanishes. 

§ 1. Introduction 

The half-filled Hubbard model has properties similar to the antiferromas:n»tic 
Heisenberg model. Griffiths1' calculated the magnetization curve for the Heisen
berg linear chain at zero temperature. He used the lowest energies computed 
from Hulthen's integral equation as a function of the total spin. In this paper 
we apply his method to the one-dimensional Hubbard model.2' We assume that 
the electrons can hop between the Wannier states of neighbouring lattice sites. 
The Hamiltonian is 

i = - T S S cU„ + 111 cXwXiPu ; T>0 , (1) 
<y> a (=1 

where Na is the number of the lattice sites, c\„ and cia are, respectively, the 
creation and annihilation operators of an electron of spin 6 in the Wannier 
states at the i-th. lattice site. In the case of finite Na the eigenvalue problem 
of this Hamiltonian can be reduced to a set of coupled algebraic equations. From 
these equations Lieb and Wu3) derived coupled integral equations which deter
mine the exact lowest energy of the infinite system in the case 7 > 0 . 

In § 2 we compute the lowest energies of the half-filled system with positive 
I using their integral equations. In § 3 we derive coupled integral equations 
and compute the lowest energies in the case 7<C0. In § 4 magnetization curve 
and magnetic susceptibility at zero temperature are calculated from the results 
obtained in §§ 2 and 3. We show that the magnetic susceptibility is given by 
(<72,«2/7r2)//4T2 for J > 0 and zero for I < 0 where /I is the Bohr magneton and 
g the electron g factor. 

§ 2. The Lieb-Wu integral equations 

Let m and m' be the densities of up-spin electron and down-spin electron, 
respectively: 
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m = J2 c%Cn/Na , m' = 2 cf
ncn/Na . (2) 

i = i i = i 

For the sake of simplicity we define the normalized lowest energy as a function 
of m, m' and U=I/T as 

f(m, m'\ U) = lim (the lowest eigenvalue of M for fixed m and m'). 
**-<* NaT 

(3) 

Lieb and Wu3) derived integral equations which determine the lowest energies 
of the Hamiltonian (1) for 7 > 0 . Their equations contain two functions p(k) 
and ff(A): 

2np(k)=l + cosk\ \ , 
J - 8 U +16(A-siv sin k)2 

2nff(A)+ r 4U<l(A')dA> = p 8C7p(*)<» ( 4 ) 

J.,, C/2 + 4 ( ^ _ y l / ) 2 J-e £/2 + 1 6 U - s i n & ) 2 

Here parameters B and Q are determined from the conditions 

n = \ p(k)dk and m = ff(A)dA, (5) 
J-e J-a 

where w is the electron density. The normalized lowest energy is given by 

r-Q 

f(m,n — m;U) = —2 I cos kp(k)dk. (6) 
J-e 

In the half-filled case (i.e. n = Y), we find that Q = n. Then we can eliminate 
p(k) in Eqs. (4) and (6) and obtain the integral equation for the half-filled 
case: 

2nff(A) + Lu*+4(A-Ay=9°(A)' (7) 

/ ( i - 5 , i + s; C7) = - j ^ U ) ^ ) ^ , (8) 

where 

dk 8£/cos2& 
9< f A\ 1 T 8Udk n (xs T 

M ) = — - ^ " ^ > 9AA) = 
2n J-* £72 +16 (A - sin kr J-
2n J-«U* + 16(A-smky J-* n U! +16(A-sink)2 

It is fortunate that the equation of this type has appeared in the study of 
an antiferromagnetic linear chain. Here we use Griffiths' method with slight 
modification. 

By Fourier transform of (7) one obtains 

<?(A)=ff,(A) + f ±R(±(A-A'))ff(A')dA', (9) 
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/here 

2% J-ooe
2i°i + l An J-

0 sech(7Ty/2)Jy 
» l + C z + y)2 

J& , 2it(A — sin &) 
t / J - 2 ^ S e C U ' 

It is clear that ff0(A) is the solution for S = o o . Magnetization and energy are 
given by 

5 = —s. — - fB ff(A)dA = r<f(A)dA 
2 J-B JB 

(10a) 

and 

/ ( * - * , * + *; £ / ) - / ( * , * ; 17) = - f ff(A)ff1(A)dA + [" ff0(A)g1(A)dA 
J-B J-oo 

==4TT r<J1(A)ff(A)dA, (10b) 

respectively, where 

ffl(^)=.g-f'^COB'ifesechg^<-Bin*). 
UJ-2n U 

Putting x = 4A/ U, a = 4 5 / U and ^ (x) = ( 17/2) e2"-8''^ (4 (x + a)/U), we obtain for 
5 > Max (17,1) 

/>(*)- J]" {£(*-?) +i?(x + y + 2a)}^(y)^ = e -^ 2 + 0(e-
3ri-/2^")) 

s=—e-'""'2 ["p{x)dx = e-"/l 

2 J» 

(11) 

flo+O — 

and 

5f=^e-a re~*x/2p(x)dx=-^e- h + O [1 
\ « / J U Jo ' ' ' U 

C. N. Yang and C. P. Yang4) proved the relation bo/a* = 7T3/2. Then we obtain 

1 5> /• Zjt 2 

* / = — , l + O (12) 
an |*|/J 

for \s\<Mm(e-**/u,e-2"). 
When 5<^Min(l , 17), we can expand f and m as series in powers of B by 

the use of Eq. (7). Eliminating B in the equations obtained we find a power 
series expansion of function / with respect to the variable m for 0 < m <: Min 

f(m,l-m- U) = - 4 (J\ + (HY - U) m + *- . L _ _ m3 + O (m4). (13) 
^ W W / 4 / 6 V l + ( C / / 4 ) 2 ' y 
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At [ 7 = 0 + we can solve (7) and (8) analytically. The result is 

/ ( i - 5 , i + s;0 + ) = - — cosns, (14) 

which coincides with the result obtained from the band theory of electrons. 

§ 3. Case of attractive interaction 

Coupled integral equations (4), (5) and (6) are not applicable to the case 
7<C0. But if one exchanges particles and holes in down spin-band, one obtains 

f(x,y;U)=f(x,l-y;-U)+xU. (15) 

From this relation we have derived the integral equations which determine the 
lowest energy in the case J<C0. For the sake of clarity we replace p(k) by 
p(jc — k). Our integral equations are 

2 W ( * ) = l - c o s * f ' ' I W W (16a) 
J-B U +16(A-smky 

and 

8\U\p(k)dk 
W J-B U2 + 4(A-A'y Jl-(A-Ui/4y J-« 772 + 1 6 U - s i n ^ ) 2 

(16b) 

The parameters B and Q are determined by the conditions 

» = 2 [" 6{A)dA+ T p(k)dk and » i = r f f U ) ^ . (17) 
J-B J-<3 J-B 

Thus the lowest energy is given by 

f=-4\*'ReJl-(A-—YffU)dA-2{Q coskp(k)dk. (18) 

These equations correspond to Gaudin's integral equations6' for electron gas with 
attractive interaction of a delta function type in the continuum. One can also 
derive these equations from the theory of the finite system directly. But we 
shall not give the details here. In Eqs. (16), (17) and (18), we can regard 
p(k) and ff(A) as the distribution functions of the unpaired electrons and electron 
pairs, respectively. One can easily prove the following properties. 

i) m = 0, n = \ at Q = 7T. 

ii) n = 1 at 5 = oo . 

iii) m/n = 1/2 at Q = 0. 

For B=oo and Q = 0, i.e. the ground state of the half-filled case, we can 
solve these equations analytically with the results 
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\U\ J-* 2?r C7 

2?r 2?r J-* \U\ \ U 

and 

2 Jo fl>(l + exp|C/fl)/2|) V ' 

where J0 and Jx are Bessel functions. For B=oo, ff(A) can be eliminated in 
the above equations and consequently one obtains 

P (k) = p0 (*) + cos k £ ±-'R ( 4 ( s i n ^ ~ s i n ^ ) ) p (k') dk' (20a) 

p (*) = J - - cos £ f - A - * / 4 ( s i n ^ - s i n ^ ) \ (&/ ^ , ( 2 Q b 

' 2?r Joi*'i>(i|C/| V U I 

= \^\{k)dk, (21) 5 

and 

/(*-*,* + *; U) =/(*,*; £/) + J' p,(*)p(*)<tt, (22) 

/hei 

31(^) = -2cos/fe + J-^i + 2 f " - i - i ? 
2 J-\U\ 

4 p / 4 ( s i n & - s i n fc')^. ^ ^ / 

|t/| ^ 1/ 
From this we obtain 

/ ( i - 5 , i + *; C / ) = / ( i , i ; [ 7 + 2 ^ ( 0 ) 5 + 1 , P l ^ , ^ + 0 ( ^ ) 
3 {po(0)}3 

(23) 

at 0<5<Min(C/ 2 , i ) . We can easily show that P i (0)>0. This means that the 
lowest energy curve has a cusp at 52 = 0. 

From Eq. (20b), we obtain a power series expansion of f at 0<w<^Min 
( i , \U\) as follows: 

f(m,l-m; U) = • - (4+ | U\) m + ^-m3 + O (m*). (24) 
o 

§ 4. Magnetization curve and magnetic susceptibility 

We discuss the case where a uniform magnetic field H is applied in the 
direction of the spin quantization axis. The Zeeman energy 
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M, = \gp.H J] (c\cn - cl^n) 

commutes with the Hamiltonian (1). Under the condition that the magnetization 
per site is s=—sz, the lowest energy of the system is given by 

This is minimized by the 5-value which satisfies 

g/tH=T^-m-S,^ + s;U). 
as 

Therefore magnetic susceptibility in zero field becomes 

(25) 

(26) 

<y=oo 0.5 S*/Wa 

Fig. 1. The lowest energies as a function of the 
magnetization. 

% = 9 li
ds 

dH 
= 9 M 

dss 

(27) 

The integral equations (7) and 
(8) are approximated by a set of 
40 coupled linear algebraic equations 
and Eqs. (20) ~ (22) are approximat
ed by a set of 20 coupled linear 
algebraic equations. They were 
solved with the use of HITAC 
5020 at the computer center, Univer
sity of Tokyo. Figure 1 shows the 
value of f calculated as a function 
of sz. The derivative df/ds yields 
the magnetization curve. 

The magnetic susceptibility at 
zero temperature and in zero field 
can be calculated from Eqs. (12), 

(14) and (23), in terms of the 
relation (27). For 7 > 0 we obtain 

I 
Tf 4T 2 * _2 

(28) 

This is consistent with Griffiths' 
result" for the antiferromagnetic 
linear chain of spin -| described 
by the Hamiltonian 3C = J X J StSi+1. 
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0 2 4 6 

Fig. 2. The magnetization as a function of magnetic field for the one-dimensional 
half-filled Hubbard model at zero temperature. 

T a k i n g the canonical transformation*' of (1) in the half-filled case we obtain an 

effective Hamiltonian 

JC* = 4 T ' / / £ (siSi+l - 1 ) + o ( ^ ) • 

T h e n we see that the Heisenberg model is equivalent to the half-filled Hubbard 

model in the limit U=oo. T h e difference is that the result (28) holds even at 

U= finite. 

Fo r 7 = 0 we obtain easily from (14) 

% = — £ • <29> 
For 7<C0 no magnetization appears under the magnetic field in the range 

H<Hc^2TPl(0)/ffju. (30) 

T h e n the magnetic susceptibili ty in zero field vanishes. A peculier feature of 

the magnetization curve is that it has an infinite slope at H=Hc + 0. 

§ 5. Discussion 

T h e discontinuity of the magnetic susceptibili ty at 1=0 suggests that the 

per turbat ional t reatment of the interaction term i" XJ c<;c<tc<ic<l ^s n o t a S°°d- a P-

proximation at least in the half-filled case. Th i s is also justified by the fact 

that the ground state energy is not analytic at 1=0. T h e analytic propert ies 

of the ground state energy as a function of U has been investigated in reference 6 ) . 

*> See for example, W. Kohn, Phys. Rev. 133(1964), A 171, §3. 
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Erratum 

Magnetization Curve for the Half-Filled Hubbard Model 

Minoru T A K A H A S H I 

Prog. Theor. Phys. 42 (1969), 1098 

In the calculations from Eq. (11) to Eq. (12) the factors of modified Ressel functions are 
missed. Then Eq. (12) should read 

"=n:'+o(i4i)]'.(t)/'-(t)-
Therefore expression of magnetic susceptibility for 7 > 0 in § 1 and in Eq. (28) should be replaced 
by fu2h(.2n/U)/4nTIs(2n!U). This continues to Eq. (29) at the limit £/->+0. 
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The magnetic properties of an attractive Hubbard chain 
are considered. Based on the Bethe Ansatz equations 
of the problem, exact analytic expressions are derived 
for the magnetization and susceptibility. These formulae 
can be evaluated after solving certain "derivatives" of 
the Bethe Ansatz equations. These derivative equations 
are also given. We give the magnetization and suscepti
bility curves for several values of the interaction-strength 
and bandfiUing. We find that the susceptibility at the 
onset of magnetization (at the critical field) is finite for 
all bandfillings, except for the cases of half filled and 
empty bands, and in the limit of vanishing interaction. 
We argue that the finiteness of the initial susceptibility 
is due to the fermion-like behavior of the bound pairs. 
We also give the gap (what is equal to the critical field) 
and the initial susceptibility as functions of the interac
tion-strength and bandfiUing for the cases of nearly half 
filled and almost empty bands as a function of the inter
action, and in the weak coupling limit as a function of 
the bandfiUing. To our knowledge, this is the first Bethe 
Ansatz calculation for the gap in this latter limit. 

I. Introduction 

The one-dimensional (1-d) Hubbard model is one of the 
simplest model of an interacting electron gas on a lattice. 
It has attracted a great deal of interest, since - in spite 
of its simplicity - it is able to give a correct account 
of the characteristic features of a strongly correlated elec
tron system. Among the related models it is special and 
more intensively studied, since it can be treated exactly 
[1] in terms of the Bethe Ansatz. Recently a new impetus 
has been given to the study of the Hubbard chain [2] 
by the hope, that it may have relevance in the under
standing of the high Tc superconductivity. 

The Hamiltonian of a Hubbard chain of length JV 
in a magnetic field h is given by 

-£i>..T-»i.i)- <u) 
z i = l 

Here the hopping integral (the coefficient of the first 
term) is taken to be unity, and cl„,cU(, and nu„ are the 
creation, destruction and number operators of an elec
tron with spin a at the site i. Lieb and Wu have shown 
that the diagonalization of this Hamiltonian is equiva
lent to solving a set of nonlinear equations [1], the so 
called Lieb-Wu equations, which are the Bethe Ansatz 
equations (BAE) of the problem. Most of the theoretical 
work concerning the zero temperature properties of the 
model has been based on the different solutions of these 
equations. The spectrum of the excitations has been in
vestigated by Ovchinnikov [3], Coll [4], Choy and 
Young [5], one of the present authors [6-8] , and by 
Schadschneider, Kliimper, and Zittartz [9, 10]. Also the 
zero-temperature magnetic properties have been studied 
by several authors. Takahashi [11] gave the magnetiza
tion curve for the half-filled band for both positive and 
negtive U. Extending this work, Shiba [12] calculated 
the zero-field magnetic susceptibility for an arbitrary 
concentration of electrons, but for repulsive (positive) 
U only. The magnetization curves for different electron 
densities at attractive (negative) U have been first studied 
by Bahder and Woynarovich [13]. The present study 
is an extension of this latter work, and it also completes 
a recent comment [14] on a work of Lee and Schlott-
mann [15]. 

As it is well known, in the ground state of the attrac
tive Hubbard chain the electrons form singlet bound 
pairs [8], so the system has no magnetic response below 
a critical field. Above the critical field bound pairs are 
broken up and "free" (interacting but not bound) elec
trons with uncompensated spins are created. With in
creasing magnetic field the number of pairs is decreased 
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while the number of uncompensated spins is increased. 
At a second critical field, which we call saturation-field, 
also the last pairs are broken up, and all the spins are 
aligned in one direction. A special character is given 
to this behavior by the fact, that in this system not only 
the free electrons, but also the bound pairs follow Fermi
like distribution (although they are bosons). 

To describe the above behavior quantitatively, one 
has to solve the BAE, calculate the energy and minimize 
it with respect to the magnetization. All the earlier stu
dies [11-13, 15] performed this program numerically. In 
the present work we derive exact analytic expressions 
for the magnetization and the susceptibility: we express 
these quantities by the different densities, dressed ener
gies and dressed charges taken at the Fermi-points. The 
quantities entering into the magnetization and suscepti
bility expressions can be given after solving a set of equa
tions derived from the BAE. This way one can discuss 
the magnetization and the susceptibility analytically, and 
in the most interesting limits (high and low density of 
electrons; or vanishing interaction) the critical fields as 
well as the susceptibility at the critical fields can be given 
even in closed form. 

The major result of this analysis is that the susceptibil
ity at the onset of magnetization - contrary to the naive 
expectations - is always finite except in the above men
tioned limits. This novel behavior - as we argue - is 
a consequence of the Fermi like distribution of the bound 
pairs. In a recent work based on numerical study Lee 
and Schlottmann [15] claimed that the initial suscepti
bility is infinite for all bandfillings. By giving the explicit 
susceptibility curves we demonstrate, that as the critical 
field is approached from above, the susceptibility shows 
a several order of magnitude enhancement which in a 
numerical analysis can be easily mistaken for a diver
gence. 

The paper is organized as follows. In Chapt. II we 
summarize the Lieb-Wu equations on which we base 
our analysis, and explain the formalism used in the 
paper. Chapter III is devoted to the derivation of the 
magnetization, and the susceptibility. The behavior at 
the onset of magnetization is discussed in detail in Chapt. 
IV while the saturation field and susceptibility are given 
in Chapt. V. 

II. Lieb-Wu equations and formalism 

The Iieb-Wu equations 

In the Bethe Ansatz solution of the Hubbard model the 
electrons are characterized by a set of wavenumbers kj 
and in addition to this the down spins have parameters 
la called rapidities. These quantities are connected by 
a set of nonlinear equations derived by Lieb and Wu 
[1] 

Nkj = 2nlj- £ 2 tan"1 ' ' " ^ 
U/4 ' 

2tan ' - " ' = 2nJa + £ 2 tan l "—f-
i=i u / ^ / i = i 

(2.1a) 

U/2 

Here Ne is the number of electrons, M is the number 
of down spins, i.e. the magnetization S = (NJ2 — M), and 
the quantum numbers Ij and 7a are integers or half-odd-
integers depending on the parities of Ne and M. The 
energy and the momentum of the corresponding state 
is given by 

E=- £ 2 cos kj-h(NJ2-M), (2.2) 

(2.3) 

Equations (2.1), (2.2) and (2.3) hold regardless of the 
sign of U, nevertheless the structure of the solutions is 
very different for U>0 and U<0. Here we treat the 
simplest solutions with nonzero magnetization for nega
tive U. In the corresponding states there are a number 
of singlet bound pairs and a number of electrons with 
uncompensated up-spins. The bound pairs are character
ized [8] by a pair of complex wavenumbers k* and a 
rapidity Aa. These three quantities are connected through 
the relation 

sinfc* =Xa + iu (2.4) 

which is accurate up to a correction exponentially small 
in N, and where 

u = \U\/4. (2.5) 

The electrons with uncompensated spins are described 
by real ks satisfying (2.1.a) which we write in the form 

27t/'. = Nk.- V 2 t a n - ' S m f c j K 

1 h « 
(2.6 a) 

Using the relation (2.4) the fc* can be eliminated from 
the system (2.1 a, b) and we have 

27t.4' = 2iVRe(sin"1(/ta-iu)) 

j = i 

u 2u 

(2.6 b) 

(2.1b) 

with N'e being the the number of electrons with uncom
pensated up spins, i.e. the number of real ky. Ne=Ne 

— 2M = 2S. The energy of the state given by (2.6a, b) 
is found by substituting (2.4) into (2.2): 

£ = - X ( 2 c o s / c J . + | ) - X 4 R e l / 1 - ( ^ - i " ) 2 - (2-7) 
j \ / a 

At a given S for the lowest energy state 1] and JJ 
are consecutive integers or half-odd-integers centered 
around the origin (the fact that all j£ should be different 
[1] gives a fermionic character to the bound pairs). In 
the thermodynamic limit NJN->n, S/N->s the k and 
X will be distributed in the intervals (Q; — Q) and (B; — B) 
with densities g^k) and Q2(X), respectively (^ is defined 
so that Ng^fydk gives the number of fc, in the interval 
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(k;k + dk), and a similar definition holds for Q2). The 
equations for these densities can be derived by a stan
dard procedure from (2.6 a, b): 

Pi(k)-

and 

PiW--

1 1 
2TC 27t 

Re 

cosfe I Kl(smk-X)p2(r)dA' (2.8a) 

2TC |/l—(A —iw) 

1_ 
2% 
1 Q 

f .K1(;i-sinfc')Pi(A:')dfc' 

1 
"2lr 

J X2(A-A')p2(A')dA' 

with 

Kv(x) = 2 
(vwf + x2 (2.9) 

The integration limits (cut-offs) are determined by the 
conditions 

f, pi(k) = 2s, 
-Q 

J p2W=^s. (2.10) 

The energy density in this thermodynamic limit is 

J = - J (2 cos k + ^Pl(k) 

I 4Rel / l - (A-i«) 2p 2 ( / l ) . (2.11) 

Equations (2.8)—(2.11) give the starting point of our 
analysis. In connection with them we note two things. 
First: they can be derived also from the U>0 equations 
using the particle-hole symmetry of the system [8, 13]. 
Second: a different but equivalent system of equations 
can be obtained by taking the T-* 0 limit of the finite 
temperature Bethe Ansatz equations [15]. 

Formalism 

Since equations of the type (2.8a, b) with different inho-
mogeneous parts play a central role in the following 
analysis, we introduce a short-hand vector-matrix nota
tion for them: 

x(k,X) = x0(k,X) + K(fe, X\k', X')®x(k', X') (2.12) 

or just x = x0 + K®x. Here x and x0 are column-vectors 

x(M) = 
(M(k) 
\x2(X\ x0 (M) = * 1,0 CO oC0\ 

0(W 
(2.13) 

K is a matrix with integral operator elements 

K(M|fc',*)=- 1 ( ° -coskKAsink-XJ 
2n\-K1(X-sink') -K2(X-X') 

(2.14) 

and the product ® means the usual matrix product and 
integration over the common variables, from — Q to Q 
over the k type and from — B to B over the X type 
ones, respectively. An equation of the type (2.12) is solved 
by the vector 

x(M) = x0(fc,/l) + R(/U|fc',/l')®x0(fc',/l') (2.15) 

if the resolvent operator [16] R satisfies the relation 

K(fc, X\k', X') + K(k, X\k", X")®R{k", X"\k', X') 
= R(k,X\k',X'). (2.16) 

In the analysis also the following type of equations is 
of great importance: 

( 2-8 b ) y(k, X) = y0(k, X) + KT(k, X\k', X')®y(k', X') (2.17) 

where KT is the transposed of K, i.e. Kjj(k, X\k', X') 
= Kji(fc', X'\k, X). Using the symmetries of K it isnot hard 
to convince ourselves, that the resolvent of (2.17) is the 
transposed of R, i.e. if (2.16) is satisfied, then also 

KT(fe, k\V, X') + KT(k, X\k", /t")®RT(fc", X'W, X') 
= RT(k,X\k',X') (2.18) 

holds, and 

y(M) = y0(fc, X) + RT(k, X\k', X')®y0(k', X') (2.19) 

An important consequence of (2.15H2.19) is that the 
"scalar-product" of the vectors y0 and x has the property 

(yl(k, X)®x(k, X)) = (xr
0(k, X)®y(k, X)). (2.20) 

(Also here the upper index "T" means transposition, 
i.e. it makes a row-vector out of a column-vector and 
vice versa.) 

Dressed energy and dressed charge 

In our notation (2.8 a, b) read 

p = p0 + K®p 

with 

271 \Re (2/l/l -(X-iu)2)) 

(2.22) 

(2.21) 

p(fc H'^ p0(k,X)--
1 \ 

'l-a-iu)2)) 

If we introduce the vector 

6oCc,A) = 
-(2cosk + h/2) sk + h/2) \ 

l-(X-iu)2)' 
(2.23) 

- 4 R e i / l - ( / l - i M ) 2 

(2.11) can be written in a product form 

E/iV = (eJ®p), (2.24) 

which by (2.20) is equivalent to 

£/JV = ( P J ® E ) , (2.25) 
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where the vector e is called the dressed energy, and it 
satisfies the equation 

e = e0 + KT®e. 

Defining the vectors <J(1) and t}2) by 
^(l,2, = (,(|l,2) + K T ( g ) { ( l , 2 ) 

with 

ff»=(J) and #.-(? 

(2.10) read 

2s = (&)T®p) = (pro®i{l)), 

-S=(.&2)T®P)=(PI®?2)) 

(2.26) 

(2.27) 

(2.28) 

(2.29) We call the 2 x 2 matrix £ for which the first column 
is £a) and the second one is <̂ <2), i.e. which has the ele
ments £ij = Z'ti> the dressed charge matrix [17]. (In other 
works [18, 19] its transposed is defined as the dressed 
charge.) 

III. Magnetization and susceptibility 

Calculation of the magnetization 

The magnetization is a constant of motion for the Hamil-
tonian (1.1), so one has to calculate the energy at a fixed 
magnetization s, and than minimize it with respect to 
s at a fixed particle density n. Since the energy depends 
directly on the cut-offs Q and B only, to minimize it 
one has to take the derivatives of E/N given by (2.25) 
with respect to Q and B, and use (2.29) to find out the 
derivatives of Q and B with respect to s at fixed n. 

The energy density (2.25) depends on Q and B directly 
through the integration limits in the ® product, and 
also implicitly (i.e. through the Q and B depence of the 
dressed energy e). Thus: 

dE/N 

~W" 
dE/N 

dB 

•2Pl,o(Q)e1(Q) + 

= 2p2,0(B)e2(B) + (pl®{ (3.1) 

where it has been already used that p and e are even 
functions. By taking the derivative (2.26) with respect 
to Q and B we find that 

| § = el(Q)r<ol> + K^fj , 

8e ,„ , „> „ T „ 3E 
(3.2) 

with 

1 0 
2n XK^X-sm Q) cos Q + XJ/l + sin Q) cos Q, 

(2)_ ! (K1(smk-B) + K1(sink + B)' 
T° ~~2n\ K2{l-B) + K2{X + B) 

(3.3) 

Since these equations are linear, and rj,1' 2)(/c, X) are close
ly related to the columns of KT(fe,X\ + Q, ±B), using 
(2.18) the solution of (3.2) can be expressed through the 
columns of RT(k,X\±Q, +B), and after a straight-for
ward algebraic manipulation one arrives at 

8 E/N 
-2 p ,(0)^(0), 

8 E/N 
8B 

= 2p2(B)e2(B). (3.4) 

The same way one can calculate the derivatives of n 
and s with respect to Q and B using (2.29), and one 
finds 

2~2pl(Q)£ll(Q), 

2^2p2(B)t;21(B), 

These equations yield 

1 8n 8s 
2JQ~JQ 
1 dn ds 
2JB~JB 

= 2Pl(Q)t;12(Q), 

= 2p2(B)£22(B). (3.5) 

52 
8s 

SB 
8s 

2Pl(Q)det£(Q,B)' 

- C i ( 0 
2p2(B)det£«2,B) 

(3.6) 

where the vector £ is a linear combination of £(1) and 
£(2) 

C(M) = { ( 1 )(M)+2£ ( 2 ,(M). 

With (3.4) and (3.6) one has 

8 E/N 
8s 

e1(e)C2(B)-e2(B)C1(e) 
det Z(Q,B) 

i.e. at the optimal value of magnetization 

e1(Q)C2(B)-e2(B)Cl(Q) = 0-

(3.7) 

(3.8) 

(3.9) 

Since the vector e contains h linearly, from (3.9) one 
can express h explicitly. Defining the vector e by the 
equation 

- 2 cos k 

iu)2)' 

8 = 60 + KT®8 

with 

e0(k,X) = ( , 
\-\ReyUX-iuf 

it is clear through (2.23) and (2.28), that 

h 

Substituting this into (3.9) yields 

• _ei(6)C2(B)-e2(B)Ci(0 
det£(Q,B) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Equation (3.13) together with (2.29) are a parametric 
representation of the magnetization s as a function of 
h at fixed n: Equation (2.29) can be used to calculate 

file:///-/ReyUX-iuf
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Fig. 1. Magnetization a and susceptibility b versus magnetic field 
for U = — 5, at different bandfillings. The individual curves are la
belled by the value of the bandfilling 

Q and B as functions of s at fixed n, and then (3.13) 
gives the magnetic field h for which s is the optimal 
magnetization. This is the way as Figs. 1 a and 2 a which 
give the magnetization versus magnetic field at different 
bandfillings for U = — 5 and U = — 1 were obtained. All 
curves start at some critical value of the magnetic field 
hc and reach s/n = 1/2 at some saturation field hs. Since 
at hc there are no free particles yet, s = 0 and according 
to (2.10) ((2.29)) hc corresponds to Q = 0. At hs all the 
electrons are free, i.e. n = 2s, thus for h, B = 0. 

Derivation of the susceptibility 

To calculate the susceptibility, we take the derivative 
of (3.13) with respect to Q and B, and then using (3.6) 
we obtain ds/dh. Taking the derivatives of a with respect 
to the implicite Q and B dependence is done the same 
way as it has been done with 6 (see (3.2)-(3.3)), leading 
to 

de(k,X) 

8Q 
••ei(Q)^(k,X), 

de(k,X) 
dB 
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Fig. 2a-c. The same as Fig. 1 but for £/= — 1. c repeats b with 
a logarithmic scale for h 

with respect to k, and that of the second row with respect 
to X. After integration by parts we get 

:82(B)r (2 ,(M).(3.14) 

E' = V + 8 1 ( 2 ) U + E 2 (B)W 

where 

Jdex(k)ldk\ 
\de2{X)/dX) 

(3.15) 

(3.16) 

To calculate the derivative of s with respect to its argu- and the vectors v, u and w are defined by equations 
ments we take the derivative of the first row of (3.10) analogues to (2.12) with x 0 replaced by 
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/ 2 sink \ 

° \Re (4 (A - i«)/]/1 - (X - i u)2))' 

=-U ° \ 
U° 27t\K1(A-sine)-K1(A + sine)/ 

and 

1 /cos k K! (sin k — B) — cos k K t (sin k + B)\ 
: 2 ^ \ K2(X-B)-K2(X + B) j 

(3.17) 

(3.18) 

(3.19) 

respectively. This way the derivatives of the components 
of s can be given: 

a«i(g) 
SQ 

8e2(B) 
dQ 

deAQ) 
8B 

ds2(B) 
dB 

= «1(Q) + 81(Q)M1(e) + E2(B)w1(G) + fii(Q)r(
1
1)(Q), 

= sl(Q)ri21)(B), 

= e2(B)rf\Q), 

= v2(B) + el(Q)u2(B) + e2(B)w2{B) + e2(B)r2
2>(B). 

(3.20) 

In a similar way we can calculate the derivatives of {(1,2), 
and after a straight-forward calculation we obtain 

dh Vl(QKi(B) dh_ v2(B)U(Q) 
dQ det Z(Q,B)' 8B det£(Q,B) 

which by (3.6) yields 

ds 
d/i 

„ / vAQWiiB))2 , 

(3-21) 

v2(B)(UQ))2 

2Pl(Q)(detZ(Q,B))2 2p2(B)(deU(Q,B)) ')"' 
(3.22) 

This formula can be somewhat simplified using the 
Fermi-velocities defined through the low energy excita
tions [17] 

1 Vl(Q) „ . , 1 M B ) . 
a n d r " = T^T7m-

271 p2(B) 
»«(Ci(fi))2 

2nPl(Q) 

1 / vFdC2(B))2 

27t\2(det 4(2, B))2 2(det^(e,B))- )"' 

(3.23) 

(3.24) 

This expression can be obtained also by using the low 
energy part of the spectrum [17]. 

The susceptibility curves of Figs, l b and 2b were ob
tained through the formula (3.22). 

IV. Behavior at hc 

The critical field 

As it has been already mentioned, at the critical field 
there are no unpaired electrons yet, thus Q=0, i.e.: 

2.4 

2.3 

•C 2 . 2 

2 . 1 

U=-5 

2 . 0 I ' 1 ' ' ' 1 >-
a 0 0.2 0.4 0.6 0.8 1.0 

n 

Fig. 3. Critical field a and susceptibility b versus bandfilling for 
17=-5 

*,= 
e1(e)C2(fi)-82(B)Ci(Q) 

det£(Q,B) 
(4.1) 

Q = 0 

(note that Q = 0 not only in the arguments of the func
tions, but also in the equations defining the different 
functions). The critical field is practically the energy nee
ded to break up the first pair (up to a constant factor), 
so it is the gap in the spin excitations. It is plotted as 
a function of the bandfilling for different values of U 
on Figs. 3 a, 4 a, 6 a and 7 a. Its behavior has been discus
sed in more detail in [13]. 

Finiteness of the initial susceptibility 

The critical value of the susceptibility (x at hc) can be 
directly calculated through (3.22) by setting Q = Q (just 
as for hc). Since v1(Q=0) = 0 (both v are odd functions 
for any Q and B) 

Xc = 
2p2(B)(deU(Q,B))2 

»2(B)«i(e)r Q = 0 

(4.2) 

This expression exactly coincides with the one given in 
[14]. It is a very important observation that this quantity 
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Fig. 5a, b. Schematic representations of the relations between the 
different energy bands and magnetic field to explain the initial sus
ceptibility. On both parts e1 corresponds to the band of electrons 
with uncompenseated spins, and e 2 represents the the energy of 
the bound pairs, a Corresponds to the case when the bound pairs 
condensate into the same level (i.e. e 2 ' s t n e top or the bottom 
of a band, or it is the energy of a Bose-Einstein condensate), b 
Corresponds to the case when the bound pairs behave like fermions 
and fill in a band with a dispersion, q is the Fermi-momentum 
of the free electrons at h and q' is the change in the " Fermi-momen
tum" of the pairs as the magnetic field increases from hc to h 
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Fig. 6. Critical field a and susceptibility b versus bandfilling for 
a large value of the interaction: U= —10. The unlabelled (thick) 
curves give the exact values, the curves labelled by " a " correspond 
to the approximative functions (4.7) and (4.8), and the curves label
led by "P" represent (4.9) and (4.10) 

is always finite except for the cases of half-filled and 
empty bands, and for the U S 0 limit. This has been 
noticed in [13] and it is proved in a strict sense in [14]. 
Here we give the plots of xc versus the bandfilling at 
different values of U (Figs. 3 b, 4 b, 6 b and 7 b). 

The finiteness of %c - what is a most unusual property 
since at hc a square-root like singularity might have been 
expected - can be understood on the basis of the fermion-
like behavior of the bound pairs. These bound pairs, 
being formed of two fermions, should be bosons. They, 
however, do not form a Bose-Einstein condensate, but 
rather follow a Fermi-like distribution, and this makes 
the magnetization curves to start linearly. This is explai
ned by means of Fig. 5 a, b. (In this explanation we con
centrate on the effect of the dispersion and distribution 
of the bound pairs and neglect all other effect which 
do not change the picture.) If the pairs would condensate 
into one state, or would fill in states of the same energy 
(like the top or the bottom of a band), the situation 
would be like on Fig. 5 a, where the band 6! is for the 
unpaired electrons, and the level e2 is for the pairs. From 
this figure we can see that 

h — hcccq2 (4.3) 
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where q is the "Fermi-momentum" of the free electrons 
at h, and since sccq 

z]/h^hc. (4.4) 

The situation in the attractive Hubbard model is, howe
ver, different. The band 62 has a dispersion and the pairs 
fill it in up to a certain "Fermi-level" as depicted on 
Fig. 5 b. This figure shows that 

h — hcocaq2 + bq', (4.5) 

where q is the same as on the "a" part of the figure 
and q' represents the change in the "Fermi-momentum" 
of the pairs while the magnetic field increases from he 

to h. Since qccq'ccs, for h \ hc 

soc/i — h„. (4.6) 

Recently Lee and Schlottmann [15] calculated the 
magnetization curves. Based on their numerical findings 
they claimed, that all the magnetization curves start with 
infinite slopes. Our susceptibility curves (Figs, lb, 2b-c, 
8 b) show very strong, several order of magnitude increa
ses as h\hc. In a merely numerical analysis it is very 
easy to misinterpret this enhancement as a singularity, 
and we think that happened in [15]. 

hc and xc in the limiting cases 

As it can be seen on Figs. 2 b, 3 b, 5 b, 6 b and 8 b, and 
as it is also pointed out in [14], xc diverges only in 
the limiting cases n -> 1 and n -> 0 (for all (negative) values 
of U), and if U -> 0 (for all values of n). Actually these 
are also the cases when hc and %c can be evaluated in 
closed form. The cases n -> 0 and n -> 1 have already been 
treated by different methods in [13]. Evaluating the for
mulae (4.1) and (4.2) reproduce the results obtained there. 
The results concerning the U = 0 limit are new. 

The low density limit: n->0. In this case, as it is easy 
to see from (2.10), B->0 and one can expand all quanti
ties - by expanding the equations - in terms of B. The 
resulting equations can be solved, and yield 

M-o,.4/^-4,-iJ2L; 

and 

(4.7) 

(4.8) 

These approximations are valid for all U. (4.7) and (4.8) 
give the curves labelled by "a" on the Figs. 6 and 7. 

The nearly half-filled-band case: n->l. The integration 
of (2.8 b) from — GO to oo with B set to GO shows that 
for n = 1B = co, i.e., the limit n -> 1 corresponds to B -» oo 
for any finite U. If so, to solve the BAE the Wiener-Hopf 
technique can be applied leading to 

hc(n^^) = h(n--

with 

l) + (l-n)27i 
Ii(2n/\U\) 

(I0(2n/\U\)f 

hc(n=l) = \U\-4 + 4 J 
-MW\l4-ji{0}) 

o co cosh m\U\/4 
dco 

and 

z«(«-i)s 
1 (I0(2n/\U\))3 

4n(\-nf M2K/II/I) 

(4.9 a) 

(4.9 b) 

(4.10) 

Here 7j is a Bessel function, 70 and It are Bessel functions 
of imaginary arguments, and according to [13] the ap
proximations hold as long as (1— n)<g4/0(27j;/|C/|) 
exp(—2n/\U\)/ne. (4.9) and (4.10) give the curves labelled 
by "jS" in Figs. 6 and 7. 

The small coupling limit: 17->0. It is known that for 
U->0, B->sin«7i/2. (This can bee seen by taking the 
U -> 0 limit of (2.8 b).) For n > 0, B is finite, but the width 
of the kernel (what is actually u) tends to zero, and for 
this the Wiener-Hopf technique can be applied also in 
this case. The technical details are given in the Appendix, 
here we give the results only: 

K(\u\<iy. ¥ \U\ sin3 
2n sin7in/2 

(4.11) 
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and 

xc(|f|«n)= 
|t/| 

16 71 Sin2 7TM 

47T sin nn/2 

(4.12) 

(4.11) and (4.12) are valid for any n provided \U\ is suffi
ciently small, i.e. if sin (nn/2)/\U\ > 1. The curves labelled 
by "y" on Fig. 7a, b represent (4.11) and (4.12). The fit 
to the unlabelled exact curves is remarkably good in 
a large range of n. We note that expanding (4.11) and 
(4.12) around n = l , and taking the \U\<1 limit of (4.9) 
and (4.10) give the same result. 

To our knowledge this work is the first Bethe Ansatz 
calculation for the gap in the magnetic excitations in 
the non-half-filled band case. Earlier Larkin and Sak 
calculated this gap by solving the renormalization group 
equations and using the exact gap of the half-filled band 
case as a "boundary condition". Equation (4.11) exactly 
confirms their result [20]. 

In connection with the U -»0 limit we want to draw 
attention to a strange singular behavior. When t/ = 0 
the susceptibility is finite, when U < 0 Xc is again finite, 
but 

lim Xc(U)= co, 
v- -o 

0 < n < l (4.13) 

lim Xc(U)±Xc(U = 0)-
u-> - o 

(4.14) 

This strange behaviour of Xc an<i xCO n e a r K m the 
u -> 0 limit (what is a manifestation of the essential singu
larity of the model at U = 0 reported in several works) 
is shown on Fig. 8 b. 

V. Behavior at saturation 

In all the cases the magnetisation saturates at s = n/2 
at a finite field hs. Since at this field also the last pair 
is broken up, B = 0, and the problem becomes equivalent 
to a free fermion problem. Accordingly, all the quantities 
can be calculated in a closed form. As a result on gets 
(like in [13]) 

2 r _,/sin7tn\ 
fc.= - - c o s * n | 2 * - 2 t a n ^ - ^ - J 

\/U2 + 16 

\U\\]/U2 + 16 
%[ \U\ tan 

, / |C/[ \ I 
. = cot nn \ + nn\ 

(5.1) 
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and 

Xs 
2 • / - , — sin7tn|27r-

* \ 
•2 tan 

. j /sin7cn\\ 

\W)). 
(5.2) 

These quantities are represented on Fig. 9 a, b. 
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the tilde denoting fourier-transform. After introducing 

x(n) = x2(r\ + B) and IM = xt0(r] + B) (A.5) 

we have 

1 °° 
x(n) = IM+T- J KMl-tfxffldri' 

2% 

± : J - \ K2*(n + n' + 2B)x(r,')dr1' -In 
(A.6) 

provided x2(X) is an even/odd function. Following Yang 
and Yang [22] we look for the solution in form of a 
series 

Appendix 

In this Appendix we give some details of the calculation 
of hc and %c m t n e U -»0 limit. First we show, how to 
reduce the problem to the solutions of Wiener-Hopf 
equations, then we give the B as a function of the bandfil-
ling, finally we give the hc and xc-

Reduction to Wiener-Hopf equations 

As it has been seen, all the important distribution func
tions are determined by equations of the type (2.12) or 
(2.17). For g = 0 both (2.12) and (2.17) reduce to the 
same one 

x2(X) = x2,0(X)-~ J K2(X-X')x2(X')dX', (A.1) 

and the calculation of quantities of the type x1(Q = Q>) 
reduce to the evaluation of expressions 

x1(0) = x 1 . o ( 0 ) - ^ - J K^x^dX'. (A.2) 

In treating (A.l) first we suppose that the Fourier-trans
form of x20 exists, and it is finite [21]. Then also the 
Fourier-transform of x2 exists and also that is finite. 
If so, (A.l) can be written in the form 

x2(X) = x*2t0(X) + — ] K*2(X-X')x2(X')dX' 

1 ~B 

+ T~ I KUX-X')x2(X')dX' (A3) 

with 

v* m- 7 ^ . o M e i m A 

^w=iTTX^)dco (A.4) 

x(n) = X xm(n)-

This solves (A.6) if 

xW(r,) = I?(n)+— J K}(f , - i ,V , ) (»/ ' )di ; ' 
2TI 0 

(A.7) 

(A.8) 

with 

if(n)= 

i An), i f / = i 

l °° 
±^~ f Kt(n + ri' + 2B)xil-1)(n'), i f / > l . (A.9) 

2 7t 0
J 

We have to note here, that this series expansion is useful 
if each term is much smaller than the previous one. This 
is verified, if B p 1 (n -* 1 case) or u <̂  1 (the present case): 
K^(2B) can be estimated to be of the order of (u/B), 
i.e. /<? (and so xm) are approximately (i</B)-times smaller 
than x ( , _ 1 ) . (The essential difference between the u~4l 
and B > 1 cases, which leads to the different results is 
in the analytic properties of the inhomogeneous parts 
Ix(n)) Equations (A.8) are of the Wiener-Hopf type and 
can be solved by standard methods (for more details 
see for eg. [22]). 

Quantities of the type xJO) in principle can be calcu
lated by (A.2), if x2(X) is given. One has to keep in mind, 
however, that the x2(X) obtained the way described ab
ove, due to the truncation of the series (A.7) after I= 1 
or 2, is more accurate around B and for X>B, and it 
is less accurate for X -4 B. So one has to convert the inte
gral over the region ( — B;B) in (A.2) into an integral 
over B < X < co. This we do in the following way. Multipl
ying (A.l) by K 2 v _ , (for K see (2.9)) and integrating 
over X we obtain 

J K2^M)x2(X) 
-B 

oo 

= - 2 | K 2 v _ 1 ( l ) x 2 W 
B 

oo B 

+ J K2y_M)x2,0(X)- J K2y + l(X)x2(X) (A.10) 



105 

279 

provided x2 is an even function. Applying this relation 
to (A.2) successively, we arrive at 

r . oo co -i 

* i ( 0 ) = [ x i . o ( 0 ) - 2 ^ S ( " l ) v J « 2 . + iW*2.o(A)J 

i 00 GO 

+ - E ( ~ l ) v J X2v+1(A)x2(A), (A.11) 
71 v = 0 B 

what, using the relation 

J (-iyK2y+1{X) = ~ 
v = 0 Z U 

leads to 

1 
, Xn 

cosh 7— 
2u 

(A.12) 

*i(0) = 

- cosh2^J 

x2W 
. A 71 ' 

B cosh — 

(A.13) 

Using the explicit form of the solution of (A.8) a very 
important relation can be derived from (A.13): 

xi(0) = -
4« /B BnX'2,0(B) 2 fi_5 / m 4« pa 

— i / - e 2»x2(B) + — - l / — - / -

00 

, m i r «2.ow 
* i . o ( 0 ) - ^ J cosh 

A71 
ofue 2") (A.14) 

where x ' 2 0 is the derivative of x2.o and o(u exp(—-«—)) 

means terms decaying faster than u exp( ———) as u->0. 

Another important relation what we shall use and can 
be obtained from the explicit form of the solution for 
(A.8) is 

lim x2(B) = —i= lim x2 0(B). (A.15) 

Integrating (A. 17) from — 00 to 00 (A. 16) can be written 
in the form 

I p2(A) = i ( l - n ) . (A.18) 

Solving (A. 17) by the method outlined above, and 
calculating (A.18) up to the required accuracy (one has 
to solve (A.8) for / = 1 and 2) one has 

2 v \2 n) n2 cos k0 \ 

71 cos2 k0 sin k0 

2u 
(A.19) 

where fe0 is defined through B = sin k0, i.e.: 

, n n . nn 
n cos^ —- sin — 

_ . nn uI. . 2 2 \ , . , „ 
B = s i n - 1 + l n . A.20 

2 % \ 2u j 

The critical field hc 

According to (4.1) 

«i(fi)C2(B)-8i(B)Ci(fi) 
K=- det Z{Q,B) Q = 0 

(A.21) 

First of all, it is not hard to see from (2.28) and (2.29), 
that if 2 = 0, than £2l = &»=0 and {11 = ^<1

1>=1, and 
so, due to (3.7) and the definitions of the matrix £ and 
the vector £ 

det£(0,B) = £22(B) = K 2 ( B ) . (A.22) 

The f2(2) and d ( 0 ) are determined by equations of the 
type (A.l) and (A.2) with xt 0(0) and x2 0(X) replaced 
by 

Ci.o(0)=l and C2,oW = 2, (A.23) 

respectively. Applying (A.14) to calculate d ( 0 ) we find 
that the quantity in the square brackets is zero, and 
since £'2,0 = 0 we have 

The particle number 

According to (2.10) at Q = 0 (i.e. for s = 0) the density 
is given by 

1 P2W=~ 
-B Z 

with p2 determined (see (2.8.b)) through 

p 2 « = ~ Re 2 
2 " j / l - ( A - i u ) : 

2 ^ 
1 B 

J K2(X-X')p2(X')dX'. 

(A.16) 

(A.17) 

C i ( 0 ) = — | / - e 2«C2(B). 
n \ e 

(A.24) 

Also the quantities B2(X) and et(0) are determined by 
(A.l) and (A.2), but now x 1 0 ( 0 ) and x 2 0 (A) are to be 
replaced by 

« i o ( 0 ) = - 2 and e2 0(X)= - 4 R e ) / l - ( A - i « ) 2 , 
(A.25) 

respectively. Substituting these into (A.14) the expression 
in the squarebrackets gives 

si,o(0)- U b
2 ,0(A) 

cosh 
Xn 

— e 2u. (A.26) 
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Since this decays exponential ly faster then the other 
terms in (A.14) (this is due to B < 1 ) , we can neglect it 
and we have 

«.W>-§l/7e~2,"»W) 

Combin ing (A.22), (A.24), (A.31) and (A.32) yields 

4w pa -2* 4 
+ — i / - e 2«-4« pa (A.27) 

Substituting (A.22), (A.24) and (A.27) into (A.21) we ob
tain 

BJL B 32u pH -SJL 

K= T=~\ — e 2u—i= 
n2\/2]/e j /T 

lis, afte: 

-B2 

This, after substituting (A.20) for B yields 
2n sinnn/2 

| l / | s i n 3 ~ e |f| 

(A.28) 

(A.29) 

The critical susceptibility %c 

To evaluate the expression 

2p2(B)(det£(Q,B))2 

MBKCiffi))2 
Q = 0 

(A.30) 

in addition to the quantities we have already, we need 
to calculate p2(B) and v2(B). For both quantities we may 
use their u -> 0 limiting values. According to (A. 15) 

p 2 ( B ) g ^ p 2 , 0 ( B ) = * i = 

and (see also the « -> 0 limit of (3.17)) 

B 
y 2 ( B ) ^ , 2 , 0 ( B ) = 2 ^ - | / _ Z _ . 

Xc 64B 

Zc = 
|t/| 

4n sin7in/2 

16TT s in 2 ren 

(A.33) 

(A.34) 
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The method of integral equations with infinitely many unknowns which were used for 
the one-dimensional Heisenberg model and electron gas is applied to the one-dimensional 
Hubbard model. From these equations one can calculate energy, entropy, density and mag
netization at given temperature, chemical potential and magnetic field. 

§ 1. Introduct ion 

Lieb and Wu1 ' solved exact ly the ground state energy of the one-dimensional 

Hubbard model. Us ing their formulation, the author calculated the magnetiza

t ion curve and magnetic susceptibili ty at zero tempera ture in the half-filled case.2 ' 

In this paper we derive the integral equations for the one-dimensional Hubbard 

model at finite tempera ture . In the problem of an electron gass> we considered 

the distr ibution functions of magnon bound s tates , unpaired electrons and electron 

pairs . Besides these functions we must t rea t the distr ibution functions of bound 

s ta tes of pairs in the problem of the one-dimensional Hubbard model. 

In a recent paper Sokoloff4' gave the exact solution for the case of an in

finite repulsive interact ion. I t will be shown that our equations give the same 

resul ts as those of Sokoloff in the limit of infinite repulsion. 

§ 2 . Theory o f finite system 

W e consider the Hamil tonian 

^ = - £ E c U , , + 4 C / £ > , T « i l - £ ; i a a H ( » l t - « u ) . (2-1) 
<y> a t -1 i = l 

T h e wave function is 

N 

M®I(XU x%, •••,Xir-ti\xN-M+u ••-,•£*) = X![Q, jP]expO'X] kPJxQ]), (2 -2) 
p j=i 

at x<ii<Xqi<x(i3---<XQN. T h e energy eigenvalue is 

E = - 2 X > o s / f e , . (2-3) 

One can easily show tha t the wave function (2-2) is an eigenstate of (2-1) if 

we put 
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K2, n = £ (Qi) e (Q01! Ax n i>V (Ay, y,), (2-4) 

with 

v r A \ TT1 sin kpj — A+iU /0 c\ 
i=l Bill kpy+1y — A — lU 

and 

•A*=n(^~^7o-^)- <2-6> 

Here we have introduced parameters Ai, At, • • •, AM, y\ yj, •••, y.w are coordinates 
of .zy_jf+i, •••, Xjy along the chain, £>! and Q2 signify the orders of 1, 2, •••, N—M 
and Af—M+l, •••, N in the permutation Q, e(Qi) is the parity of the permutation 
Q{. The periodic boundary condition 

MQI(XI, XS, •••, xt, •••, xN) =M®I(.XU •••, Xi + Na, •••, xN), i = \ , 2, ••-,N, (2-7) 

is satisfied if we put 

exp (ikfNa) = fl e(**ki-M, (2 .8a) 

n e(A°~s™kA = -fi * ( ^ H (2-8b) 

where we put e(x) = ( x + i)/(jc — i). For excited states ^'s and A's are not ne
cessarily real numbers. To specify the all eigenstates of Hamiltonian (2-1) we 
use the following two conjectures. 

Conjecture 1. A complex kj belongs to a pair of electrons or a bound state of 
pairs. For a bound state of w-pairs there are n — A's which have the same real 
part and the imaginary parts as (n — l)iU, (n — 3)iU, (n — 1) ill within the 
accuracy of 0 (exp —dNa), where d is some positive number. And 2n — k's belong 
to this bound state and take the values 

ka1 = it-avar1 (Aa^+niU), 

ka* = sin-1 U , ' " + ( » - 2) iU), 

ka* = sin-1 (Aa
,n+(n- 4) iU), 

ka
m-^sm-\Aa'

n- (n-2)iU), 

ka
m = Tt-sin-\Aa'

n-niU), (2-9a) 

within the accuracy of 0(exp( — dNa)). Here we put — 7r/2-<Re sin- '(x) < ^ / 2 . 
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We denote the k's and A's which belong to the bound state of w-pairs as 

.ka
n'\ 1=1,2, - , 2 » , 

and 
Aa'

nJ = Aa'
n+(n + l-2j)Ui, 7 = 1 , 2 , - , » . (2-9b) 

And we define Aa'
n as 

Aa'
n=Re s i n - V ^ R e Aa

n'1. 

Conjecture 2. Complex A belongs to a bound state of pairs or bound state of 
A's. In the latter case the real parts of A's are the same and the imaginary 
parts are {n — l)iU, (n — 2>)iU, •••, — (n — l)iU within the accuracy of 0 (exp 
-dN). 

We denote these as Aa
n,J and real part of these as Aa

n; 

Aa
n'J = Aa

n+(n+l-2j)iU. (2-10) 

We write unpaired k's as ks. One can specify the eigenstates of Hamiltonian 
by k/s, Aa

n's and Aa'
n's. The equations for these are derived from Eqs. (2-8a) 

and (2-9b). 

,« /*- = n ef^kj-AS} n / sin kj-Aa'*\^ ( 2 . m ) 

(».<*> V nil /(«,«) V n U I 
in 

exp (iNa £ *„»•') = exp { - Na (sin"1 (Aa'
n + in U) + sin"1 (Aa'

n - in U) ) } 

= _'ff JA--^kA EJA^zAT\, ( 2 . U b ) 

wher 

'r*(^-™*o=-n^-(i<-vo. 

Enm(x) = 

e( X \<?( x )c*( x \ 
\\n — m\i \\n — m\+2' \\n — m\+4' 

• • c 2 ( x 

\n + m-

(2- l lc ) 

)J * ) 
-2' \n + m' 

for n^=m, 

jl_x\t(_x\...t?( x )e-*-) torn-e\ e r--e\ \e\ tor n = m . 
. 2 « - 2 / \2nl 

Taking the logarithm of these equations we have the following equations: 

kjNa = 2nIj~ ±Zd(sinki~Aan)-f: jYd(sinkj~A«n), (2-12a) 
K=1 a= l V nU l n - l a - l \ n U ' 

Na (sin-1 (Aa'
n + in U) + sin"1 (Aa

,n - in U) ) 
N-iM' I i /n • r \ / j in i im \ 

= 2nJa'
n+ E 6(^ ^L)+ S M Afi ),. (2-12b) 
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AS-A/ ""So(A'n f*k<) = 2nJS + I] ®nm, TT 

J=I \ nil I o».« V U 

where 

0(x)=2tan- 1 x, 

(2-12c) 

20 
n — m I + 2' 

+ -+2d( — 

'nm \^) — 

\n + m — 2' \n+ m' 

for «=j=»z, 

2o(-?^) + — +26(^-=)+0(-?-) ior n = m. 
2 I \2n-2' \2n 

Here Is, JS, Ja'
n should satisfy the following conditions 

h = 
integer , (E(M, + Mt') even) 

half odd integer, ( X X M + M / ) odd) 

(Na-(N-Mn') odd) f integer , 
J'n = 

(half odd integer, (Na- ( J V - M / ) even) 

J n = 
f integer , (N-Mn odd) 

' half odd integer , (TV— Mn even) 

WSn\<±(Na-N+ 2M'-± tnmMm'), 
771 = 1 

| JS\ <i (N- 2M' -1] tnmMm), tnm = 2 Min in, m) - dnn . 
m=l 

Total momentum and total energy are given by 

K=(2K H IJ-2KY: Jan) /Na + jr l l ( - V"in, 
J=I (» ,a ) 

(2-13a) 

E= 2 (-2cosk}-Ju0H)+j:4Re^l-(Aa
,n-niUy+21uaHj:nMn, 

,/ = l («><*) 71 = 1 

(2-13b) 

where .M' is defined by 

J l / ' s f ] »M„'. (2-13c) 
n = l 

The number of up-spin and down-spin electrons are given by 

Ni='JtnMn + M', (2-13d) 
n = l 

N. = N-N,. (2-13e) 

file:///2n-2'
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§ 3. The integral equations 

We put the distribution functions of k, An and A'n as p(k), ffn(A) and ffn'(A), 
respectively, and corresponding distribution functions of holes as ph(k), ffn

h(A) 
and ffn'

h(A). The integral equations for these functions are derived from (2-12): 

-i-=p(*)+p*(*)-co8*f£ rnu_.woo+*.oo)dA\ (3.la) 
2n \ifci J— K n'U'+(sink-A)2 I 

\' — r rn.yt. AV =*S(A)+± Anm<Tm(A), (3-lb) 

7r Vl-(yl-C/0 J-* 7r (nljy+ (sink-A)' ™-i 
(3-lc) 

where Anm is an operator defined by 

^nm/(x) =8„f{x) + -£- §~_jeM(Z-Jpj f(x')' 
2n 

The thermodynamic potential Q^E — AN—TS is given by 

Q/Na= J* [ ( - 2 c o s ^ - A - A o ^ ) p ( ^ ) - T { ( p + pft)ln(p + p ' t ) - p l n p - p f t l n p f t } ] ^ 

+ f ] f" [_2nfhH(Tn (A) -T{(ffn + <;„") In (ff„ + <C) - <7„ In ffn - ffn
K In <rn

ft} 
n=l J -co 

+ (4 R e V l - (A-nUiy-2nA)ffn'(A) 

- T{ (<T„' + 0n'
h) In (ff„' + <r„'a) - ff„' In <7n' - ffn'

h In ff/ft} ] Ai . (3-2) 

The condition <?i2 = 0 gives the equation for C=pVP> Vn=Gnh/(fn and ^ /^ f f /Vt fV 
as follows: 

_ — 2 cos £ — /U0H— A 
InCW 

T 

+ f] P ° - ^ - r ^ * ^ { l n d + ̂ - H ^ J - l n d + ^ U ) ) } ^ , 
»=i J-» TT (nl/y+ (sink-A)* 

(3-3a) 

ln(l + 7 . U ) ) + (" ^ ^ . TT.t , " ? , ,., lnd + C-'W) 
J-* 7T (« t/) + (sm & - A)2 

= ^ ^ + f ] ^ m l n ( l + 7?ro-1U)), (3-3b) 

lnd + */00)+ f ' ^ g i * *? lnCl + C-'W) 
J-* 7T («£/ ) + (sin k — A) 

4ReJl-(A-nUiy-2nA , ̂  „ / - I / ^ N , , o N 
= 7r ^2-,Anmln(l + T;m' l(A)). (3-3c) 

J- m=l 

file:///ifci
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Equations (3-1) are rewritten as 

^ « .w ;nv li=i J— ^ Oz£ / ) 2 +(s in£ -y l ) a r 

T ~ , TTVP(?dki, ™ = * " ^ f f - W + ^ ^ " ^ ^ > < 3 • 4 b ) 

J-* it (nUy+(smk —A) ™=i 
1 R c 1 f* «C7 p(A)<afe 
?r e V l - ( y < - » C / 0 2 J— ?r "0£ / ) 2 +(s in&-y l ) 2 

= ? . , ( i l ) f f , ' U ) + i : A , m « r . U ) . (3-4c) 

Substituting Eqs. (3-3) and (3-4) into (3-2) we have an expression for ther
modynamic potential: 

1 dA a/Na=-T f ' l n d + C - ' C * ) ) - ^ — r f ] p l n ( l + V - 1 U ) ) R e - 7 T _ L = = ^ , 
J -T 27T n-i j - » Vl— (A — nUiy it 

(3-5a) 
and this can be transformed as 

= £ „ - A - T { £ p , ( A ) I n ( 1 + C(*))<&+ P (To (4) In (1 + ^ 0 * ) ) ^ } , (3-5b) 

where -E0, Po(&) and ff0(yi) are energy, p(&) and (Ti(yl) at T = 0 , H=0 and A 
= 2£7. According to Lieb and Wu, 

£ „ = - 4 
Jo 1 

Jo(o))Ji(o))doa 
•exp(2C7ft)) 

ffoW)= f* J ^ S e c h ^ - ( ^ - s i n ^ dk 

J-* 4£7 

p „ ( £ ) = ^ - + c o s £ P — T T , ,*? , , x , g . U ) . 
J-co ft 

2 £7 2?r 

J _ + c o s A P ^ - V-
2n J— ?r £/2 + 0 4 - s i n £)2 

Equations (3-3) can be replaced by the following integral equations: 

j _2_cosA + C"dAaech f ^ - » ° ^ r ± - R e V l - ( ^ - E / Q ' + l n ( 1 + ^ /)l, 
T J--4C7 2 £7 LT \ 1 + ? I / J 

(3-6a) 

In Vl = s* {in (1 + tj,) - f * 5 U - sin A) In (1 + O cos kdkl, (3 • 6b) 

l n ^ ' = 5*|ln(l + V ) - V S(,A-sin k)ln(l + 0cos kdkl, (3-6c) 

In ^ = s* In {(l + ^ - O U + ??„+,)}, » = 2 ,3 , •••, (3-6d) 

l m ? / = 5*ln{(l + 9?L1)(l + 5?»+1)}> » = 2 , 3 , - , (3-6e) 
with asymptotic conditions 
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l i m i l n ^ ^ * , (3-6f) 
»-»«> n T 

,. 1 , , 4U-2A ,Q c s 
hm— In 77/ = — . (3-6g) 
n->co fl 1 

Here s* is an operator defined by 

s*f(A) = f" dA'±- sech n{A~A,)fU')• 
J-<° 4U 2U 

§ 4. Special cases 

1) Limit U-*oo 

In this case the equations become 

fin = °° , 

j ^ _ — 2 cos & — AoiJ— A 

ln( l + 7 , U ) ) = - ^ ^ + f ] i l , . l n ( l + 7 m - 1 U ) ) , 
J m—l 

and 
tf„'GO=0, 

p W =(2,) - 1 {exp(-^l+^±A) + 1 } - 1
> 

The solution of these equations are 

fin =f ' (») - 1 , / ( » ) = (Z"+1 - 2-"-1) / (2 - O , 
z = e x p ( - A H / T ) , 
ff (A)- 1 (N)\ 1 ^ 1 . (» + 2)U \ 

" w ff/(l)\JV,,/l/(»-l)/(») («t/)2 + ^3 / ( » ) / ( » + 1 ) 0 + 2) !t/2 + ^ l ' 
The magnetization is 

2 AT,, »-i J-» 2 iV0 \ T ' 

Therefore the magnetization of the one-dimensional Hubbard model behaves as 
that of -g-spins which are free each other when U is infinity. This fact was 
already noted by Sokoloff.4) 

2) Limit U-*0 

We define p.(A), p+(A), C-GO and C+U) as 
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P- W = i,1 „ P ( s i n - M ) , C- GO - < ( s i n - M ) , 

P+ CO ̂  y j = r P (* - s i n _ 1 ^ ) . £+ 00 =C (?r - s i n _ 1 ^ ) > 

where |s in _ 1y( |<7r/2, | ^ | < 1 . T h e n integral equations (3-3) are reduced to a 

set of equations 

In C* = ± 2 V l ~ ̂  UoH~ A+± {ln(l + y / - 1 ) - In (1 + y,-1) } , ( 4 - l a ) 
-* n=l 

In (1 + 7.) + l n ( l + C--1) - l n ( l + C+-1) = *?£**-+£0^ In (1 + i f . - 1 ) , ( 4 - l b ) 

In (1 + , „ ' ) + In (1 + C.-1) - In (1 + C+~J) = — % + H anm ln( l + ,„ ' ->) 

( 4 - l c ) 

where anm=2 M i n ( « , m). I t is clear that functions p ± , £ ± , fin, fin, 6n and <7/ 
have physical meaning only at | / 1 | < 1 . T h e solutions ( 4 - l b ) and ( 4 - l c ) are 

? . = / ' ( » ) - 1 , / ( » ) = g Z " ~ g " 1 f " , z = e x p ( - ^ ) , (4-2a) 

, / = / - ( » ) - 1 , f W . f a " - ^ ' n , - = e x p ( A ) ; ( 4 . 2 b ) 
w —TO W / 

with the conditions 

/ 2 ( 0 ) = ^ ! ^ , (4-3a) 

^ ( 0 ) = e x p ( ^ ^ ) | ^ 4 . (4.3b) 

Equat ions ( 4 - l a ) are r ewr i t t en as 

C+ = / ' (1) / / ( l ) , C- = exp ( - 4 V l
7T i i ' ) / ' (1) / / ( l ) . 

Subst i tu t ing these into (4-3a) and (4-3b) we have 

/ ( - D + / ' ( - D = 0 and x / ( 0 ) = / ' ( 0 ) , (4-4) 

where 

(2jl-A* 
.r = exp I 7p 

From these algebraic equations we have 

_ / x^ + xzjw + w-1) + z 2 / x^ + x^wjz+z-1) + zy-1 

a - * x' + xz-'iw + w-^+z-' ' ^ ~ V x ^ + x - ' w - ^ z + O + w - 2 ' ( ^ 

Equat ions ( 3 - 4 a ) , (3-4b) and (3-4c) become 
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- ^ - - 7 r l ^ f = ( l + C±)p±±f](ff.+ ff./), (4-6a) 

CO 

p+ + P- = 71nGn±Hanmffm, (4-6b) 
m—1 

— -1=L=-p+-p- = 71n'(Tn' + f!1anm<Jm'. (4-6c) 
7T V I - A 2 ™=i 

Equations (4-6b) and (4-6c) are easily solved and the results are 

))(p+ + P-) | 1 1 } , . = /(0)(p+ + P-)J * - * , 1 , (4.7a) 

j / . r w c T T - ' d - ^ - ^ - P +-P-) 1 1 1 I 

(4-7b) 

Substituting these into Eqs. (4-6b), we have a set of coupled equations for p+ 
and p_. The momentum distribution of electrons are given by 

P+ + g/»+l)^ = p++(i^-p+-p-)^(* + - ^ - ) (4-8.) 

at n>\k\>n/2 and 

P- + g,(»̂ i)<r.' = P- + ( i 7 j i 7 -P, -P-)^ I (*- 7 ^) (4.8b) 

at |&|<7r/2. A simple algebraic calculation gives 

fA Q ^ _ J _ _ | / i , 2 V l ^ + A „ H - A r > 

2 V l - y i ' - / £ , f f - A \ - 1 ) 
1 + exp — 

1 (/, -2jl-At+p»H-A 
(4-8b) = W T ^ ( l 1 + exp T 

Thus we deduce that the number of quasi-momenta between k and k + dk is 

1 /A. , - 2 c o s & - / / „ H - A \ - ' /.. , -2cosk + fi0H~A\-1\,, 
— ( ( l + exp _ ) + ( l + exp j )dk. 

(4-9) 

This result is the well-known momentum distribution of fermions at finite tem
perature. 
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3) Limit T—*0 

We put e , U ) = T l n ? . ( i O , $n'(A) =T lmjn'(A) and j c ( * ) s T l n C ( * ) . Sub
stituting (3-3a), Eq. (3-3c) is transformed as 

i / r A\ n(4U—2A) C* dk cos k nU , , . , . / , » 
In 7]n' (A) = v ^ - - — — ln( l + C W ) 

T J - T 7T w2{72 + (/l-sin&)2 

where 

As A<2U we have 

e » ' U ) > 0 , n = l,2-. 

And from (3-3 b) we have 

e. U ) = 2 (» - 1 ) /£„H+ [» - 1 ] T In f 1 + exp^4> 

+ T f ] T n _ 1 , m _ 1 l n ( l + e x p - % ^ - ) , » = 2 , 3 , - . 

Therefore s2(yl), S3 (;!)••• are always positive. So in the limit T-»0 we have a 
set of equations in spite of (3 • 3): 

K(£) = - 2 c o s £ - A o H - A + f ° ^ 1 — * r U ) A < , (4-10a) 
J-» 7T t / + (sink —A) 

g i U ) = p jfecgBJ, U K- (k) + 2 i «oH- [ 2 ] e r G 0 , (4-10b) 

J-* 7r C/2+ (smk —A)' 

where the suffices ' + ' and ' — ' mean 

\f(k) a t / ( * ) > 0 , ( 0 a t / ( * ) > 0 , 
W I 0 a t / ( * ) < 0 , ! / ( * ) a t / O f e ) < 0 . 

In the Appendix we shall prove that (4-10a) and (4-10b) have a set of solu
tions Si(A) and a(k) which are monotonically increasing functions of A* and k*. 
So £i and K are negative in the regions [B, — B] and [Q, — Q ] . Equations (3-4) 
can be written as 

27T J - B 7T C / 2 + U - S i n ^ ) 3 

p ( * ) = 0 a t 7 T > | ^ | > Q , (4-11a) 

J-«w t / 2 + ( s i n * - 4 > s W 7T J ^ 4 C 7 2 + U - ^ ) J 

ffU)=0 at M | > 5 . (4- l ib ) 
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These equations coincide with those of Lieb and Wu.1' 

4) Limit T—>oo 

We go to the limit T-H>oo with fi^H/T and A/T kept finite. In this limit 
the term - 2 c o s £ / ^ and 4 R e V l - (A- Uif/T in (3-3a) and (3-3c) are neg
lected. So we see that C, tjn and i]n' are all constants. The solutions of (3-3) 
are 

where 

? W - ^ - r - , 9'(.n) = -
z — z xv —iv 

, VoH\ (A-2U z=exp{ - - ^ — - J , w ^ e x p ^ 

And the solutions of (3-4) are 

<T„ = 1 ( I ) | 1 Re , 1 

7r I z + r ' + w + w"1 / l ^(w — l)5 r(«) v l - {A — nUi Uif 

R e - ? = = = 4 = _ = f , (4-12a) 
y(»)fl'(» + l ) V l - U - ( » + 2)C70: 

*/^f . * . .) I .. t ^ 
K W + Z - ' + W + W - 1 / l ^ ' O - l ^ ' O ) Jl-iA-nUif 

1 Re . * , _ . J , (4-12b) 

P = : 

^ ( X ^ ' O + l ) •Jl-(A-(n + 2)Ui)\ 

1 T 1 , 1 cos& T,. 1 ] J _ + l £2 i* R e , * I. (4-12c) 
2?r 7T (Z + O C W + W - 1 ) V l - ( s i n £ - 2 £ 7 f ) a 1 + C 

So one obtains 

» i= S » f" {ff-GO + *. ' G O > ^ = ! ~, i . (4 • 1 2 d ) 
re=l J-oo 1 + Z ZV 

n^= ^ p(k)dk+f:2nr ffn'(A)dA-n^ = - - - . (4-12e) 
J-ir »=1 J-» 1 + ZZV 

This result coincides with the first term of high-temperature expansion of ther
modynamic potential by usual method. 

§ 5. Discussion 

In these series of papers3''5' we derived non-linear integal equations for ther
modynamics of the Heisenberg model, electron gas and Hubbard model in one 
dimension. Our integral equations do not contradict known exact results of these 
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models. A weak point of our theory is that we used some conjectures to derive 
these equations. A more rigorous derivation is desired. 

Appendix 

Let us consider the series of functions Wn)(k)}, Wn,m) (A)} and {e^ (A)} 
which are denned by 

Km = - 2 cos k-/j0H-A, (Al) 

£ ^ = 2/i0H, (A2) 

eic-.-+D(yl) =UoH+ P ^ ^ s e c h ^ - ^ V ) - ^ ) 
J-* 4U 2U 

+ f" *^-R(A~A')&*•*•>+(A'), ( A 3 ) 
J-eo J/ V U ' 

ei("> = lime (" '"\ (A4) 

«<"+I>(*) = - 2 cos *-MoH- A + p ^ r n
e i , W " ( i l ) ^ , • (A5> 

J-»7T J7 + (sin£ — 4)J 

By the method of mathematical induction we easily prove the following lemmas: 

lemma 1 
a) e i (n .»)> e i (n ,»+i ) j 

b ) ei<».«>>_2 [dkcos-'k g e c h gU-sin^) 
— J 4U 2U AU 2U 

From this lemma we see that the limit (A4) exists, 

lemma 2 

a) ei<»-->>e1<"+,"»>, 

b) sw>* ("+ 1 > , 

c) e,<n)>ei("+1). 

[Proof] It is clear from (Al) and (A5) that tcm>Km. Then from (A2) and 
(A3) we have s1

(I'ro'>£1
C2'm>. So we have £1

(1)>S1
(2). 

If ei<"-1)>ei("> we have /c(n)>/C(n+1), ei("'">>ei<"+1,m) and s,Cn)>£1
(n+1'. 

[Q.E.D.] 

lemma 3 

a) ei (" ,m)U) is an MIF of A\ 

b) /t(n> (k) is an MIF of V at 0 < * ' < (TT/2)2. 

[Proof] We rewrite the second term of right-hand side of (A3) as 
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where 

f" dA'^~ s e c h 7 ^ A"> K™(A"), 
J - » AU 2U 

Km (A') =[' dk cos kS (A' - sin k) K(n)- (k). 

W e see that Km(A') is a continuous function and takes the values zero, — 4 \ / l — A1 

or /c c n>(sin-^) . So if K(n> (&) is an M I F of k2 at 0 < & 2 < (TT/2)2 , Km(A') is an 

M I F of A'2. Km(k) is an M I F of k2 at 0 < & 2 < (?r/2)2. T h e n £l<
1"»+1) is an M I F 

of A' if e(1,m) is an M I F of A\ sSul) is an M I F of A\ Us ing (A5) we have 

Km is an M I F of k2 at 0 < & 2 < (TT/2)2 . 

If A;W is an M I F of k2 at 0 < & 2 < (TT/2)2 , s(n'm> and s(n> are M I F of A\ So 

we have /cc"+1) is an M I F of k2 at 0 < A ' < (TT/2)2 . [Q.E.D.] 

lemma 4 

K(n+1)(&) is an M I F of k2 at {it/2)2<k2<Tt2. 

[Proof ] Ei(n) satisfies the equation 

m .. ZJ , f" dk cos k , Tl(A —sink) , „ , . 
£ i m = fl0H+ 1 sech—- - ( — 2 cos* ) 

J-* AU 2U 
- (" ^ £ Q ^ s e c h ttU-sin^ w + f ^ ^ M z ^ W ^ ) . 

J - 4 t / 2 t / J [/ V [/ / 

Subs t i tu t ing this into (A5) we have 

sin & — sin k' 
/u (n+1>(£)= j - 2 c o s & + 2 f' ^ ' c o s ^ / K 

J7 

-i: 
- j : 

dk cos k' o / sin & — sin &'\ cn)+/7\ 

17 \ C7 

^ 1 s e c h ^ ^ " 8 1 1 1 ^ " ^ ^ ) - A , 
= 4£7 2U 

W e see easily that the all t e rms of r.h.s. are M I F ' s of k2 at (n/2)2<k2<it2 if 

Km+ is an M I F of k2 at (jt/2Y<k*<i?. F rom ( A l ) we see that icm satisfies 

this condition. So by the mathematical induction we have lemma 4. [Q.E.D.] 

If we define Si(A) and ic(k) by 

6i 0 0 = l i m e ^ (A), K (k) s l i m K(n> (k), 
7l-*CO 71-*°° 

these functions satisfy the equations 

K(k) =-2 cos k-UoH-A + ("II. *-WM 
J—7T U2 + (A - sin k)2 
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These equations are equivalent to (4-10a) and (4-10b). So we see that equa
tions (4-10a) and (4-10b) have solutions £i(A) and K(k) which are monotoni-
cally increasing functions of A1 and k', respectively. 
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Low-temperature specific heat per site (C) of one-dimensional Hubbard model is in
vestigated by the method of non-linear integral equations. For the half-filled case we show 
limH_,0 lim r^o C/T=xh(x/2U)/(6h(n/2U)), where T is temperature, H is magnetic field, U 
is the coupling constant, and h and 7i are modified Bessel functions. Although this equation 
yeilds l imr,H_> 0C/T=7r/6 in the limit [7->0+, the true value of lim r, B-*oC/T at U=0 is n/3. 
This means that limr, n-,0C/T is a discontinuous function of U at J7=0. This discontinuity 
disappears when the band is not half filled. 

§ 1. Introduction 

Low-temperature behavior of Hubbard model is interesting physically, and 
difficult to treat rigorously. The one-dimensional case of this model has been 
investigated by many physicists. Its thermodynamic potential density is dinned by 

co(U,T,A,H) = ~T lim{In(Tr e x p ( - T ' 1 (M-A £ ( « l t + nn)))/N.}, 
Na->a> 1 = 1 

(1-la) 

where M is the Hamiltonian: 
if, y„ N„. 

M— -Yl YK^c{+1<r + cl+1<,cu) +4UJ2 nt^nn- fioHYKntr-nii), 
1=1 cr i=l 1=1 

CNa+le = Cu ; nte^CiaCu • ( 1 • l b ) 

Here we have following symmetry relations through appropriate unitary trans
formations : 

(d(U, T, A, H)=ti)(U, T, A, -H) =4U-2A + a)(U, T , 4U-A, H) 

= ju0H~A + ti)(-U,T,fi0H-2U,/ta-
1(A-2U)). (1-2) 

The first identity is obtained by changing up-spin and down-spin, the second by 
changing the creation and annihilation operators and the third by changing the 
creation and annihilation operators in the up-spin band. If we know the value 
of a) in the region U>0, H>0 and A<2U, we easily obtain the value of o) 
outside of this region through the relations (1-2). Then we restrict ourselves 
to calculate a) in this region. Other thermodynamic quantities such as energy 
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and entropy per site (e,s), specific heat per site (CHlA) and densit ies of up-spin 

and down-spin electrons («T, n^) are obtained by the differentiations of a): 

9ft) 1 9a> ™2 d.J(d\ , d(t> „ 
«t + «i = ^ T . « T -Mi = — — , e=-l —[ — )+—-A, 

dA ja0 oH dT \T / dA 

C _ 9ft) f, _ rpd'O) 92ft) f. ON 
i _ ~9T' G M _ 9T ' % _ W ^ - ( 3 ) 

In a previous paper1 ' the author derived a set of non-linear integral equations 

for the calculation of thermodynamic potential density o). W e used Bethe ansatz, 

which was first applied to this model by Lieb and Wu,2 ) and some assumptions 

on the distributions of quasi-momenta k and parameters A on the complex plane. 

Recent ly Shiba and Pincus3 ) calculated the energy levels of this model in the 

case of finite atomic numbers (such as six or five) and thermodynamic quantities. 

The i r method is not useful to investigate the low-temperature propert ies of the 

model in the thermodynamic limit. F o r example, magnetic susceptibility of the 

finite system becomes zero or infinity in the limit of zero tempera ture . But this 

is not valid in the thermodynamic limit because magnetic susceptibility has finite 

values at T = 0 in the half-filled state.4 ' '6 ' 

In the following sections we investigate the low-temperature behavior of this 

system, using the set of integral equations given in Ref. 1 ) , and come to the 

conclusion that in the half-filled case low-temperature specific heat is proport ional 

to tempera ture and coefficient is given analytically: 

lim lim C/T = nlo(ff/2U)/(61,Or/2U)). 
H->o r->o 

It should be noted that this is inversely proport ional to the magnon velocity6 ' 

at T = 0 : 

v = 2I1(n/2U)/I0(7t/2U), 

and proport ional to the magnetic susceptibility6 ' at T = 0 : 

X = jK. , J„0r /2C/) /0r / 1 0r /2C7)) . 

§ 2 . Integral equat ions 

T h e eigenvalue problem of one-dimensional Hubbard model described by 

the Hamil tonian ( 1 - l b ) can be treated by the method of Bethe 's hypothesis. 

According to Lieb and W u , we must solve a set of equations for N quasi-momenta 

k and M parameters A where JV is the number of fermions and M is the number 

of down-spin fermions, 

e""-=-n,(t-:iSlf)' J-1-*-'"-

>=i\ Aa-k)-iUI »=i\ Aa-Ap-2iU I 
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i m i ^ - = * " " * , (2-lg) 
n-.co n I 
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In the previous paper1) the author assumed that the k's and A's form bound states 
on the complex plane, and derived a set of non-linear integral equations for the 
distribution of the bound states at given temperature T, magnetic field H and 
chemical potential A: 

l n C ( * ) = K . ( * ) / T + f % U - s i n * ) l n ( ( l + 7 l ' O i ) ) / ( l + i ? iG0) )Al , (2-la) 

In ^ 0 0 = 5 * In( l + 77204))- P dk cos k *C4-sin *) ln(H-C _ 1 (*)), (2-lb) 

l n ? / ( i O = 5 * l n ( l + T ? i ' ( i l ) ) - f* JAcos*5 ( i l - 8 inA) ln (H-C(* ) ) , (2-lc) 

l n ^ 0 0 = * * l n ( l + ?»_.G0)( l + ?,+ iGfl) . » = 2 , 3 , - , (2-ld) 

l n 7 ? / ( ^ ) = 5 * l n ( l + 7 ? ;_ I U))( l + T?;+1(^)), » = 2 , 3 , - , (2-le) 

l i m ^ » = 2 A « : , (2-If) 

,. I n V 4C7-2A 
lim — = 
n-»oo # T" 

where 5(^)^sech( 7rx/2L r) /4C/, f*g=l1mfU~A')g(A')dA', 

K0 (£) = - 2 cos £ - 4 f" * U - sin jfe) (Re y/l-CA-Utf) dA . (2 • lh) 

Function £(£) is the ratio of hole density and particle density of unbound quasi-
momenta. Function 7jn(A) is that of ra-th order bound state of A. Function 
i)n'(A) is that of bound state of the nA's and 2nk's. Thermodynamic potential 
per site is given by 

<i>(T,A,H) = -T f l n a + C - 1 ^ ) ) - ^ — T S \" ln(l + Vn-\A)) 
j - n 2,u n = 1 J-°° 

x R e . -1 =.JA. (2-2a) 
-Jl-U-nUtf % 

= ^ - A - r j | % , ( * ) l n ( l + C(*))rf*+ J"f f , ( i01n( l + ? 1 ( i l ) ) ^ } , 

(2-2b) 

where-E0, Po (&), (To (^) are the ground state energy per site, distribution function 
of the k's and that of the A's at T = 0, A = 2C7, fi0H=0, respectively: 

ff,O0= f* i O l - s i n * ) - ^ - , (2-2c) 

P o ( £ ) = _ L + cos£ r ^ a , U - s i n * ) ( r o U ) , (2-2d) 
2TT J-<» 

a » U ) = , " U , TT^, (2-2e) 
7rU*+ ( » t / ) ) 
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E0= = -2 f* coskp0(k)dk. (2-2f) 

One should note that Eqs. (2-1) and (2-2) are valid only at U>0, A<2U and 
fX0H>O. The other cases can be treated through Eqs. (1-2). 

From Eqs. (2 - l c ) , (2-le) and (2- lg) we have 

ln(l + Vn')>2n(2U-A)/T, « = 1,2,3, •••. 

At 2U-AyT, we can replace In tjn' by ln( l + ^ / ) in Eqs. (2 - lc ) , (2-le) and 
(2 • lg) and obtain 

ln(l + 7in')=2n(2U-A)/T+ f* an(A-sin k)ln(l + Z(k))cos kdk 

+ 0 ( e x p ( - ( 2 C / - A ) / T ) ) , n = l , 2 , ••• . (2-3a) 

Substituting case n = 1 of this equation into (2 • l a ) , we have 

K(k) =K0(k)+2U-A + T p R(sin k- sin k')ln(l + exp(/c(k') /T)) cos k'dk' 

-T T s(A-sink)ln(l + exV(Si(A)/T))dA + 0(Texp(-(2U-A)/T)), 

(2-4a) 

where i?=5*ai, /C = T l n C , E ^ T l n ^ . 
At 2U— A = 0(T), function ic(k) is always negative. Then the last term 

of (2-lc) is of the order of T1/2 exp(K(0)(7r)/T) at low temperatures. Then we 
have 

l + 1 ? / = ( s h { a + l ) ( 2 t / - A ) / T } / s h { ( 2 ^ - A ) / T } ) 2 + O(T1/2exp(A;'0>(7r)/T)), 

(2-3b) 

where Km is a at zero temperature (hereafter we put (0) for the functions at 
zero temperature). Substituting this into (2 • l a ) , we have 

K(k) = Ko(k)+Tln(2ch{(2U-A)/T})-T C s(A-sink) 

x l n ( l + exp l^H\dA + 0(T3/2 exp(s<°>(n)/T)). (2-4b) 

At foHyT, we have 

ln(l+ TJn)=a*^ln(l + 7ii)+2(n-1)jUoH/T , n = 2,3, ••• . (2-3c) 

Substituting this into (2 - lb ) , we have 

£l(A) =TR* In(1 + expfo(A)/T)) +/i0H-T f* dk cos k s{A- sin k) 

x l n ( l + e x p ( - K ( £ ) / T ) ) +Q(T exV(2/x0H/T)). (2-4c) 
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Equations (2-4a) and (2-4c) are transformed as follows: 

tc(k) = - 2 cos k-A-HvH-T r ai(sm k-A)\n(l + exp(-t-^A)/T))dA , 
J-oo 

(2-5a) 

e , U ) = T r « 2 U - ^ ' ) l n ( l + e x p ( - e i a ' ) / 7 1 ) ) ^ ' 

- T p a 1 ( ^ - s i n * ) l n ( l + exp(-K(/fe)/T))cos/fe^ + 2^0H'. 

From Eq. (2-2a) we have 

)(T,A,H) = -T r i n ( l + e x p ( - / c ( A ) / T ) ) - ^ - . 
J - * 2ft 

a>( 

(2-5b) 

(2-5c) 

Here we have neglected the terms which are of the order of e 2>t«H/T or e <4fr 2AyI'. 
Equations (2-4) or (2-5) are useful to obtain thermodynamic potential at 
2U-A>T and 2ju0H>T. 

As shown in Fig. 1, (A, H) plane is devided into several regions by the 
low-temperature properties. The number of fermions per site n has the follow
ing properties at zero temperature: 

00 ° 2U A 

Fig. 1. Characteristic regions of low-temperature specific heat for various values of U. 
On lines d, e, f, g and h, low-temperature specific heat is proportional to T1/z. In 
regions B, D and E, it is proportional to T. In regions A and C, it is proportional 
to T-*" e x p ( - a : / T ) . 

a) {7=0.5 
b) [7=1.0 
c) [7=2.0 
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n — \ at regions C and E, 

0 < « < 1 at regions B and D, 

n = 0 at region A . 

On lines a, b and c, magnetization is zero. 

§ 3 . Case /i0H> T 

a) A<-2-ju0H (Region A) 

In this region, density of fermions is zero at zero temperature. From 
Eq. (2- 5a), we have 

K (k) = - 2 cos k - A - n,H- T exp ( - 2/UoH/T). 

Substituting this into (2-5c), we obtain 

a)(T, A, H) = -n-'T^ f" ln ( l + e x p ( ! ± ^ ± ^ ) « — ) < * * . 

b) e i m ( 0 ) > 0 , A > - 2 - £ „ . £ / (Region B) 

Here the number of fermions per site, n, satisfies 1 > « > 0 . At zero tem
perature all fermions have up-spin. From Eq. (2-5c) we have 

o(T,A,H)-<i>(p,A,H)=-T T ln( l + e x p ( - | / c ( * ) | / r ) ) | i 

J-e 27T 

where Q and - Q ( Q > 0 ) are zeroes of icm(k). From Eqs. (2-5a) and (2-5b) 
we obtain 

dK=-T pf l jCsinA-iOlnCl + e x p C - e i G O / T ) ) ^ , 

£i U ) = - 2 T fll (yl - sin *) cos2 k dk + 2/i0H+ O (T2) + O (T"* exp ( - s1
(0)/T) ) . 

Then we have 

u>(T, A, H) = a)(0, A, H) - TL - ± - • ^-
27T 2 sin £2 3 

-T^2g(0)J SiJ(0) p n ( l + e x P ( - e i w " ( 0 ) / T ) •«—)<** , 

where 

<7C*) = f ' a i U - s i n * ) - ^ - . 
J-e 2% 
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c) n«H>2(Jl + W- U), A>2-n,H (Region C) 

At zero temperature, density of fermion is one, and all fermions have up-
spin. Substituting Eq. (2-5a) into Eq. (2-5c), we have 

a>(T,A,H) = - A - / / 0 H - T f* ln( l + exp( j c (* ) /T) ) -^ . 
J-* 2% 

- T J_"M2(Re ~ ^ ^ r ^ j \ n ( l + exp(-£l(A)/T))dA. (3-1) 

From Eqs. (2-5a) and (2-5b), we obtain 

K (*) = - 2 cos k - A - ju0H- O (TZ'2X), 

£lGO = - 4 R e ( V l - U - C 7 t f - U ) + 2/i0H+ O(T3^) + O(T^/i), 

A ^ e x p ( - ( 4 ( v ' m 7 I - C / ) - 2 / « 0 i ? ) / T ) , (i = ^v((2-A-{i,H)/T). 

Substituting these into Eq. (3-1), we have 

to(TiA,H) = -A-MoH-iz-lTs'* f" In(1 + jue'1')dx 

- 4 T 3 / 2 ( V I T C ^ - C / ) ( l + ? 7 2 r 1 / 4 n i n ( l + /Ur*V-z- (3-2) 

On the boundary of this region we have 

' -A-MoH-7t-VX(j)(l-j-)^Y a t MoH=2(Jl+U*-U), 

a)=< - A - i « 0 H ' - 4 T s / 2 ( v / l + C / 2 - t / ) ( l + C / 2 r 1 / 4 c ( " ) ( l — \ r ) ~ 
\ 2 / \ V 2 / 2 

at A = 2-ju0H. (3-3) 

d) ei^COXO, Km(n)>0 (Region D) 

From Eq. (2-5c), we have 

co (T, A, i f ) - co (0, A,H) = - fj" + P i * fa (4). (3-4) 
6/c'(Q) J-e 2H: 

Function (J/e(&) is determined by 

die (k) = f «! (sin £ - ,4) fci ( y i ) ^ ^ {a, (sin * - S) + ai (sin & + £ ) } , 
J-s 6s/ (B) 

(3-5a) 

5 s U ) + f a » U - y l ' ) 5 e U ' ) ^ - , = [ dk cos kai(sink-A) die (k) 

- " T , , ^ Q <*»<>in Q - ; 0 + a. (sinQ + J)} 6/c' (Q) 
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^T% {a2(B-A)+a2(B + A)}, (3-5b) 
6e,'(B) 

where Q and B are zeroes of Km{k) and Si(0)(yl), respectively. From these 
equations we obtain 

o)(T, A, H) -o)(0, A, H ) = -g^ZLT ^ W ( g ) + P(0)(Q) 1 + 0 ( T 3 ) , (3-6a) 

where p<0>(&) and d ^ G l ) are the distribution functions of k and A at zero tem
perature and determined by 

Pim (k) = — + cos k [B a, (A - sin k) ffl
m (A) dA , (3 • 6b) 

Gim (A) + P a2 (A-A') ff,m (A') dA' = f * ai U - sin *) p(0) (A) <tt. (3 • 6c) 

The equations for ff1
m and E1

m' are written as 

iW>B J-Q 
<TiCO) (A) - f i? U - ^ ' ) ff^' U ' ) A i ' = r s (A - sin k) p(0> (A) J£ , (3 • 6d) 

s . ( 0 ) ' ( ^ ) - f R(A-A')^Y(A')dA' = [Q s(A-smk)Km'(k)dk. (3-6e) 
JMi>B J - « 

The right-hand sides of these equations are 

and 

s i g n ( 4 ) e x p ( - | ^ ) ( 2 £ / r » £ | ^ « p ( - ^ * ) i c « ' ( * ) 

at | y l |> l , C/. Then we have 

ffim(B) = S<LQdkexp(7tsmk/2U)pW(k) Q ( B _ 2 ) 

£l(0)'(S) J ^ ^ e x p C T r s i n ^ C / ) ^ 0 ' ' ^ ) 

and 

3 ljc<°>'(Q) H e ^exp(f fs inV2C/) /C ( 0 ) (*) 

+ 0({ln(A,H)}- 2 )} , (3-7) 

when ,«o-f̂  is very small. From this equation we obtain 

l i m l i m C , g / T = ^ K > ( Q ) + S%dkexp(nSink/2U)P*Kk)\ ( 3 . g ) 
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e) 2(^/1+U2 - U)>/x0H>T, icm(.n)<0 (Region E) 

From Eq. (2-2b) we have 

"i / i . / " ^ 

I n l l + expl rp ) -e 
co(T,A,H) -o)(0,A,H) = ~2T^p0(n)J-^f^ £ 

- T j " f f „ ( ^ ) l n ( l + e x p ( - l ^ H ) ) r f y l - T £ jS!!(A)ds1(A)dA + 0(Tl), 

(3-9) 

where de=£ — s(0>. From Eq. (2-4b) 
we have 

= -7t2T*(R(A-B) 

+ R(A + B))/(6e1'(B)) 

+ 0 ( ( 5 - 5 ' ) 2 ) , 

where B and 5 ' are zeroes of 6i 
and Ei<0), respectively. Summing the 
second and the third terms of r.h.s. 
of (3-9), we have 

lim lim C/T 
«-0 T-0 

2.0-

2 3 U 

Fig. 2. Coefficient of T-linear low-temperature 
specific heat in the half-filled case (A=2U), 
and finH=0. 

3 eW'(B) K ; ' 
(3-10) 

where OV0' and Si<0)' are determined by 

ff,<°>G0- f iJU-ilOff^OlOAf'^oGO, (3-lla) 
J M ' I > B 

e , m ' U ) - f i ? U - i i / ) e i w ' U ' ) ^ ' = 2 P s(A-sink)smkdk. (3 - l lb ) 

At | ^ | > m a x . ( l , 1/C7), r.h.s. of (3 - l l a ) and (3 - l lb ) are (2U)-%(it/2U)e-"wm 

and sign(A) •2nU-lL(n/2U)e-"uViu, respectively. Then we have 

a^(B)_ I0(n/2U) g . 

Sl
(°>'CB) 47rJi(7r/2C7) 

and 

) (T, A, if) - a> (O, A, H) = - 2T3/2p0 (TT) J _Jy(lt) 

X r i n ( l + e x P ( ^ 0 r ) / 7 > - * - ) - j g i - f ^ ^ 
J» 12 II(TI/2U) 

+ 0 ( ( l n A H ) - 2 ) + 0 ( T 8 ) . (3-12) 
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The coefficient of T-linear specific heat at A = 2U is 

l imlim<WT = i L . - W 2 ^ ) , 
7^0 T^ ' 6 h(n/2uy 

This value is shown in Fig. 2 as a function of U. 

§ 4 . Case /JL0H=O{T) 

a) A;(0> (jt) < 0 {near line a) 

From Eqs. (2-1) we have 

l n ? 1 G 0 = 5 * l n ( l + 7 i G O ) - ; | f * ̂  cos2 £ s U - s i n k) +O(T^2 exp - ^ ^ - ) , 

lnVn(A) =s* ln(l + Vn^(A)) (.1 + Vn+1(A)), n = 2,3,~, 

lim l n ̂  = 2fl*H 

Thus Eq. (2-2b) can be written as follows: 

<o(T,A,H) =£ 0 -A-2T 8 / 2 p 0 (7 r )V _gc°r ( 7 r) J0 ln ( l + exp -^L.e-*yx 

_TZJ0(n/2U)cf2^H\ Ti 

2 Ix(jt/2Uy \ T I 

where C(y) is determined by 

C(y)= J°° e—/2 In (1 + 7l (*) ) dx , 

lnVl(xy=-e-"**+ [" i - sech * ( * - * ' ) In ( l + ? 1 (g ' ) )<**', 
U — °° *± £ 

ln yn (x) = f" j sech E ( * - * ' ) ln ( l + ^ ( x ' ) ) (1 + 7 , + 1 ( x ' ) ) dx ' , 

« = 2 , 3 , •••, 

lni?„ l i m ^ i l i = y . (4-2) 

b) /CW(7T)>0 (wear & e 6) 

From Eq. (2-2b) we have 

*(r,A,H)-.*(0,A,fl)= £ f w ) - g . - ^ - + 0(r). (4-3) 

The equation for dK=K — Km is 

5K (£) - P i? (sin k - sin £') 6It (£') cos &'<&' 
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= - T p s U - s i n A)In(1 + 7 , 0 0 ) ^ 1 

+ ^ [ ^ (i?(sin ^ - sin Q)+ i? ( s in ^+s in Q ) ) + 0 ( T 4 ) . (4-4) 

After some calculations we obtain 

to (T, A, H ) - to (0, A, 0) = - 7T2 r̂2p<°> (Q) _ 2 7 K . 12/xJI 
v ' ' J v ' ' 3/u(0) (Q) V T 

£ e x p ( ? H L * ) p w W ^ £eXp(°HL*)K<°>'(*)dfe) +0(T°), (4-5) 

where pc0), /C<0) and C(y) are defined in Eqs. (3-6) and (4-2). Functions similar 
to C(y) defined in (4-2) appeared in the investigation of the low-temperature 
specific heat of Heisenberg-Ising ring at | J | < 1 . 7 ) From the result of numerical 
calculation in Ref. 7) we conjecture 

C(0)=7r/6 and C " ( 0 ) = l / 2 j r . (4-6) 

If these equations are true, we obtain 

lim lim C/T = lim lim C/T , 
T-.0 H->0 H->0 T->0 

lim lim % = lim lim % . 

§ 5. Discussions and summary 

From the theory of non-interacting fermions, thermodynamic potential per 
site at U=0 is 

(0(T,A,lt) = ~ \ P ln ( l + e x p ( - 2 c o s A - / £ , H - A / T ) ) ^ 
2ft I J - t 

+ P ln ( l + e x p ( - 2 c o s ^ + A o - H " - A / T ) ) ^ | . (5-1) 

From this equation we obtain 

lim lim C/T = 7r/3 

at A = 2U=0 and /i0H=0. This value differs from lim^_0 l im^^ limr_0 C/T = n/6. 
One can interpret this discontinuity of the coefficient of T-linear specific heat 
at £7=0 as follows. In the half-filled case at U^>0 one-particle excitation 
spectrum has a energy gap -Km(n) =2U-2 + 4Sodd) J^id)/u>(l + em°'). Then 
this excitation does not contribute to the coefficient of T-linear specific heat. 
But at U=0, gap is zero and this excitation does contribute to the coefficient. 
In the case » < 1 one finds no such discontinuity, because both magnon excitation 
and one-particle excitation contribute to the coefficient of T-linear specific heat. 
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We show how to construct a complete set of eigenstates of the hamiltonian of the one-dimen
sional Hubbard model on a lattice of even length L. This is done by using the nested Bethe 
ansatz and the SO(4) symmetry of the model. We discuss in detail how the counting of 
independent eigenstates js carried out. 

1. Introduction 

An important ingredient in the search for a theory of high-rc superconductors is 
the analysis of strongly correlated electron systems (see for example ref. [1]). A 
prototype model for these is the Hubbard model. Especially interesting is the 
77-pairing mechanism proposed by Yang in refs. [2-4]. 

The one-dimensional Hubbard model has been known to be exactly solvable 
since the work of Lieb and Wu of 1968 [5]. In their paper, a large set~of 
eigenfunctions of the hamiltonian were found by using the nested Bethe ansatz [6]. 
However, the issue of whether this set of eigenfunctions is actually complete has 
not been considered until recently. In a recent paper [7],we used the SO(4) 
symmetry of the Hubbard model (which has been explored in refs. [2-4,8,9]) to 
show that the Bethe ansatz is not complete (see below for some comments on this 
result). 

In this paper we will show that the SO(4) structure can be used to extend the set 
of Bethe-ansatz eigenstates to a complete set of eigenstates of the one-dimensional 
Hubbard model. This result was first announced in ref. [10]. Here we provide a 
detailed account of the derivations involved. 

The Hubbard model describes electrons, which can hop along a one-dimen
sional lattice and which interact with coupling constant U if two of them occupy 
the same site. The hamiltonian of the Hubbard model on a periodic one-dimen
sional lattice of even, finite length L is given by (the small modifications in the 

0550-3213/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 
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potential term as compared to ref. [5] are such that the SO(4) symmetry becomes 
explicit, see refs. [8,2,9,3]) 

L 

1 = 1 < 7 = 1 , - 1 

+ f E K , - * ) ( « , > , - £ ) • (i-i) 
/ = i 

Here the cta. (cr takes the values +1) are canonical Fermi operators on the lattice 
0 = 1, . . . , L labels the lattice sites), with anti-commutation relations given by 
{cj„., CJT) - SjjS^T. They act in a Fock space with the pseudo vacuum |0> defined 
by cilT |0> = 0. The operator ni(T = c]ircUr is the number operator for electrons 
with spin cr on site /. U is the coupling constant and can be either positive 
(repulsive case) or negative (attractive case). For later convenience we define 

U 
« = TT- (1-2) 

2/ 

The analysis by Lieb and Wu in ref. [5] resulted in a large number of eigenstates of 
the hamiltonian, which are characterized by momenta kf and rapidities Aa, where 
/ = 1, 2, . . . , Nc and a = 1, 2, . . . , M for an eigenstate with a total number of N 
spin-up and M spin-down electrons. Our convention throughout the paper will be: 
N = number of spin-up electrons; M = number of spin-down electrons; NQ = N + 
M = total number of electrons. 

We will now discuss the Bethe wave functions in the form as given by Woy-
narovich [11], which is equivalent to the form found by Lieb and Wu. The nested 
Bethe ansatz provides us with the following set of eigenstates with M spins down 
and N spins up, 

n w = E *_, _,., ,(*„...,**c)rK._, n <..io> 
I < < ( . < / . 7 = 1 l = / V / + l 

= E K,r2 <,„.(*!. • • •>*7V c )n< , , IO>, (1.3) 
i « A t « Z . "• 7 = 1 

where we have put al = ... = <rM = — 1, aM+ y= ... =aN =\. 
The Bethe-ansatz wave functions explicitly depend on the relative ordering of 

the Xj. We represent this dependence by a permutation Q of Ne elements, which is 
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such that 1 <JCQ <JCQ < ... <JCQ < L. In the sector Q the general Bethe wave 
function for M spins down and N spins up reads 

•A<r,,o-2 vN<\Xl' ••••>XNC) 

i E * p / 0 / U ( y . . •••,y*flP)- (i-4) 

The P-summation extends over all permutations of Ne elements and sgn(7r) is the 
sign of the permutation v (IT = Q, P). The amplitudes < (̂y,, . . . , yM |P) are f the 
form 

M 

4>(yi, ...,yM|P)= E ^ r i M ^ , . * / ) , (L5) 
;s.„ ' - i 

with 

/ r - ' , i n ( * p < ) - A , - t / / 4 f W 1 \ 

I /_ i sin(/tP) - Aj + U/Ai J \ sin(JfcP ) - Ay + t / / 4 i ) ' V ' 

where we defined 

^>(0=s in (* , . ) -A , + iU (1.7) 

and 

&J) 

By 7r = (IT,, 7r2, . . . , TT„ irt+u ..., TTM) we denote a permutation of M elements 
(spin-down electrons) and (t, t + l)v = ( i r„ TT2, ..., vl+l, v,, ..., rM). A solution 
of eq. (1.8) is given by 

A„= n Hi—7—- <J-9) 
The amplitudes <f>(yu ..., yM\Y) depend OIKT,, . . . , aN and on Q through the 
numbers yl7 ..., yM, which are defined to be the positions of the down spins 
among the spins in the series aQ, <TQ , ..., <TQN in increasing order, i.e., 

K y 1 < y 2 < y 3 < ... <yM<Ne. (1.10) 



434 F.H.L. Ejiler et al. / One-dimensional Hubbard model 

For example, for one spin down and one spin up (and er, = — 1, a2 = 1) we have 
the two cases y = 1 (if the spin down is to the left, which holds in the Q = (id) 
sector) and y — 2 (if the spin down is to the right, which holds for Q = (21)). 

As we already indicated in eq. (1.3), we will choose the notation such that the M 
down spins are at the positions JC,, . . . , xM, i.e., ax = . . . = aM = —1 and aM+l = 

aN = 1. 
We see that all solutions are characterised by Ne momenta {kj | j = 1, . . . , NJ 

of charged spinless excitations (holons), and M rapidities {Ak \ k = 1, , . . . , M) of 
spin waves (spinons). 

Imposing periodic boundary conditions on the Bethe-ansatz wave functions 
leads to the following equations for the parameters kj and Aa, 

» sin(ki)-y\l-U/4i 
e x p ^ L ) % n s i n ; , ; ; _ A > + t / / 4 < o-.i,2,....At), 

^ sin(^)->la-t//4» "Ae-A.-U/li 

/ _ 1 , s i n ( * y ) - A 0 + t / /4 i }.\Afi-Aa + U/2i ^ ' ' • " ' h 

(1.11) 

Energy and momentum, i.e., the eigenvalues of the hamiltonian (1.1) and the 
logarithm of the translation operator, of the system in a state corresponding to a 
solution of (1.11) are 

K 
^ , = - 2 1 cos(A:,.) + i ( / [ i L - J V e ] , 

i = i 

Nr 

P = L A : , . (1.12) 
i '=i 

The second term in the expression for the energy is due to the shift of n ; „. by \ in 
eq. (1.1). 

Because of the antisymmetry of the product over cf 's under interchange of any 
two of them, the wave functions *tia ,a (xx, ..., xN) can be (and have been) 
chosen to be completely antisymmetric under the simultaneous exchange xk <-»*, 
and ak «-»<r;, i.e., 

Vo;,...,€rj,...,<rk,...,aNc\
Xl' •••>Xj> ••••ixk> •••>XNC) 

= - ^ . . . . . . o * o> *„(*!> • • •» * * . • • • ' *j, • • •> *N.)- ( L 1 3 ) 
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We now define "regular" Bethe-ansatz states (for finite L), to be denoted by 
I'AM./VX by the properties that N- M^Q (non-negative third component of the 

spin), Nc < L (less than or equal to half filling), and that all Aa and all kj are 
finite. Bethe-ansatz states with N - M < 0 and/or Ne> L can be obtained from 
the regular Bethe-ansatz states by using simple symmetry operations, i.e., reflec
tion of the third component of the spin and particle/hole correspondence, which 
commute with the hamiitonian [12]. The model is invariant under spin rotations, 
with the corresponding SU(2) generators given by 

£=X>J.IC,.-I, r = (O f. ^ - H I K - . - " , . , ) - (1-14) 
i = i 1 = 1 

(Note that (z equals minus the third component of the total spin.) For even L the 
model has a second SU(2) invariance, generated by [3] 

^ = E ( - l ) ' c , - . . c , - . - i , J=t(-lYcUcl, r , : = i E K , . , + « , 1 ) - i L 
/ = i i = i i = i 

(1.15) 

The raising operator TJ+ of this second SU(2) creates a pair of two opposite-spin 
electrons on the same site, with momentum v. Combining the two SU(2)'s, which 
commute with the hamiitonian and with one another, leads to an SO(4) invariance 
of the one-dimensional Hubbard model for even lattice lengths [9,3]. For a 
discussion of the theoretical and possible experimental consequences of the 
existence of this symmetry, which also exists in the Hubbard model in two or three 
dimensions, we refer to the papers [3,4,9,13]. 

In a previous paper [7], we established the following remarkable property of the 
regular Bethe-ansatz eigenstates of the hamiitonian: they are all lowest-weight 
states of the SO(4) algebra (1.14), (1.15), i.e., 

7]\4>M,N) = 0, £|<AM,N> = 0 . (1.16) 

This shows that acting with the raising operators if and £ f on \ij/MyN) leads to 
new eigenstates of the hamiitonian, which are not in the regular Bethe ansatz. In 
this way, every regular Bethe-ansatz state | t//M N > is the lowest-weight state in a 
multiplet of states, which form a representation of SO(4). Since 

*»* I *«.*> = 5 ( ^ - ^ ) 1 **,*>. f, !**.*> = £ ( M - A O I **#.*>. (1-17) 

a state I i\iMN) has spin rj = | ( L - N e ) with respect to the ^-pairing SU(2) algebra 
and spin £ = \{N - M) with respect to the £ SU(2) algebra. The dimension of the 
corresponding SO(4) multiplet is therefore given by 

dimM ,N= (2T, + l ) (2 f + 1) = (L -Ne + l)(N-M+ 1). (1.18) 
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The states in this multiplet are of the form 

l ^ > = ( V ) V ) ' l < W - (1-19) 

By symmetry, all the states that are highest- or lowest-weight states with respect to 
one of the SU(2) algebras are again given by the Bethe ansatz (although in general 
they are outside the regular Bethe ansatz). All other states are not given by the 
Bethe ansatz, which shows that for this model the Bethe ansatz is not complete. 
The simplest example of a state that is outside the Bethe ansatz is TJ + | 0 ) , which 
describes a single 17-pair of momentum tr. The fact that this state is outside the 
Bethe ansatz was explicitly confirmed in ref. [7]. 

It is the main purpose of this paper to show that, if one counts the number of 
eigenstates that are related to the regular Bethe-ansatz states by the SO(4) 
symmetry, one finds 4L, which is precisely the correct dimension of the Hilbert 
space of the model *. Thus we will conclude that the Bethe ansatz together with 
the SO(4) structure leads to a complete set of eigenstates of the one-dimensional 
Hubbard model. 

The paper is organized as follows. In sect. 2 we discuss in some detail the nature 
of the solutions of the Bethe equations for the Hubbard model. In appendix A we 
show that the so-called A and k - A strings give wave functions that describe 
bound states. In sect. 3 we will then count eigenstates and prove completeness. An 
explicit construction of the \{L + 2\L — 1) solutions of the Bethe equations in the 
sector with one spin-up and one spin-down electron (as opposed to the somewhat 
indirect construction used in the general proof) is presented in appendix B. 

2. Solutions of the Bethe equations for the Hubbard model 

Let us focus on the Bethe equations (1.11), which express the fact that the 
Bethe-ansatz wave functions (1.4) satisfy periodic boundary conditions. 

Counting regular Bethe-ansatz states means counting inequivalent solutions of 
eqs. (1.11) while taking into account the "regularity conditions" N-M>0 and 
N e < L . Following Takahashi [14], we will first distinguish different types of 
solutions {&„ AJ of eq. (1.11). The idea is that for a solution {kt, Aa], the set of all 
the k/'s and Aa's can be split into (three) different kinds of subsets (strings), which 
are: 

(1) a single real momentum &,; 
(2) m yl„'s combine into a string-type configuration (yl-strings); this includes 

the case m = l, which is just a single real Aa **; 

* There are 4 possible electron configurations per lattice site (spin up, spin down, both spin up and 
spin down, and empty site), thus the corresponding direct product Hilbert space is 4''-dimensional. 

** These correspond to bound states of spin waves (magnons). 
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(3) 2m k/s and m Aa's combine into a different string-type configuration 
(k - A-strings) *. 

For large lattices (1 «c L), almost all the string configurations are close to 
"idealized" string solutions where both the fc's and the A's are assigned imaginary 
parts according to a "equal-spacing" prescription [14]. For a A-string of length m 
the rapidities involved are 

X"a<
j = Am

a-\{m + \-2j)u (Aureal, ; = 1, 2, . . . , m). (2.1) 

The fc's and A's involved in a k — A-string are 

kl = w - sin-\ A'™ ~\mu), 

** = s in - l [ /C-±C«-2 )u ] , 

^ = sin-1[A' ; ,- i(m-4)M] , 

Ka = TT — Ka, . . . , 

^ " - 2 = sin-1[Ar + | ( m - 2 ) « ] , 

k2
a

m-l=Tr-k2
a"-2, 

k2
a
m = v - sin"•'(A'™ + \mu). (2.2) 

and 

AT1 = K - \{m + 1 - 2j)u (AT real, j = 1, 2, . . . , m). (2.3) 

Eqs. (2.1)-(2.3) are valid up to exponential corrections of order 0(exp(-5L)), 
where 8 is real and positive (and depends on the specific string under considera
tion). In appendix A we discuss the wave functions corresponding to some of the 
the string configurations (2) and (3) and show that they correspond to bound 
states. 

Let us now consider a solution that splits into Mm A-strings of lengths m, M'n 

k — A-strings of length n (containing 2n fc,'s and n Aa's) and Me additional single 

* The case m = 1 describes a "Cooper pair" of electrons. 
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&,'s. Clearly, we have 

Ne = Me + 2 Z mM'm, M= £ /n(M,„ + M,'„). 
m =1 m=\ 

(2.4) 

How many solutions of this type exist? 
The idea is that each of the strings in a solution can be characterised by the 

position of its center (a real number), which we denote as in eq. (2.1) by A"'Y, a = 1, 
2, . . . , M,„, for the length-m /1-strings, by A't"\ a = 1, 2, . . . , M'm for the length-m 
k — yl-strings [as in eq. (2.3)] and which is simply equal to kj for the unpaired 
momenta kj, j = 1,2, . . . , Mc. Because of the periodic boundary conditions, these 
parameters will have to be chosen from a discrete set. 

Following ref. [14], we now write the following equations for the parameters &;, 
A'" and A['t". They follow from eq. (1.11) and the form of the "idealized" string 
solutions which we discussed above (we write M' = E"1 = , mM^), 

kjL = 2irIj- £ E « 
n = 1 a = 1 

M- ' sin kj - A"a 

nU n=\ a=\ 

NC-2M' (A"-sin k,\ - M»> A" - A' 

L[sin- , (yl ' ; + w i f / ) + s i n - , « - / n i ( y ) ] 

A/C-2M' / A'^ - sin Jk, \ " "» [ K - K 

y'-i m = l 0 = 1 

(2.5) 

where 

0(*) = 2 tan _ 1 (4 ; t ) , 

4A: 

W^) = ' 

I n — m | 

4x 

+ 20 
4x 

\n-m\+2 

+ 6 
n + m 

20\~ + . . . + 2 0 , 
I 1 / U - l 

2x \ (2x 

+ 26 
Ax 

n + m — 2 

(for n + m) 

(for n = m). 

(2.6) 

The Ij, J£ and /^" are integer or half odd integer according to the following 
prescriptions: / ; is integer (half odd integer) if Em (Mm + M^) is even (odd); the J£ 
are integer (half odd integer) if Ne - Mn is odd (even); the J* are integer (half 
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odd integer) if L - ( /V e -M„ ' ) is odd (even). According to ref. [14], we have the 
following inequalities: 

|y;i<ifyv c-2M'- £t„mMm-i 

L-NC + 2M'- £f ,„„M,; , - l 
m= 1 

( ) < / ; < L . (2.7) 

where tnm = 2 minO;, in) - 8„m. 
We will now make the standard assumption that, in order to enumerate the 

different solutions of the system (2.5), it is sufficient to enumerate all possible sets 
of non-repeating (half odd) integers /,, 7(" and J^", satisfying eq. (2.7). 

[This assumption mimics the similar assumption which is usually made for the 
spin-^ Heisenberg XXX model [15,16]. It is known, however*, that the actual 
distribution of the different types of solutions can be different from the one 
implied by this counting. We carefully studied this phenomenon in a recent paper 
[18], where we give a detailed discussion of the two-magnon sector of the XXX 
model. We explicitly show that the deviations from the above assumption can be 
viewed as a "redistribution phenomenon" which does not affect the total number 
of Bethe-ansatz states. For the Hubbard model we have a similar situation, which 
gets complicated further by the fact that there is a free coupling constant U in the 
model. In appendix B we analyze in detail the N = 1, M = I sector of the Hubbard 
model. Although we do find ^/-dependent redistributions among different types of 
solutions, we find agreement with the predictions based on the "ideal" string 
assumption for the total number of states in this sector, which is \{L - \\L + 2) 
for the L-site model.] 

From eq. (2.7) we read off that the numbers of allowed values for the (half 
odd)integers corresponding to each of the fundamental strings are 

(1) L for a free &,; 
(2) Ne - 2M' - ITm=l tnmM,„ for a yl-string of length n; 
(3) L - Ne + 2M' - ITm~i tnmM'm for a k - A-string of length n. 

The total number of ways to choose the (half odd)integers in a solution with 
multiplicities Mt, Mm and M'm is therefore given by (remember that the integers 
are assumed to be non-repeating) 

L \^lNe-2M'-Yrm = ltnmM, 

\ e / n = 1 

xni '""- + 2 M
M " r ""' ' '" A ' ; [ <2-8> 

* This fact was actually already noticed in the original paper by Bethe [17]. 
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The total number of solutions of eq. (1.11) with given numbers N and M is now 
obtained by summing n(Me, {Mm}, {M,'n}) over all the Me, Mm and M'm, under the 
constraints (2.4). 

Every solution to eq. (1.11) gives us a regular Bethe-ansatz state, which comes 
with an entire multiplet of eigenstates of the hamiltonian, the dimension dimM N 

of which is given in eq. (1.18). The full number of eigenstates that are obtained 
from the Bethe ansatz and the SO(4) symmetry is therefore given by 

#(eigenstates) = E E 
M»0 N»0 

I \ 
00 00 CO 

E E E n(Me,{Mm},{M,'n)) 
Afc = 0 M„, = 0 M,;,=0 

N-M>0 \ N + M = Me + 2Z'„,l mM'„, 

N + M^L N-2M = MC-2T%,_, mM„. 

d[mM,N-

(2.9) 

The counting of the eigenstates that are obtained from the SO(4) extended 
nested Bethe ansatz has thus been reduced to a purely algebraic problem, which 
we will solve in sect. 3. 

3. Counting eigenstates 

In this section we will prove that for general even L the sum in eq. (2.9) equals 
4L. This will prove completeness. Before we come to that, we show the examples of 
the two-site and four-site models. The two-site model (L = 2) was discussed in ref. 
[7], where we presented the explicit form of a complete set of 42 = 16 eigenstates 
of the hamiltonian. In table 1 we show how the counting presented in sect. 2 work 
out in this case. 

The total number of 16 states splits into two singlets, two triplets and two 
quadruplets of SO(4). The ground state is the singlet with Ml = 1 for the case 
U > 0 and the singlet with M[ = 1 for the case U < 0. In both cases it is a bound 

TABLE 1 
12. n denotes the number of regular Bethe-ansatz states of a given type. There are a total number of 

16 = 42 eigenstates of the hamiltonian. 

Mc 

0 
1 
2 
2 
0 

M, 

0 
0 
0 
1 
0 

Ml 
0 
0 
0 
0 
1 

M 

0 
0 
0 
1 
1 

N 

0 
1 
2 
1 
1 

n 

1 
2 
1 
1 
1 

dimMA, 

3 
4 
3 
1 
1 

#(states) 

3 
8 
3 
1 
1 

16 
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TABLE 2 

= 4. There are 60 regular Bethe-ansatz states, which, when weighted with the correct SO(4) 
multiplicities, give a total of 256 = 44 eigenstates of the hamiltonian. 

M„ M, M, Ml Mi M N dim. #(states) 

0 
1 
2 
3 
4 
2 
0 
3 
1 
4 
4 
2 
0 
0 
4 
2 

0 
0 
0 
0 
0 
1 
0 
1 
0 
2 
0 
1 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
2 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
2 
2 
1 
1 

0 
1 
2 
3 
4 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 

1 
4 
6 
4 
1 
6 
3 
8 
8 
1 
1 
6 
1 
1 
3 
6 

5 
32 
54 
32 
5 

18 
9 

32 
32 

1 
1 
6 
1 
1 
9 

18 

256 

state of one spin-up and one spin-down electron with energy Ea = — ij\U2 + 16 . 
The counting for the four-site model (L = 4) is presented in table 2, where we 
show how the total number of 44 = 256 is obtained. (Notice that the total number 
of regular Bethe-ansatz states is only 60.) 

We now turn to the proof that for general (even) L the sum in eq. (2.9) equals 
4L . We will split this proof into two steps as follows. In the first step we will prove 
the following two identities, 

n 
= 0 " - 1 M,,A/2 

£U,_i mMm=M 

N- N 
M-\ (3-1) 

and 

'!"((«)-U-i))<"-2«+i>-2"- <"> 
For later 

and 

convenience we define 

Pn 

n({ 

= N-

MJ) 

00 

E tnmMm, 
m = l 

00 

n = 1 y. 

(3.3) 

(3.4) 
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where tnm = 2 min(/i, m) — 8nm as before. In the second step we will then use 
identities (3.1) and (3.2) to perform the summation in eq. (2.9). 

The auxiliary identities (3.1) and (3.2) have a natural interpretation in the 
context of the spin- | Heisenberg XXX model [16]. Eq. (3.1) gives the total number 
of regular Bethe-ansatz states (defined by M < [N/2]) with M overturned spins in 
the XXX model on a lattice of length N. The second formula shows that the total 
number of states obtained by combining the regular Bethe ansatz with the SU(2) 
structure equals 2N, which is the dimension of the Hilbert space of the XXX 
model. These relations thus establish the completeness of the SU(2) extended 
Bethe ansatz for the XXX model. 

The fact that identities that have their origin in the XXX model play a role here 
should not come as a surprise. Indeed, our method of solution of the Hubbard 
model is the nested Bethe ansatz. The solutions to the Bethe ansatz are specified 
by two sets {A: •} and {AJ of spectral parameters. The A: -'s are momenta of charge 
density waves, whereas the Aa's, which describe the "nesting" of the Bethe ansatz, 
are rapidities of spin density waves of the type encountered in the Heisenberg 
XXX model. This should make clear that the second stage of the nested Bethe 
ansatz for the Hubbard model is really a spin problem, which is very similar to the 
Bethe-ansatz analysis of the Heisenberg XXX model. Our two-step procedure for 
performing the summation is natural from the point of view of the nesting: in the 
first step we sum over the spin degrees of freedom, and in the second step we then 
sum over the charge degrees of freedom as well. 

3.1. STEP 1 

Let us now explain how eq. (3.1) can be derived. In the first step, one simply 
solves for A/, = M — £~ = 2

 mMm and substitutes this back into the left-hand side 
of eq. (3.1). Using this value for A/,, the quantities Pn reduce to 

OO 00 

Px=N- LtimMm=N-M+ Zim-2)Mm, 
m = \ m = 3 

00 CO 

P« = N- E tnmMm=N-2M + Mn + 2 £ (m-n)Mm. (3.5) 
m = 1 m — n + 1 

Let us now consider the summation over M2- Although our summand in the 
left-hand side of eq. (3.1) has the form of an infinite product, only two of the 
factors contain the variable M2. Singling these out, one finds that the summation 
over M2 is as follows, 

^ 2 = E ( ^ - 2 M + M 2 + 2 I : - = 3 ( ™ - 2 ) A 4 

X m~3K ' m\. (3.6) 
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In order to perform this summation we will make use of the identity 

i(B + a)x° = (l-x)-<-B, (3.7) 

which can easily be proved by induction. As a simple consequence, we have 

V-xrl-'V+x)V\*'- iQ(aZa)(A!!2a), (3-8) 

where the notation | x* in the left-hand side means that we single out the 
coefficient of the power xA. The right-hand side of eq. (3.6) is of the same form as 
eq. (3.8) and we find 

il2 = ([-X ) (l+X) \xM-MUy-AM4-... 

00 

= (i+x)»-M(i-x>yN+2M"TlW)M"\*" 
n = 3 

" ^ 7 ^ ( 1 +X)N~M(1 -*2)~N+2M-1 ft W ) " \ (3-9) 
ATT I •> X ' „ = 3 

where 

x" 

***= (i-xf"-2\i+xy-2' (3'10) 

In the last line of eq. (3.9) we extracted the coefficient at xM by performing a 
contour integral around the origin x = 0. After performing the M2 summation 
(3.1) now reads 

E n{{Mj)^^-.6-^A(x), (3.11) 

ITm.tmMm-M 

where 

A(x) = (l+x)N-M(l-x2)-^N+2M 

X E ^lK-™ + Mn + 2Trm=n + x(m-n)Mm\" M, 

M 3 ,M 4 , . . . =0n = 3 \ Mn ) 1-3 

(3.12) 
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The summation over M3 is given by 

n = " / N - 2 M + M3 + 2E: = 4 (« -3 )M„ , j w, 

M, = 0 I -1 / 

= (1 _ ^ ( , . , ) - ' - ^ 2 W - 2 5 : ^ 4 0 , - 3 ) M „ ( 3 D ) 

At this point, the full expression for A(x) has been reduced to 

A(X) - (i +X)
N-M(i -x*y,-N+2M(i -^y'~N+2M 

.M, 

A/4,W5,... =0 " = 4 \ Mn / / = 4 

(3.14) 

where Z^ are defined through 

_2"(0) 
^-d) = 1 (3 15) 

From the above it is now clear, that the sum with respect to M4 and all Mn with 
n > 4 has the same structure as the sum with respect to M3. Thus the final result, 
after performing all summations, will look like 

A(x) = (l+x)N-MF(Xyl-N+2M, (3.16) 

where 

F(x) = (l-x2)h(l-3rZ"-»), (3.17) 
/M=3 

and we have the iteration formula 

jg-Cm-l) 

Our task is now to find a closed expression for Fix) by exploiting this relation. 
We define 

U2=x-\ £/m = ̂ 5 > > (m>3), (3.19) 
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so that F(x) can be written as 

n*)= n (I + TT)- (3-2°) 

We now claim that the functions Um(x) satisfy the following recursion relation, to 
be denoted by RR lp, 

R R I p : (Up+3-lf = Up+4Up + 2 ( p > 0 ) . (3.21) 

Together with the initial conditions 

(l-x)\l+x) 
U2=x-\ U3=- y3 - , (3.22) 

these relations completely fix the functions Um(x) and thereby the function F(x). 
In order to prove the recursion relation (3.21), we first give a second recursion 

relation, which involves some of the other J2"s and which we shall denoted by RR 
« , 

R R I I , : ^ f = ^ ( p > 0 , n>p + 3). (3.23) 

Let us now show that the validity of both recursion relations can be proved by 
induction. We start at the point where we have 5"„(0), which is defined by eq. (3.10), 
and U2 and U3 as above in eq. (3.22). One easily checks that RR H p = 0 ' s valid. 
Using eq. (3.18) for the definition of U4 = l/2~4

0) and RR I I p = 0 , one proves RR 
I p = 0 . This establishes the validity of both RR I p = 0 and RR II p_ 0 , which is the 
starting point for the proof by induction. 

Let us now assume that we have proved the validity of both RR lp and RR IIp 

for some given p. By using this induction assumption and the definition (3.18), one 
then proves the relation RR I I p + i (3.23). After that, by using the definition (3.18) 
and RR I I p + i , one then proves RR lp+l. This completes the induction step. We 
may thus conclude that the relations RR lp and RR IIp are valid for all p > 0. 

One easily checks that the expressions 

ta(xy+l-a(xy^l\2 

Uj = - ^ V _ t (3.24) 
\ a(x) -a(x) j 

with 

«(*) = £ I V - ^ + v — I (3-25) 
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satisfy the recursion relations (3.21) and the initial conditions (3.22). The function 
F2(x) is now expressed as a convergent product 

^ (*) = I I 771 = U 771 = , l l m 7 7 - 7 7 - = «(*) * ( * + ! ) , 

(3.26) 

where we defined f/,(.v) = (.v + l) /x, in accord with eq. (3.21), and where we used 
eq. (3.21) in the second equality. This brings us to the following representation of 
the number of regular Bethe-ansatz states with M overturned spins [using (3.1), 
(3.11), (3.12), (3.16), (3.20), (3.25) and (3.26)] 

E n({Mj) 
M,„ = 0 

M=i:r„_i "iM„, 

2M-N-1 

1 r 2 dy , , 2M-N-1 
= ^ ? ^ [ 2 ( 1 + y ) 1 (1+y + ^z^) • (3-27) 

where the contour is a small circle around the origin and we used the substitution 
y = 2 x / ( l -x). Calling y~l = cosh <j>, the integral reduces to / + - / _ , where 

where we wrote <f> =A - i<p, with A -* 00. This finally establishes the result (3.1) 
since 

£ -««-»-U-i-i)-U-^i) 

-(£)-(*"-.)• V»> 
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We still have to prove eq. (3.2), which can be done as follows, 

I((2H/-,))<"---'> 
[N/2](K,\ [N/2]~{ I KJ\ 

- E £ ( * - 2 M + u - E ("YN-IM-D 

[ N / 2 ] - I I M \ 

- 2 & ( £ ) + U % ) ( , + A ' - 2 [ ' ' / 2 I ) 

[ A / / 2 ] - 1 . / . , % N , . 

- E '« + [N/2] (l+N-2[«/21)+ E U 

-x(Z)=2N- <3-30> 
This completes the proof of eq. (3.2). 

3.2. STEP 2 

The total number of states that are obtained from the SO(4) extended Bethe 
ansatz for the Hubbard model is given by eqs. (2.8) and (2.9). The summations over 
the multiplities Mm and over the difference N-M in the summation (2.9) are 
precisely of the type (3.1) and (3.2), respectively, if we substitute M -* \(Me - N + 
M) and N-+Me. (Under these summations the total number of electrons Ne is 
kept fixed.) The summation that remains after this "spin summation" is 

#(eigenstates) 

= E (L-Nc + 1) 

X E E 
yVe = We + 2 E ^ , | mM„ 

2"-U \ - lL-Ne + ITm = l(2m-

1n-l\ K 
~tnm)MU\ , 3.31 

where as before tnm = 2 Min(«, m) - 8nm. In the next step we perform the 
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summation with respect to all A/,|'s, using a similar kind of "summation device" as 
subsect. 3.1. As a consequence of eq. (3.7) we have 

( l - * * ) - , - s ( l + 2*)'-= £ h[B+
M

M;)(L
p)2"x™^, (3.32) 

and therefore 

_ L ^ ( 1 _ , r - » ( I + 2 ^ = | j - r ; ) ( T _ W ) 2 _ , ( 3 . 3 3 ) 

The integration is along a small contour around zero. Defining E = L — Ne, 
y = Ne-2L7„ = 2mM;„ and B = E + 2E", = 2 On - 1)M,;„ the r.h.s. of eq. (3.33) 
becomes the summation over A/,' in eq. (3.31), if we solve the constraint in the sum 
in eq. (3.31) for Me = Nc - 2E", = t mM'm. Using eq. (3.33) in eq. (3.31) we then 
obtain the following expression for the number of eigenstates, 

#(eigenstates) = ~(f) J * (1 + 2x)L £ ( £ + 1 ) „ * 2 , g f ( * ) » 

(3.34) 

where 

00 00 

F(x)- £ U [ E + M" + 2LlZr(m~n)M;" }h(^)M\ (3-35) 
M'=0n = 2 \ "ln / m - 2 
m > 2 

and 

x2m 

^ - n a , 2 0 - „ - < 3 J 6 > 

( 1 - * ) 

The summations over M{, A/3', ... have precisely the form of the l.h.s. of eq. (3.7) 
and can thus be performed easily. The result is 

F ( x ) = n ( l - ^ ™ - 2 > ) " I _ £ , (3.37) 
m = 2 

where 

* i ' } - - / " . - ^ - P - D - <3-38) 
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It can be shown along the lines given in subsect. 3.1, that the quantities Um 

1/2^,'" ~2) obey the recursion relation 

(Up+2-l)
2 = Up+3Up+l (p>0) (3.39) 

with initial conditions 

( I - * 2 ) 
V,=x~2, U2 = - -r^. (3.40) 

x 

Eq. (3.23) is replaced by 

-£n+\ up+\ 

Eq. (3.34) now can be written as 

(p>0, n>p + 2). (3.41) 

#(eigenstates) = - — 6-^(1+ 2x)L £ (E + l)xE[f(x)] E \ (3-42) 
Z.TTL J X .-, „ 27ri'x E=Q 

where 

/(^) = l l ( l - f / r 1 ) - (3-43) 
/ = i 

The solution of the recursion relation (3.39) is again of the form (3.24), i.e., 

where now 

due to the new initial conditions (3.40). Insertion of the resulting expression for U, 
into eq. (3.43) leads to the following result for the function fix), 

2f(x) - 1 + Vl - 4*2 = 2x a(x). (3.45) 

Eq. (3.42) can now be rewritten as 

L 
#(eigenstates) = £ (E + l)I(E), (3.46) 

£ = 0 
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where 

'< £>-2^dK)(H' 1 '< I ) r~' - <3-47' 
The contour integration can be worked out as in sect. 2. Defining a = A — i<p with 
A » 1 and substituting x = l/(e" + e~") we obtain 

/ ( £ ) = / + ( £ ) - / _ ( £ ) , (3.48) 

where 

/ + ( £ ) = — f2lT d<£ e±" e-<l+/;>«(e"/2 + e - " / 2 ) 2 ' \ (3.49) 
27T Al 

Expanding 

2L 

(e«/2 + e-" / 2 ) 2 L= f ( 2 ^ ) e " ( L " ' , ) (3-50) 

and then using 

— / 2 i r d^e*«"" ) = SBi0 (3.51) 
277-A) 

in the resulting expression, we find that 

'•<*>-L2-*)' 7 - ^ ) = ( L - 2 £ - 2 ) - ^52) 

Plugging these results into eq. (3.48) and then eq. (3.46) we are left with only a 
single summation 

#(eigenstates) = tjE + l ) ^ ) - ( L _ 2
£

L _ 2 ) } - (333) 

This summation can be performed the same way as eq. (3.30) and we finally obtain 
the desired result 

#(eigenstates) =AL. (3.54) 

This concludes our two-step evaluation of the sum (2.9). 
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Using the above, we can obtain a closed expression for the number of regular 
Bethe-ansatz states for given numbers M and N of spin-down and spin-up 
electrons: 

00 00 00 

E E E n(Me,{Mj,{MX 
Mo = 0 /M„, = () /M,;, = () 

M = E I H ( M „ , + M,;,) 

= ( « ) ( ( « ) + U - 2 ) ) - ( U 1 ) + ( w
L - 1 ) ) ( « L - 1 ) - <**> 

This formula is the close analogue of the result (3.1) for the XXX Heisenberg 
model. 

We repeat once more our conclusion, where is that the combination of the 
nested Bethe ansatz with the SO(4) symmetry of the one-dimensional Hubbard 
model leads to a complete set of 4L independent eigenstates. 

It is a pleasure to thank C.N. Yang for proposing the ideas worked out in this 
paper. We thank S. Dasmahapatra for stimulating discussions. This work was 
supported by NSF Grant PHY-9107261. 

Appendix A 

BOUND STATES IN THE ONE-DIMENSIONAL HUBBARD MODEL 

In this appendix we investigate the nature of the A- and A:-yl-strings in-Jhe 
one-dimensional Hubbard model. We show for explicit examples, that both kinds 
of string lead to certain kinds of bound states (i.e., the wave function decays 
exponentially with respect to the differences of coordinates). 

A.l. A-strings 
Let us consider the example of N electrons with spin up and two electrons with 

spin down forming a A-string, i.e., 

A2 = A*{ (k{, . . . , kN+2 r ea l ) . (A. l ) 

the set {Av A2\ku ..., kN+2} must fulfill the periodic boundary conditions (1.11). 
The wave function corresponding to this set of spectra parameters is given by 

l / f - l , - l , l , . . . , l ( J c l ' x2' • • • ' xN + l) 

= E sgn(Q)sgn(P)exp( iX J
2 ^ P . j c Q . )<^(y 1 ,y 2 |P ) , (A.2) 

P e S 2 + N 
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with amplitudes 

<p(y\> 3 , 2 l P ) = - 4 i d ^ p ( ^ i . 3 ' i ) / r
P ( ^ 2 . yi) + ^ 2 1 ^ ( ^ 2 . y O M ^ i . yi) 

^ , U e<»(P,) ] «o»(Pyi) ( M «?>(P,) J ,<+
2)(P,,) 

We want to show that this wave function decays exponentially with respect to 
the difference of the coordinates y, and y2. The only nontrivial y-dependent part 
of the wave function are the amplitudes <p. Therefore, it is sufficient to prove that 
they decay exponentially. 

Taking exponentially small corrections A into account, the A-string is of the 
form 

A,=yt + i (M+4) , 

A2 = A-{-(u + A) (with A*= -A). 

As all momenta kj are real this leads to the following inequalities, 

(A.4) 

e<P(i) 

«W) 
> 1 , 

*?(0 
*?(0 

< 1 . (A.5) 

Using the periodic boundary conditions, 

Yfe(l\i) A2-Ax-u Aid 
M «<•>(/) A2-Al + u A 21 

(A.6) 

we can express A2l in terms of Aid. Using the second set of periodic boundary 
conditions, 

- P ( ^ ) % a > ( y ) e a > ( ; ) 
(A.7) 

we can express products over e<^) in terms of exponential factors of magnitude 1. 
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Straightforward computations yield 

1 1 

By definition y2
>>7i anc* t n e inequalities (A.5) ensure that the product in 

parentheses in the first term (and thus the whole term) in (A.8) decays exponen
tially for y2^

s>y\- The second term can be dropped, because for spin waves N 
plays the role of the lattice length, and in order to investigate asymptotic proper
ties of the wave function we should consider the infinite volume limit, i.e., N -> oo. 
In this limit the second term can be set to zero as 

/^2e (_2>(P,)\ 

1 - 3 - 2 
(
+

2)(p,) 

vanishes. 

A.2. k-A-strings 
We consider the example N = M=2, i.e., two electrons with spin up and two 

with spin down. The periodic boundary conditions read 

e«\j) «?>(/) 
exp(/A: ;.L)=e(, ) (. )e (+2) (. ) 0 = 1, . . . ,4) , 

* e ( - w ( j ) 2 A g - A g - « 

H ^ J ) LiAa-Ap + u n ^ - n ? ?.: o-i.2). (A.9) 

A A:-A-string solution of these equations takes the following form in the L -»oo 
limit, 

Ai = A — ju = A*, 

kl = v- arcsin(A - w), 

k2 = arcsin(yl) = v - k3, 

k4="ir — arcsin( A+ u). (A. 10) 
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In the finite volume there exist two distinct configurations that both lead to 
/c-A-strings in the limit L -*<*>, depending on whether k2 and &3 are real or 
complex for finite L. 

Case (i): k2 and k3 are complex. In this case the &'s can be rearranged such that 
Im(/C|) < lm(k2) < 0 < Im(/c3) < Im(&4) and the invariance of the periodic bound
ary conditions under complex conjugation gives the additional constraints 

K •$ A. -», K 4 ^ l • (A. l l ) 

Taking this into account one obtains the following solution of (A.9) for finite but 
large L, 

Al=A-Ut-\S=A*, 

sin(A:)) =A-u-\8 + e{ = sin(&*), 

sin(k2) = A + \S + e2 = sin(k*), (A.12) 

where,. S is purely imaginary and c, 2 are complex. The exponentially small 
corrections are of the orders 

8 = 0(2u exp[-/(fc,+A:2*)L]), e, = 0 ( - 2 u exp( -ikxL)), 

e2 = 0 ( - 2 w exp(- ifc ,L)) . (A.13) 

The wave function is given by eq. (A.2) with N = 2 and eq. (A.3)._After inserting 
the values of the spectral parameters found in eq. (A.13) into eqs. (A.2) and (A.3) 
and re-normalising the resulting expression one finds 

• P - l . - l . u C * ! ' X2i X3' X4) 

sgn(Q)(- l ) yi+.v2 

= 

exp i £ kjXQ. - exp i £ kRjxQj 

if ( y „ y 2 ) e {(1 ,2) , (3, 4)} 

,0 else, 

(A.14) 

where R is the permutation (1, 3, 2, 4). 
Due to the ordering of the imaginary parts of the momenta kj both terms on 

the l.h.s. of eq. (A.14) decay exponentially with respect to the magnitudes of 
differences of coordinates I xk — x-s | and thus the wave function describes a bound 
state. 
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Case (ii): k2 and k3 are real. In this case we must drop the constraint k* = kv 

We then find the following solution to eq. (A.9), 

Ai=A-{u-\8 = A*1, 

sin(fc,) = A -u - \8 + e, = sin(£4*), 

s'm(k2) = A + e2, 

s in ( Jk 3 )=A+e 3 , (A.15) 

where e, is complex and e2 3 are real, while 8 is again purely imaginary. The 
corrections are of the orders 

e, = 0 ( - 2 M exp( -ik{L)), 

4 / R e ( 6 , ) \ 

cot(±k2L) + cot (^ t 3 L) ] ' 

e2 = 0(-2-i cot(jk2L)8), 

e3 = 0 ( - {i cot(\k3L)8). (A.16) 

The computation of the wave function is analogous to case (i), the only 
difference being a new renormalisation constant. The wave function is given by the 
same expression as in case (i). Again it describes a bound state although k2 and k3 

are now real. 

Appendix B 

THE M = N = \ SECTOR IN THE HUBBARD MODEL 

In this appendix we further work out the structure of the Bethe-ansatz wave 
functions in the sector M = N=1. In that sector the wavefunctions depend on 
parameters ku k2 and A. Our general analysis in sect. 3 and 4 gives the following 
possibilities: (i) we can have Me = 2, Af, = 1, which gives real values for ku k2 and 
A, or (ii) we can have M[ = 1, which gives a m = 1 k-A-string with complex 
conjugate kly k2 and real A. According to the counting of sect. 3, we expect to 
have \L(L - 1) real solutions (i) and L - 1 string solutions (ii), giving a total 
number of \{L - \\L + 2) Bethe-ansatz states in this sector. However, we already 
mentioned that, in the context of the XXX Heisenberg model, there is a "redistri
bution phenomenon" between different types of solutions, which does not affect 

s = o 
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the total number of states within a sector, but which does affect the distribution of 
those states over various types of string solutions and real solutions [18]. In this 
appendix we will establish a very similar result for the Hubbard modeliwe will find 
that the numbers of the real solutions (i) and string solutions (ii) are not always 
given by the values quoted above, but that the expected total number ?(L - 1XL 
+ 2) of solutions in this sector can be rigorously established. 

Let us consider the Bethe equations for periodic boundary conditions in the 
sector M = N = 1, 

sin k, — A — hi sin k2 — A — ^u 
exp(ik^L) = -— =—, exp(/A:2L) = —— ^—, v sin k{-A + Ui sin k2-A + {-u 

} _ sin k, — A — \u 

, " • • • * , - * + * " • ( B 1 ) 

Since we assume A to be finite, we can solve for it and find A = ?(sin k] + sin k2). 
The equations then reduce to 

sin k, - sin k7 — u 
exp(ift,L) = - — ; , exp\i(k,+k2)L] = l. (B.2) 

sin k\ - sin k2 + u 

We can solve the second equation by putting kx + k2 = 2vm/L, with m = 0 , 1, 
. . . , 2L - 1 and write kx = irm/L +x and k2 = vm/L -x. The remaining equa
tion reads 

-(4/U) cos(TTtn/L) sin x — i 
zxp[i(Trm + Lx) = ) ' , ' ; 7rr~. :• (B.3) 

l v n - ( 4 / f / ) cos(i7/n/L) sin x + i v ' 

One easily checks that, if xQ solves this equation for m — AMQ, then x — x0 4- IT 
solves the equation for m = m0 + L, and that the resulting wave functions are the 
same. We can thus restrict our attention to m = 0, 1, . . . , L - 1 and —n < x < IT. 

Let us now try to find real solutions x for eq. (B.3) for given m. Taking a 
logarithm we have 

a r c t a n [ - ^ t / c o s ( v m / L ) sin x] = -\Lx-rrn, (B-4) 

where n is an arbitrary integer for m odd and half odd integer for m even. It is 
rather straightforward to solve this equations by a graphical method: one plots 
both the l.h.s. and the r.h.s. (for various n) of these equations on the interval 
- I T < * < v and reads of the intersection points, which are then solutions of the 
equation. For large enough | U | this procedure is easily carried out and one finds 
the following. 

file://-/Lx-rrn


F.H.L. Eftler et al. / One-dimensional Hubbard model 457 

For m even there are solutions for n = — \(L + 1), . . . j{L - 1), which are L 
solutions in total. Since solutions x and —x are equivalent (and x = 0 is not among 
the solutions) we should divide this number by 2. Using that there are \L possible 
even values for m we thus find \L2 solutions. For m odd one finds non-equivalent 
solutions for n = 1, 2, . . . , \{L - 1) for each m, which gives a total number of 
\{L2-2L). (The solutions x = 0, x = ±ir, which exist for generic U, given 
vanishing wavefunctions in general.) adding up the contributions from odd and 
even m, we find \L(L — 1), which is indeed the number predicted by the counting 
in sect. 3. 

However, let us now assume that m is odd and that U is close to a critical value 
Um, which we define by 

\Umco&{irm/L) = \L. (B.5) 

At the value U = U„, the curve for the I.h.s. of eq. (B.4) has slope \L at x = ±ir, 
and at the value U = - Um the curve for the I.h.s. of eq. (B.4) has slope \L at 
x = 0. Since the r.h.s. is given by straight lines of slope \L, and since both curves 
already had intersections at x = 0 (for n = 0) and x = ±ir (for n = ± jL) (which 
did however not give rise to non-trivial wave functions), it will be clear that the 
number of intersections changes when U reaches the critical values ± Um. In fact, 
one finds one extra real solution x (together with the equivalent solution —JC) for a 
given odd m as soon as U < \ Um |. For example, if U is such that Ul> U> U3> 
. . . > 0 there will be one extra real solution to eq. (B.2). 

The complex values for x which solve eq. (B.3) are of the form x = iy or 
x = -n + iy and y real. In a way similar to what we showed above, one can analyse 
the equations for the real quantity y by a graphical method. If | U I is sufficiently 
large, one finds precisely one complex solution for m = \, 2, ..., L with the 
exception of m = \L. In that case, there are thus L — 1 complex solutions, which is 
in agreement with the counting of sect. 3. 

However, from the graphical analysis one finds that the complex solution for a 
given odd m disappears as soon as | U I is chosen to be smaller than Um. Note that 
this happens precisely in the regime where we have found one extra real solution! 

We thus find a redistribution phenomenon, where solutions change their nature 
as a function of U, in analogy to what we found for the XXX Heisenberg model in 
ref. [18]. In the Hubbard model the phenomenon is easily understood: if \U \ is 
made small enough, the interactions become so weak that some of the bound 
states (with complex JC) decay into real solutions (with real x). 

When | U \ is chosen to be equal to one of the critical values Um, there do exist 
non-trivial wave functions with x = 0 or x = ±ir, i.e., with coinciding kl and k2. 
These wave functions can be seen to be non-vanishing by a renormalisation a la 
l'Hopital. 

In all cases, the total number of eigenfunctions of the hamiltonian in the sector 
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M = N = 1 is found to be \(L — 1)(L + 2), which is the value predicted by the 
counting in sect. 2, and used for the proof of completeness in sect. 3. 
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The exact integrability of the one-dimensional Hubbard model is demonstrated 
with the help of a novel set of triangle relations, the decorated star-triangle 
relations. The covering two-dimensional statistical mechanical model obeys the 
star-triangle or Yang-Baxter relation. A conjecture is presented for the eigen
values of the transfer matrix. 

KEY WORDS: One-dimensional Hubbard model; exactly integrable systems; 
star-triangle relations. 

1. INTRODUCTION 

We have recently shown'1' that the one-dimensional (Id) Hubbard model 
possesses an infinite number of conservation laws by identifying a 2d 
classical statistical model for which a one-parameter family of transfer 
matrices commutes with the Hamiltonian. Reference 2 contains a 
demonstration that the one-parameter family of transfer matrices commute 
mutually and hence we have a new completely integrable problem. This 
embedding of the Id Hubbard model into a covering 2d statistical model 
parallels the well-known relationship between the Id XYZ model and the 
2d eight-vertex models established by Sutherland and Baxter.'3,4' In this 
paper we present some further results on the covering statistical model, and 
also recover the previous results of Refs. 1 and 2 through a promising new 
line of argument. 

The eigenfunctions of the Id Hubbard model were found by Lieb and 
Wu(5) using the Bethe-Yang or nested Bethe Ansatz technique. The 

'Theoretical Physics Section, Tata Institute of Fundamental Research, Bombay-400005, 
India. 
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applicability of the latter suggests the existence of conservation laws. 
This was emphasized by Heilmann and Lieb,'61 who diagonalized a six-
membered, half-filled Hubbard ring and found surprising instances of level 
crossings and degeneracies. 

Barma and Shastry'7' proposed a 2d statistical model with the help of 
Trotters' formula, for which the Id Hubbard model is the logarithmic 
derivative of a transfer matrix [in the sense of Eq. (2.8) to order «]. This 
model was diagonalized by Bariev,8) through a variant of the coordinate 
space Bethe ansatz, and elaborated upon by Schotte and Truong.'9101 This 
transfer matrix, however, does not commute with the Hamiltonian for 
general values of Boltzmann weights. In order to find a commuting transfer 
matrix, one needs further information. In Section 2.1 we present a novel 
algorithm which yields one nontrivial "current" operator that commutes 
with the Hamiltonian. This information can be used within the rather tight 
framework of the transfer matrix formulation (see Luscher"1') to guess the 
other members of a commuting family. This is done in Section 2.2, where 
the form of the transfer matrix is proposed. 

Section 3 contains a discussion of a novel class of triangle relations, 
which we call the decorated star-triangle relations (DSTR). These are 
intimately related to the star-triangle or Yang-Baxter relations, and rest 
essentially on the same algebraic structure. The terminology is suggested by 
the fact that these triangle relations can be pictured as the usual triangle 
diagrams with additional (diagonal) operators residing on the intermediate 
lines. However, the DSTRs are an independent set of relations from the 
STR, and we indicate how one may combine the two in order to get a 
richer set of STRs. The examples provided in Section 3 yield STRs for the 
free Fermi vertex models in the presence of fields. These examples are 
presaged to some extent in the work of Bazhanov and Stroganov,"21 which 
came to our notice after the completion of this work. 

In Section 5, we explore the problem of diagonalizing the transfer 
matrix. We have not succeeded in an explicit diagonalization, but present a 
conjecture for the general eigenvalue from which the results of Lieb and 
Wu follow. 

Finally, we mention the review of integrable models by Kulish and 
Sklyanin,"3' which contains an exhaustive list, and also a discussion of the 
difficulties of the Id Hubbard model. Also, the results of Refs. 1 and 2 have 
been recently verified through a different route by Wadati el a/."4l5) 

In Section 4 we consider a pair of free Fermi six-vertex models and 
show that the DSTR together with the STR enable us to construct the R 
matrix of the covering model for the Hubbard problem rather easily. The R 
matrix is given explicitly in a compact form. 
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2. CONSERVED CURRENTS 

2.1. Introduction 

In this section we present a novel algorithm for identifying conserved 
currents, i.e., commuting operators with respect to a Hamiltonian 
expressible in the form 

H^Ho+UHi (2.1) 

where H0 is a "free" Hamiltonian, typically bilinear in fermionic operators, 
and //, is the interaction term quartic in fermionic operators. For the Id 
Hubbard model 

ff0= -tY.{c:+lacna+c:acn+la)=Y.^actacka (2.2) 

Cka = —j= X exp(ikn) C„a, ek = -It cos k 
'N 

with 

and 

The summation over m runs from 1 to N, and a represents the two com
ponents of fermions ( | and [). Periodic boundary conditions are assumed 
everywhere in this work. The XXZ model is in the form (2.1) with U 
replaced by A, and with a single species of fermions. 

The free part H0 commutes with all bilinears in fermions of the form 
Z WkCkaCka, and we expect that the currents for H, if they exist, should 
go over continuously to those of H0 as U -* 0. The simplest Ansatz for a 
current is 

j = Jo+Ujx (2.4) 

where j0 = 'E ^kCkaCka with some as yet undetermined Wk and j x . In 
principle one could go on and add terms to (2.4) of 0(U2), etc. However, 
we shall truncate at order U, guided by the known results for the XXZ 
model, where all currents are in the above form. Requiring \_j, / / ] = 0 and 
equating various orders of U to zero separately, we find the set of 
equations 

L/o.ffo] = 0 (2.5a) 

Uo.H1l = tH0Jtl (2.5b) 

L/r. ^ . ] = - [ / . ' . " . ] (2.5c) 
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Here we have decomposed the operator y, = ft + jf, where the parallel 
part is defined by [j[[, i/0] =0. 

The algorithm works as follows: we pick some Wk defining j0 and 
calculate jf from (2.5b). This is done most simply by sandwiching (2.5b) 
between a pair of common eigenstates of H0 and j 0 . The "particle content" 
of jf must clearly mimic that of / / , ; if H{ is a four-fermion term, so is jf. 
The resulting jf is inserted into the lhs of (2.5c) and one checks if the com
mutator vanishes or can be simplified to the form of the rhs. It is not 
guaranteed that (2.5c) can be satisfied; in general, one would have to try 
various Wk. The working of this scheme is straightforward, if tedious, in 
momentum space. 

We tried this scheme for the Hubbard model and found the following 
Hermitian currents corresponding to the simplest choices of Wk = sin k and 
sin 2k: 

JA = (ft) I (c;+ ,„ cna - c* ca+la) 

+w I Z1c;+„,c;+„,crlc,t(-r 
r • • 1 n BE 1 

(N=odd integer) (2.6) 

JB = (it) E (C++2aCma - C+aCm + 2a) + (iU) X (C++ laCmc - C£aCm+la) 

+ (iU)Y,lCZ.(Cm + l.-Cm_l.)-(C++l.-CZ_l.)Cm.lnm_. (2.7) 
ma 

The operator j B contains a nonvanishing /,', whereas jA does not. The 
current j A is tantalizing. First, it makes sense only for N odd. The first term 
(j0) has Wk = sin A:, the group velocity corresponding to tk a cos k, and is 
in fact the current operator in the usual sense. The second term (j\) 
corresponds to a kind of long-ranged backflow of doubly occupied sites. In 
the sector with no double occupation (U= oo) the commutation of j A with 
H was first noticed by Brinkman and Rice,(l6) who pointed out that the dc 
conductivity diverges as a consequence. We expect that j A should be useful 
in conductivity calculations for U finite; however, in the remainder of this 
paper we do not encounter it again. Also, we set t = 1 in the following. 

2.2. Inferring the Transfer Matrix 

In this section we outline the considerations used to guess a transfer 
matrix embedding of the Hamiltonian. The standard models of 2d classical 
statistical mechanics, such as the six-vertex model, have a rich algebraic 
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structure, as is well known. The transfer matrix depends on a spectral 
parameter w, and an expansion in powers of u about a suitable value (say 
zero) generates an infinite number of conserved currents commuting with 
the Hamiltonian. Generically we write 

T(u)= 7X0) [ l + uH + ̂ H2 + ̂  ( - ' ) ; + °(»3)] (2-8) 

where T(0) is the right shift operator. Here H is the Hamiltonian and j the 
first nontrivial current. 

In the case of the Id Hubbard model the Hamiltonian can be written in 
the form 

# = I " „ + !,,, (2-9) 

Hn + ,,„ = K + a~+, + aU,°n ) + (CT" + , + C + , T " ) + it/ajTj; (2.10) 

(the nonsymmetric definition is convenient in later usage). This form is 
obtained from (2.1)—(2.3) by subtracting a constant from the original 
Hamiltonian, corresponding to writing Hl = £("mT — l/2)(nmi~ 1/2). and 
using a Jordan-Wigner transformation 

CmT = K • • • < _ ,)<r- (2.11a) 

C ^ K - . - ^ X T ' - . - T J U . h - (2.11b) 

to eliminate the fermions in favor of two species of Pauli matrices a and T. 
The noninteracting problem U = 0 corresponds to a pair of uncoupled XY 
models. In this case we know that the (free Fermi) six-vertex model trans
fer matrix commutes with the Hamiltonian for a single species, and hence 
we expect that the relevant statistical model for the Hubbard problem 
should consist of two copies of the six-vertex model coupled appropriately. 
The precise nature of the coupling is the subject of investigation in this 
section. We will find that an explicit knowledge of j is of great help in this 
regard. 

The transfer matrix is written in the standard form 

7T(«i) = tr[Lw.f(«)Lw_,,,(«) •••£,,,(«)] (2.12) 
g 

where g is the auxiliary space variable, corresponding to the horizontal 
arrows in the row-to-row transfer matrix. The local scattering matrix 
Ln g(u) is as yet unspecified, apart from the requirement that when f/ = 0, it 
must reduce to 

W « ) - E 7 Z r W ® W s / „ f ( « ) (2-13) 
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with 

The weights a, b, and c are parametrized by u and obey the free Fermi, con
dition a2 + b2 = c2. In order to fix ideas, set o= 1, 6 = sinh(w), c = cosh(w). 

Consider an expansion of T(u) through second order in u. First we 
assume an expansion for L„ g, 

L„,g(u) = Pn,g(\ + «//„,, + ±u2Bn,g + 0(ui)) (2.15) 

where Png is the permutation operator [L„ ?(« = 0)]. The coefficients of 
expansion H„ g and B„ g determine the expansion of T as 

r(M) = r(0) [ i + w £ #„+ , ,„+y £ z?„+i.n 
L « n 

+ «2 Z Hntn_xHm,m_l + 0(u')\ (2.16) 
n > m + 1 -I 

Using (2.9), we rewrite (2.16) as 

J-'(O) T(u) = 1 + UH + Y H2 

+Y{Z(^.m-1-^.m_1) + Z[//m.m_1,^-,.m-2]j + o(U
3) 

(2.17) 

This is in the form of (2.8) with the explicit representation 

( - / ) y = I ( ^ » - i - « 2 . . M - , ) + l [tfm.m-.,tfm-..m-2] (2.i8) 
m m 

To summarize the working so far, we see that if we demand that a 
transfer matrix exist such that its first two coefficients in an expansion in u 
give the Hamiltonian of the Hubbard model and a nontrivial current 
operator commuting with H, then the first two coefficients of expansion of 
the local L„tg operators are constrained by Eqs. (2.10), (2.15), (2.17), and 
(2.18). The current j used in (2.18) must be calculated separately (as we did 
in Section 2.1) and should go over in the U = 0 limit to the first term of 
(2.7) [i.e., Wk oc sin(2&)], since the rhs of (2.18) does so by actual 
calculation. 
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Thus, we expect that the current j B in (2.7) and the form of H should 
constrain the form of L„ g sufficiently to enable us to guess it. Toward this 
end, we write (2.7) in terms of the Pauli matrices 

(-<)./* = I [(*:_ , < * ; ; + , - h . c . + ((j ~ T)] 
m 

+ ^ E { T m[(^m + 1 - < C - ! ) f f m ~ (<7m+1 ~ <*«- l ) <C ] + (<T~ * ) } 
L m 

(2 .19) 

Since we know H„ + u„ [Eq. (2.10)] and j B , we can find | | through (2.18). 
By straightforward calculation we find 

^ + 1.m = 5(l-<ffm + 1) + (*~-0 + 2 ( a ; + l f f - + a > - + 1 ) 

x ( T : + 1 T - + T + T - + 1 ) + 1 'g[ /2 (2.20) 

* ( * > , ; - . + <C-.<^):i + (<7~T) (2-21) 

From (2.18H2.21) we find 

^m.Jr = 3 ( l - f f m ^ ) + i ( l - ^ T p + 2 ( ^ a - + h . C . ) ( T + T-+h.C.) 

+ m*Z V + V r~ )oft + {V« o- + a ; a") ajrj + £t/2 

(2.22) 

[we have equated the summands in (2.18) and replaced m— 1 by g]. The 
form of the L operator is easy to guess at this stage from Eqs. (2.15), (2.10), 
and (2.22). In particular, (2.22) indicates that Lng is probably l„g 

postmultiplied by a function with the first derivative equal to C//4CT*T£ and 
the second derivative (72/16. We therefore guess 

Lng(u) = lng(u)exp(hcxgTg) (2.23) 

where h = h(u), with /i(0) = 0, h'{0)U/4, /i"(0) = 0. 
In Refs. 1 and 2 we showed that a transfer matrix (2.12) with L„g 

chosen as in (2.11) indeed provides a covering model of the Hubbard 
model with a proper choice of h and u. In the following sections we provide 
an alternative and rather compact demonstration of the same results. 

3. DECORATED STAR-TRIANGLE RELATIONS AND A 
FUSION PRINCIPLE 

In this section we point out the existence of a modified triangle 
relation satisfied by the generic eight-vertex model, in addition to the usual 

822/50.1-2-5 
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star-triangle, or Yang-Baxter, relation. The "decorated" STR is an 
independent relation, which is in some sense a consequence of the structure 
of the STR, and can be used in conjunction with the latter through a kind 
of fusion principle to generate new models obeying the STR. As a prelude 
let us summarize the STR.(4) The relation is encountered when we consider 
the commutation of two transfer matrices in the form of Eq. (2.12) with 
different Boltzmann weights (vectors) Wx and W2, 

TT'= tr fl (WWJL^WJ) (3.1a) 

TT= tr ^{L^W^L^W,)} (3.1b) 
glgl „ 

The symbol J~[7 stands for an ordered product as in (2.12). The com
mutator [J, 7"] vanishes, as first noted by Baxter, when an invertible 
operator R exists such that 

L32(Wl)L3l(W2)Rl2(W3) = Rn(W3)L32(W2)L31(W1) (3-2) 

(writing «->3, gi-^2, g2-+l). Writing Rl2 = Pl2Si2, with P as the 
permutation operator, we find 

L3l(Wi)L32(W2)Sl2(W3) = S12(W3)L32(W2)L3s(W1) (3.3) 

The form of the operator S12 need not in general be the same as that of L; 
in fact, S may act upon a different kind of Hilbert space'13' from L. 
The parameters W3 in general depend on Wx and W2 independently and 
may be indicated in the form (W21 Wx). Considering the product 
^0.1(^1) ^0.2(^2) ^0.3(^3). there are two distinct ways of rewriting this 
using (3.3) (corresponding to the two usual "braids"), which implies 

\_L03L02L01, Sn 5j3 S^3 Sl2S13S23] = 0 

Hence we expect 

S,,(»M ^3) $32(^2 I ̂ 3 )5 1 2 ( ^2 l W.) 

-S^W^W^S^W^WJS^W^W,) (3.4) 

This relation is not strictly a consequence of (3.3), but follows if the 
product L01L02L03 is sufficiently nontrivial.113' In any case it has to be 
checked independently. 
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In the case of the eight-vertex model, the famous result of Baxter'4' is 
in the form of (3.3) with 

^ { W l ) ^ ^ + Sl^o]ol + Sl^aM + Sl^loM (3.5) 

where the Boltzmann weight vector W{ = (a,, bu cu </,), 132{W2) is the 
same as above with a"{-KT2, and {alblcidl)-*(a1b2c2d2). The S12 is also 
in the same form with a%^>o\ and (a, •••)-* (a3 •••). The consistency 
conditions for the Boltzmann weights are summarized in terms of the 
invariants 

An = (al + bl-cl-dl)l2anb„ (3.6a) 

rn = cndjanbn (3.6b) 

The consistency condition becomes 

AX = A2 = A3 = A, rl = r2 = ri = r (3.7) 

The weights 03,63, c3, d3 can be computed explicitly in terms of ( a 2 " ) 
and (a 1 • • •) and are given by 

a3 = a^Ci c2 - dx d2){b\c\ - c\ a\)/ci 

b3 = b1(dlc2-cld2){a*cl-(Plal)/d1 

c3 = c,(Z>,*2 - a,a2)(a\c\ - d\a\)jax 

d3 = rf,(a,62 - bia2)(b\c\ - cja2
2)/b{ 

(The notation used here differs from that of Baxter'4' in that we use 
alta2,a3, etc., to denote a, a', a", etc.) 

The decorated STRs are given by the relation 

lAW,)l^W2)a\ln{W,) = ln{W,)a\l32(W2)hx(W,) (3.9) 

This is in the form of (3.3) with a2 inserted in the places indicated. We can 
easily find the conditions on the Boltzmann weights necessary for (3.9) to 
hold by noting the identity 

/31(a,, -b{,cu -di) = <Tll3l(al,bl,cl,dl)o\ 

= o\l3l(al,bi,ci,dl)al (3.10) 

Equation (3.10) follows from the definition (3.5) and the usual com
mutation relations of the Pauli matrices. The four weights are explicitly 
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displayed in (3.10). We use the abbreviation W„ = (a„, -b„,c„, -d„) in the 
following. Multiplying (3.9) from the left by c\a\ and from the right by a\ 
and using [/32, <s\a:

3~\ = 0> w e ^n^ 

/3 i(^i) 132(W2) ll2(W4) = ll2(W4) !32(W2) l3l(W{) (3.11) 

This is just the STR with weights W in place of W in (3.3). We can thus 
borrow completely from the previously stated results for STR of Baxter 
and conclude that the decorated STR (3.9) holds if 

- A X = A2 = A 4 , r , = r 2 = r 4 (3.12) 

[the invariant At changes sign from (3.6a), whereas r{ does not]. The 
weights a4, b4, c4, and d4 can be found from (3.8) by merely negating b{ 

and dx in the rhs. 
Thus, the decorated STR connects models with A's negated as in (3.2) 

and does not appear to be very useful in the general case. For the free 
Fermi case, however, one has independently two sets of triangle relations, 
Eqs. (3.3) and (3.9), for the same set of scattering operators. This fact can 
be used to advantage, as we now demonstrate in two examples. 

3.1. Free Fermi Eight-Vertex Model in a Horizontal Field 

Consider the free Fermi case A„ = 0, in which case we have both 
triangle relations (3.3) and (3.9) obeyed. We can add the two with (real) 
arbitrary coefficients and find the general relation 

IsdWJlnWg^gMWhiW) (3.13) 

where 

8i2^«ln(fV3) + pil3(1V4)al (3.14) 

The Hermitian conjugate on the lhs of (3.13) is given by 

gt2 = <Lln(W3) + Pa2ln{W4) (3.15) 

We now observe that (3.13) could be used in the following decorated eight-
vertex model, where Lii{Wi) = lil(Wl)Il and Li2(W2) = l32{W2)I2, with /, 
and I2 as "decoration" operators acting nontrivially only on the sites 1 and 
2. We seek the S operator in (3.3) corresponding to the above L's. Since 
the (as yet unspecified) operators /, and I2 can be pulled through operators 
independent of sites 1 and 2, Eq. (3.3) simplifies to 

/ 3 i ( ^ i ) / j j ( » , 2 ) / i / 2 5 1 2 ( / I / 2 ) - , = S I 2 /3 2 (» ' 2 ) /3 I (» ' I ) (3.16) 
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Comparing with (3.13)-(3.15), we infer 

Si2 = £i2 (3.17) 

hhgn^Stihh (3.18) 

Therefore, if we can find decoration operators Ix and I2 and a pair a, P 
such that Eq. (3.18) is satisfied, then gl2 is the 5 operator in the sense of 
the STR (3.3), with the L operators given by 

Lng(Wg) = lng(Wg)Ig (3.19) 

An inspection of Eq. (3.18) in fact suggests the form of the decoration 
operators 

7I = exp(AIffj); I2 = exp(h2(7
:
2) (3.20) 

The decorated eight-vertex model thus has nontrivial horizontal electric 
fields. The explicit solution of (3.18) is rather simple. Considering diagonal 
matrix elements where the spins 1 and 2 are not flipped, the equation is 
trivially satisfied. The off-diagonal elements IU>-»UT> a n d ITT>-HU> 
respectively yield the constraints 

(ac3 - Pc4) e"2-"' = (ac3 + pc4)e
h> ~"2 

{ad3 + Pd4)e-h,-h2 = (<xdj- Pd4)e
h> + h> (3.21) 

a c3 cosh(h2 — hl) a.d3 cosh(h2 + hi) 

and 

Thus, 

Pc4 sinh(/i2-/j,)' Pd< sinh(/i2 + /i,) 
(3.22) 

It is clear from (3.22) that hi and h2 cannot be arbitrary; we eliminate a//? 
to find 

c3rf4_tanh(/i2-|-/i1) 
c4d} tanh(/22 — A,) 

Using (3.8) and analogous equations for a4, b4, c4, and d4 [obtained by 
ngating t , and dx in the rhs of (3.8)], we find after some elementary 
manipulations the constraint 

sinh(2A,)^-=-^- = s i n h ( 2 / i 2 ) ^ ^ = f (3.23) 
Qibi aib2 
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where g is some fixed constant. To summarize, we have shown that the free 
Fermi eight-vertex model in a horizontal field with Boltzmann weights 
obeying J = 0 and (3.23) constraining the parameters provides a one-
parameter family of commuting transfer matrices. The R matrix (or S 
matrix) is given by Eq. (3.14), with 

p/a = c3/c4 tanh(/i2 - /i,) = d3/d4 tanh(/i2 + /i,) 

In terms of the standard elliptic function parametrization of Baxter, we 
write 

a„:b„:cn:dn = sn(K-iu„):sn(iun):l:k sn(/w„)sn(K-iu„) (3.24) 

with u3 = u2 — Ui and M4 = u2 + u{. Note that the R matrix is not a function 
of the spectral parameter difference u3 alone, but depends also on 
U4 = u2 + ul. This is a common feature to all the models discussed in this 
paper. We also note that the commutation of the transfer matrix of the 
eight-vertex model in a field with an appropriate XYZ model Hamiltonian 
was first discussed by Krinsky"7' and is an infinitesimal statement of the 
above result (corresponding to b2 small). 

3.2. Free Fermi Six-Vertex Model in Arbitrary Fields 

Specializing to the six-vertex case dl=d2 = 0, the elliptic parametriza
tion degenerates into a trigonometric parametrization and we set 

an = cos(6„); bn = sm(6n); c „ = l (3.25) 

with 63 = 62 — 0, and 64 = 64 + 0,. The entire argument leading to (3.20) is 
then common, and the only nontrivial matrix element of (3.18) is 
IT-l > ~* UT >. leading to the constraint 

/S/a = tanh(A2-/j,) (3.26) 

Thus, the horizontal fields A, and h2 are completely arbitrary and the 
resulting S matrix is (with p arbitrary) 

512(02|01) = p[cosh(A2-A I)/12(02-01) 

+ sinh(/i2-A1)/12(02 + 01)(T|] (3.27) 

We note that vertical fields are easily included, since [/)2, a\ + cQ =0. To 
see this, write the expected relation 

i.3i(0i)[«P(M5)] L32(62)\_exp(b2cM Sl2 

= 512L32(02)[exp(Z>2<T;)] 1-3.(0!) exp^.fff) (3.28) 
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where L3i = l3lexp{hla]), etc., and S is yet to be calculated [for 
bl=b2 = 0, S is given by (3.27)]. Rewrite b2G\ = b2(a\ + a\) — b2a\ in the 
rhs and bxa\ = M°1 + oz

2) — bio
:
2 on the lhs; commuting factors through, 

we find a common factor cxp(by + b2)a\ on the extreme right of both sides. 
Canceling and rearranging, we find 

L31L32[exp(6,(7|)] S12exp(-62<7-;) 

= [exp(Z>,(72)] 512[exp(-Z>2(Ti)] £32^31 (3.29) 

Thus, we can choose 

Sl2= [exp(-i l (T|)] Sl2exp{b2a\) 

In the two examples that we have given here, the L operator is not 
Hermitian, since the decoration factor appears on one side of / only. 
However, we can trivially symmetrize using a "gauge transformation" 
L' = QLQ~l with an appropriate operator Q. Note that the inclusion of 
vertical fields has made no use of the free Fermi nature of /'s. 

Finally, in the case of the six-vertex model, I have checked that 
Eq. (3.4) is also valid in the form 

S3>(0, |03)S32(02|03)S.2(02|0. ) 

^S12[e2\e1)S32{e2\Bl)S31{01\e
3) (3.30) 

by a brute force calculation. This implies that a more general 
inhomogeneous model is integrable with a transfer matrix 

T(e\{9n}) = lTUSng(9\6n) (3.31) 
* n 

such that [7X01 {0„}), T(6'\ {0„})] =0, with the R matrix again given by 
(3.27). The parameters {Q„} are arbitrary constants. 

4. INTEGRABILITY AND R MATRIX FOR THE COVERING 
MODEL FOR THE ONE-DIMENSIONAL HUBBARD MODEL 

In Section 2 we introduced a model of a pair of six-vertex models 
coupled in a special way. The transfer matrix (2.12) is built out of local 
scattering operators, which were guessed to be in the form of Eq. (2.17), 

Lng(0) = /n,(0)exp(/,<T|Tp (4.1) 

with 

Ufl^W®/'^) (4-2) 
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The operators lia) and /(t) are the usual free Fermi six-vertex scattering 
operators [Eq. (2.14)] parametrized by a = cos 6, b = sin6, c= 1. The con
stant h determines the "decoration" operator, i.e., the second factor in (4.1). 
We now show that the STR can be found for this model in a natural 
fashion, using the idea of fusion of decorated STRs explained in Section 3. 

Let us write down the complete set of STRs and decorated STRs 
obeyed by the operators l(a) and /<T): 

W i J W a J W a - f l . ) 
= W2-0.)/m)W,) (4.3) 

= /<->(02 + 01)a5/«ff
2»(02)/^)(01) (4.4) 

We have two more equations of the same form as (4.3) and (4.4) with x 
replacing a. Taking direct products as in (4.2), we write down two resulting 
equations 

/ 3 l ( 0 l ) / 3 2 ( 0 2 ) ' l 2 ( 0 2 - 0 l ) 

= / I2(02-01)/32(02)/3,(01) (4.5) 

/ 3 l (A) /32(02)<^$ / .2 (02 + 0 . ) 

= / 1 2(0 2 + 0 1 ) ^ T 1 / 3 2 ( 0 2 ) / 1 ( 0 1 ) (4.6) 

Taking a linear combination, we And 

IM) l32(e2)gt2 = £.2/32(02) MS.) (4.7) 

with 
gi2 = du(02-Oi) + Pli2(02 + 9i)att (4.8) 

[compare with Eqs. (3.13) and (3.14)]. We can now couple the a and T 
models through a "decoration" coupling given in (4.1). Thus, L31 = 
/31 exp(/i1fffTj) and Z.32 = /32exp(A2ff2

;T|), and the expected STR (3.3) gives 

h^i)h2{Q2)i^V>(hi<r\r\ + h2a\x\)-]Sn 

= 5,2/32(62) /si(0i) « P ( M j t f + h2a\x\) (4.9) 

Comparing with (4.7), we find 

Sl2 = gn (4.10) 

exp[(A1<7fTf + A2CT|Tj)]g12 = g1
+
2exp(A,fffT{ + /i2ff|T|) (4.11) 
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The condition (4.11) is trivially satisfied for two classes of terms: (1) 
diagonal in a and in t, (2) off-diagonal in both a and in T. Nontrivial con
straints only arise when we consider a spin flip in one species and a 
diagonal term in the other. Using the equivalence of the two species, we 
need to consider two kinds of nontrivial terms |{U}TT>-H{1T)TT> (i-c, 
c®a) and |{U}U>-»IUT}U> (i.e., c®b), leading to the equations 

£ —= tanh(A2-A,); ~~ ~ = tanh(/r2 + A.) (4.12) 
a a3 <x b3 

Eliminating p/a, we find the consistency condition 

^tanh(/ i 2- / i I) = ̂ tanh(/i2 + /i1) (4.13) 
b3 b4 

with 
a3 = cos(02 —0,), a4 = cos(02 + 0,) 

63 = 8111(02-8,), 64 = sin(02 + 0,) 

Simplifying further, we find 

sinh(2/ii)_sinh(2/t2)_l/ 
aib\ a2b2 2 

The constant on the rhs is chosen in conformity with Refs. 1 and 2. The S 
matrix follows from (4.10) (with p arbitrary) 

5,2(02 |0i)==p[cos(02 + 01)cosh(A2-A I)/1J(02-01) 

+ cos(02 - 0,) sinh(A2 - h t ) /12(02 + 6l)a
:
2T

!
2] (4.15) 

In summary, we have seen that the covering model of the Id Hubbard 
model, defined by the transfer matrix (2.12) with the L operator given by 
(4.1), is an integrable system with the coupling h chosen according to 
(4.14). The S matrix (4.15) is essentially identical to the one found in Ref. 2, 
and differs only in that we have worked here with a non-Hermitian L 
operator, a simple "gauge transformation" 

L = [exp(/HX^/2)]I exp(-teJtJ/2) 

recovers completely the previous result. 
I have checked some nontrivial matrix elements of (3.30) and believe it 

to be true in general; I am unable to give a tidy analytical proof of this 
result. This result implies that an inhomogeneous covering model with a 
transfer matrix (3.31) is also integrable, with {0„} arbitrary. 
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Some remarks concerning possible generalizations are in order at this 
stage. We have assumed that the spectral parameters 0, and 62 are the 
same for both lia) and /(I). The only other choice permitted is to negate one 
of the parameters, i.e., to consider /'(#) =/ ( ,T)(0)® /(t ,(— #), for otherwise 
we obtain too many consistency conditions in the sense of (4.12). The 
eight-vertex generalization of this scheme fails for the same reason; we end 
up with too many consistency conditions. One important question has been 
whether one could couple two general XXZ models in the same sense as 
the Hubbard model. We see that such a scheme is not possible, since the 
decorated STRs are useful in the above sense only for the free Fermi case. 
We have also verified that "natural" generalizations of the Hubbard 
problem to include more components in a symmetric fashion also fail 
because one obtains too many constraint equations. (The reader is urged to 
try the three-component problem independently.) Nonsymmetrical 
couplings might be allowed, althrough I have not checked these in detail. 

We note that the model considered is intimately connected, in certain 
limits, to the isotropic Heisenberg antiferromagnet (XXX model). One 
correspondence follows from the degeneration to the Hubbard 
Hamiltonian to first order in 6 [Eq. (2.8)], and the relationship of the lat
ter to the XXX model in the limit of U large in the half-filled limit.'I8) 

Another follows in the limit of h large and positive in the sector with all 
sites having either no particles (i.e., J.J.) or two particles (If)- Here the only 
allowed arrow configurations are six in number, with identical arrows on 
the a and T lattices, for which the invariant 

A = (aA + b'-c*)l(2a2b2)= - 1 

(usinga2 + 62 = c2). 
Let us remark that the STR (3.3) for the covering model has the 

feature that the infinitesimal limit of Sl2(w3) as w, -» w2 does not yield Hn, 
thereby sidestepping the difficulty mentioned in Ref. 13 [after Eq. (3.20)]. 

5. EIGENVALUES OF THE TRANSFER MATRIX 

In this section we give a brief and regrettably incomplete account of 
the eigenvalues of the transfer matrix of the covering model (2.12). The 
problem is quite nontrivial, from either the coordinate-space Bethe Ansatz 
point of view or the algebraic Bethe Ansatz point of view."9"2" One of the 
main difficulties is the absence of an obvious uniformizing parametrization 
of the S matrix (4.15), i.e., a parametrization in terms of which all the 
matrix elements are functions of the difference of appropriate spectral 
parameters. 
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From the algebraic point of view, a central role is ascribed to the 
global monodromy matrix 

n 

The four-dimensional auxiliary space g may be labeled in the form 
(1> = ITTX |2> = IU>, |3> = I1T>, and |4> = |U>, and the matrix 
elements of Tare denoted by Ty. The pseudo commutation relations 
between T,£QX) and Tkl(62) can be.found from the STR (3.2) or (3.3) with 
the help of the explicit S matrix (4.15). We find a total of 256 relations, 
which may be written down with considerable labor. The state with all 
spins up \Q) is the vacuum state, and is an eigenfunction of Tu for all i 
with (a = cos 9, b = sin 6) 

Tn \Q} = a2NeNh\Q); T22\Qy = b2NeNh\Q) 
(5.2) 

T3i\Q} = a"bNe-Nh\Qy; T44\Q} = aNbNe-"h\Q} 

The difficulty of the problem arises from the proliferation of possible 
creation operators, T21, T3l, T41, T23, T24 and composite operators T43, 
T21, etc. The only (rather trivial) case for which I have been able to 
construct eigenstates of T explicitly is the one with particles of one species 
only (say a species), for which the state T^O^ T3l(62)---T3I(6„)\Q), or 
7"24(0i) T2A{62) • • • T2A(d„)\£2}, is an exact eigenstate of T. The analysis of 
the commutation relations is sufficiently tedious and uninspiring as to 
prevent its inclusion here [the eigenvalues are consistent with Eq. (5.7) 
given below]. 

From the coordinate space point of view, the commutation of the 
transfer matrix with the Hubbard model implies that the eigenstates of the 
latter are also candidates for the former. Guided by the results of one- and 
two-spin deviation and the form of the results of the Bethe-Yang Ansatz 
for the Hubbard model, we conjecture the eigenvalue of the transfer matrix 
below. We show that the form of the eigenvalue, with the added constraint 
that poles in the eigenvalue on varying the Boltzmann weights in the finite 
part of the complex plane have vanishing residues, yields all the subsidiary 
conditions needed to fix the parameters. 

We first parameterize the Boltzmann weights somewhat differently 
from before; let 

a=l/(eAx+l)1'2, b = e2*/(eAx+l)l/2, c = l (5.3) 

whence Eq. (4.14) implies 

sinh(2A)cosh(2x)=C//4 (5.4) 
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Also define a "spin wave" function 

a±(z) = (e2x + ze±2h)/(l-ze2x±2h) (5.5) 

The functions a arise in the calculation of the wanted terms in the 
operation of T on the spin wave states Zz"ff„~ |£>. In the sector with M 
particles with M — K particles having spin up and K particles having spin 
down, the Bethe wave function is written in the form(22) 

\M, K, {z„} >e = %A(Q\P) z"P\zP\ • • • rap*" • • • p%»K 
p 

x p i S ' i . - ^ ' I f i ) (5-6) 

where z„ are generalized momenta z„ = eik", P represents the permutation of 
the momentum set, and Q is a sector permutation label, p<,T) = o-~ and 
p(

n
l) = T~. For example, the state corresponding to the identity sector Q = e 

has a string 

in (5.6). The amplitudes A are determined in the Hubbard model by 
requiring that (5.6) be an eigenfunction of H, and the eigenvalue condition 
determining Z„ requires the nested or Bethe-Yang Ansatz involving a new 
set of complex numbers {Am}, which are Km number. 

The eigenvalue of T (actually the adjoint of T) on the state (5.6) is 
conjectured to be 

AM,A6, {zn}, {Xm}) 

^a2NeNh fl <7_(z„) + Z W ( - i r \[ a + (zm) 

+ aNbNe-N\-\)M-K\\ a_(z„) 
n •= 1 

* / « * - * -e*-»-Xm+Ufl\ 
}l\e2h-2x-e2x-u-Xm-UI2rabe ( 1} 

M K / -lh-2x _ 2x + 2h _ 1 _ Trn\ 
x^Mni-"--^'-cJfi) (5j) 

Some feeling for the numbers k can be obtained from the results for 
M = 2, K= 1, where A oc (z, — rf1 + z 2 - z f ' ) . The conjecture (5.7) can be 
viewed as a kind of analytical Ansatz in the sense of Reshetekhin.'23' We 
now list a few important checks, which are fulfilled by (5.7) in support of 
the conjecture. 
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1. The limit [7 = 0 is trivially satisfied; we merely multiply the eigen
values of two free Fermi models. 

2. The asymptotic behavior of the eigenvalue belonging to a given 
sector can be readily found for 6 = — iu, u -»large and positive. Here 

a = cos0->|eu, b = smd-*\e"-i,in, c=\ 

The weights corresponding to the diagonal vertices a and b are dominant 
and hence spin deviations remain localized. We consider the two cases 
U > 0 and U < 0 separately. 

(a) U> 0. In this case h > 0 and from sinh(2/i) = Uflab, we find 

eh^e—iMf*+4/it Where <£ = ln(t//4) 

The eigenvalue for M — K spin-up particles and K spin-down particles 
follows from Tn and T22, and is 

A _^ 2~2N e 3 u J V + / V # 2 - W n / . - M f n / 2 , -in/2{2N-M)\ 

+ 0(e<3"-'>") (5.8a) 

(b) U < 0. In this case h< 0 and 

g-K^e*-****-^ 0' = ln(|t/|/4) 

We find from T3i and T44 

^ _^ 2 - 2W e3iWV + W / 2 - 3IJIAV4/ -m(M-2KV2 , „-m{2K- M)/2\ 

+ 0(eiiN-i)u) (5.8b) 

The eigenvalue (5.7) satisfies (5.8a) and (5.8b), as is readily seen. 
3. Consider the adjoint of the transfer matrix T. From Eq. (5.1) the 

transfer matrix is obtained by taking the trace. We use the cyclic invariance 
of the trace to insert 1 = (C£T£)2 and write 

T\e) = tTa'tT*r(e)e'tr'g 
g 

Using 

[<W *fT;]=o. °xs'UW « = W 2 - ̂ ) 
(where the asterisk denotes Hermitian conjugation in the quantum 
variables n only), we find 

T(0) = T+(n/2-0) or T+(0)=T(n/2-6) (5.9) 



76 Shastry 

This incidentally shows that the transfer matrix is normal, i.e., [7"(0), 
r + ( 0 ' ) ] = 0 , since \_T(8), 7(0')] = 0 for all 0, 0'. The eigenvalues therefore 
must satisfy the condition 

A{9) = A(n/2-9) (5.10) 

where A is the eigenvalue of T+. Equation (5.10) is in fact a constraint on 
the form of A,<23) since A should be alternately deducible from A by 
inverting zn-*z~l (and Am-> -Xm). Thus, we demand 

A(6, {z„}, {Am}) = A(n/2-e, {z- 1 }, {-Am}) (5.11) 

Equation (5.7) is readily seen to satisfy (5.11) on using (5.5), from which 

0^B^r-9^-l)^z) ( 5 - , 2 ) 

4. We finally note an "inversion relation" satisfied by T. The S 
matrix (4.15) satisfies the condition 

5,2(0,-71/210,) ocp<j> (5-13) 

where />(
I2~' is the antisymmetrization operator [a direct product of the 

antisymmetrization operators />?2
_ )s ^(l — afcf) —(O-,+ <T2

++h.c), and a 
similar />J2

- )]. Therefore, 

= / > U L ^ ( 0 i - J t / l ) ^ 1 ( 0 1 ) (5.14) 

Premultiplying by the symmetrization operator p{ + \ we find 

Pl,V> W * i ) W . ~ K/2) /»«:,» = 0 (5.15) 

This result has nontrivial consequences for the matrix product 

71(0,) 7X0,-ft/2)= tr f ] { L „ „ ( 0 , ) ^ (0 , - ^ / 2 ) } (5.16) 

We observe that the antisymmetric one-dimensional subspace ( t l — IT)® 
( T l _ i t ) corresponding to a product of the singlets in g, and g2 (for the a 
and T species) does not connect to the symmetric subspace and hence a 
block triangularity results. This argument is similar to that in Ref. 23 for 
the XXZ model. The matrix element within the Id subspace is readily com
puted (using ht = — h2) and we find 

r ( 0 , ) r ( 0 , - j t / 2 ) = cos4"(0,) + f(01) (5.17) 



Exact Integrability of 1D Hubbard Model 77 

The remainder t contains powers of sin #i and vanishes for 0, = 0 [since 
T{-n[2) is the left shift operator, i.e., T(-n/2) = 7(0)"']. This equation 
implies a constraint on the eigenvalue A, namely the coefficient of aAN in 
the product A(9) A{6 — n/2) should be unity. This is readily verifid for (5.7) 
using the result [remembering h(6 — n/2) = —h(0)~] 

} fl-g-,/2 , ( - 1 ) _ l ( 5 1 g ) 

<7±U) 

I have verified directly that (5.7) is true for K = 0 (by the algebraic 
Ansatz), but have been unable to prove it in general. Next consider the 
singularities of A arising from fixing Z„ and k„ and varying a and b, or 
equivalently x, in the finite part of the complex plane. As stressed by Baxter 
in his classical paper on the eight-vertex model,(4) such singularities must 
"go away" somehow, since the eigenfunction of the transfer matrix does not 
depend on the spectral parameter (8 or x), and hence singularities of the 
free energy on varying 6 must be apparent only. In the case of poles of A, 
one simply demands that the residue should vanish. 

The expression (5.7) has poles of two kinds, which we now discuss. 
The first and third factors have common simple poles corresponding to the 
vanishing of the denominator of (5.5). Consider one typical term a_(z„), 
which blows up for e2x~2h -*z~l. Equation the residue to zero, setting 
(a/be2*)" ^>z%, and canceling common factors, we find the M relations 

*:-(-ir-*" n (z;~z;-~xr+T7) ww 
The second and fourth terms have common poles from <r + (z„), and 
equating the residues to zero, one again finds (5.19). 

The second class of poles arise from the vanishing denominators of the 
third and fourth terms. Using (5.4), we see that poles are common, and a 
typical term has the pole condition e2h ~ 2x — e2* ~ 2h -* X„ + U/2. Using the 
relation 

a + (z)_ e^-^-e^-^-jz-z-1) 
«T_(2)"e2A-2j;-^-2/'-(z-z-,)-C; l ' 

we compute the residue and find the relations 
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In order to make contact with the results of Lieb and Wu, we recall 

d 
* t a 7 W = // = X K + t 7 - + 1 + h . c . ) + ( ( T - T ) + ^ a ; ^ (5.22) 

Thus, the largest eigenvalue of T would give the highest energy state of H 
given above. In order to relate the lowest energy states of an appropriate 
Hamiltonian, we write 

W(|t/ |)=-X(c7n
+a-+ 1 + h . c . ) - i : (CT- + 1 + h.c.) + i ^ Z a ; T ; (5.23) 

We write U= -\U\ in (5.22) corresponding to sinh(2/j) = —{\U\ab with 
a, b>0 (thus, A<0 in the principal domain) 

JlnW) - - W ( | f | ) (5.24) 

The eigenvalue of H(\ U\) can be read off from (5.7) easily by noting that as 
6-*0 the first term dominates in the thermodynamic limit. Using 
h -* \U\/46 + 0(B3), we readily find the eigenvalue of H: 

e(M,K, {z„},{Am}) = (JV74-3//2)|t/ |-X(zn + z- ') (5.25) 

The identification Z„ -»e'k" recovers the results of Lieb and Wu provided 
we denote X„^2iA„ and write U= -\U\ in (5.19) and (5.21). 

NOTE ADDED IN PROOF 

The article "Algebraic Geometry Methods in The Theory of Baxter-
Yang Equations" by I. M. Krichever (Mathematical Physics Reviews 
Vol. 3, ed. S. P. Novikov (Harwood Academic Publisher) 1982), discusses a 
similar class of S matrices. 

ACKNOWLEDGMENTS 

It is a pleasure to thank Bill Sutherland and Leon Takhtajan for 
stimulating discussions, and E. H. Lieb, B. McCoy, and J. Perk for 
bringing relevant references to my attention. 

file://�{/U/ab


Exact Integrability of I D Hubbard Model 79 

REFERENCES 

1. B. Sriram Shastry, Phys. Rev. Leu. 56:1529 (1986); (E) 56:2334 (1986). 
2. B. Sriram Shastry, Phys. Rev. Lett. 56:2453 (1986). 
3. Bill Sutherland, J. Math. Phys. 11:3138 (1970). 
4. R. J. Baxter, Ann. Phys. (N.Y.) 70:193 (1972); Exactly Solved Models in Statistical 

Mechanics (Academic, London, 1982). 
5. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20:1445 (1968). 
6. O. J. Heilmann and E. H. Lieb, Ann. N. Acad. Sci. 172:583 (1971). 
7. M. Barma and B. S. Shastry, Phys. Lett. A 61:15 (1977). 
8. R. J. Bariev, Teor. Mat. Fiz. 49:261 (1981). 
9. T. T. Truong and K. D. Schotte, Nucl. Phys. B 230 [FS 10]:1 (1984). 

10. K. D. Schotte, S. Iwabuchi, and T. T. Truong, Z. Phys. B 60:255 (1985). 
11. M. Luscher, Nucl. Phys. B 117:475 (1976). 
12. V. V. Bazhanov and Y. G. Stroganov, Teor. Mat. Fiz. 62:377 (1985). 
13. P. Kulish and E. Sklyanin, in Integrable Quantum Field Theories, J. Hietarinta and 

C. Montonen, eds. (Springer-Verlag, Berlin, 1981), p. 61. 
14. M. Wadati, E. Olmedilla, and Y. Akutsu, J. Phys. Soc. Jpn. 56:1340 (1987). 
15. E. Olmedilla, M. Wadati, and Y. Akutsu, J. Phys. Soc. Jpn. 56:2298 (1987). 
16. W. Brinkman and T. M. Rice, Phys. Rev. B 2:1324 (1970). 
17. S. Krinsky, Phys. Lett. A 39:169 (1972). 
18. M. Takahashi, J. Phys. C 10:1289 (1977). 
19. L. D. Faddeev and L. A. Takhtajan, Usp. Mat. Nauk 34:13 (1979). 
20. E. K. Sklyanin, L. A. Takhtajan, and L. D. Faddeev, Teor. Mat. Fiz. 40:194 (1979). 
21. L. A. Takhtajan, in Exactly Solvable Problems in Condensed Mater and Relativislic Field 

Theory, B. S. Shastry, S. S. Jha, and V. Singh, eds. (Springer-Verlag, Berlin, 1986). 
22. B. Sutherland, in Exactly Solvable Problems in Condensed Mailer and Relativislic Field 

Theory, B. S. Shastry, S. S. Jha, and V. Singh, eds. (Springer-Verlag, Berlin, 1986). 
23. N. Y. Reshetekhin, Sov. Phys. JETP 57:691 (1983). 



655 

Prog. Theor. Phys. Vol. 83, No. 4, April 1990, Progress Letters 

An Extension of the Thermal Bethe Ansatz 

One-Dimensional Hubbard Model 
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The thermodynamics of the one-dimensional Hubbard model is reduced to a system of-algebraic 
equations through an extension of our thermal Bethe ansatz. This new formalism is free from the 
string conjecture, or more basically from the unproven assumption of the completeness of the Bethe 
states. 

In the previous papers," we proposed a new method for the statistical mechanics 
of the spin-1/2 XXZ Heisenberg chain, which we call the thermal Bethe-ansatz 
method. It consists in (i) using the path integral idea to transform the partition 
function of the model into the one of a two-dimensional Ising system,2' and (ii) 
applying the Bethe-ansatz method to find the maximum eigenvalue of the transfer 
matrix of the Ising system, which leads to the free energy in the thermodynamic 
limit."~3' This method is free from the string conjecture,4) or more basically from the 
unproven assumption of the completeness of the Bethe states,51,6' and it gave the better 
results" than the previous methods did in the spin-1/2 XXZ Heisenberg chain. 

In this paper, our thermal Bethe-ansatz method is extended to treat the one-
dimensional Hubbard model. The thermodynamics of the model is thus reduced to a 
system of algebraic equations, as was the case of the Heisenberg model in the previous 
papers." 

Now, the Hamiltonian of the one-dimensional Hubbard model is given by 

_ Na-l 

HNt,'.= t 2 2 xdj+l.z <Zj,r+ OJ,TOJ+I,T) 

+ lT2(aUaj.r-l/2)(aL Sj.,-1/2) 
.1=1 

— MlKaU-aj.i + a],i a~j,i) + Nafi (1) 
J=I 

(the symbol := signifies definition) with the free boundary condition, where t, U and 
H are the hopping integral, the Coulomb interaction energy and chemical potential, 
respectively; air and dj,z are, respectively, the creation and annihilation operators of 
the electron, with spin r at the ;th lattice site (/=1,2, •••, Na; r = T , 4.). 

We extend the thermal Bethe-ansatz method to calculate the free energy per 
electron in the thermodynamic limit, 

/ = - lim (0Na)-llogZKm, ZNa=Tr exp[ - 0HNm], (2) 
Af a t « 

for the sequence Na=2n (w=l, 2, •••) in the following way, where P is the inverse 
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temperature and Tr denotes the trace over the electron states. 
We rewrite (1) into the form (3) below which is more convenient for the purpose 

of applying the path integral idea to the partition function Z2n in (2). By using the 
Jordan-Wigner transformation,7' 

Sj,-,—(di,.,---dj^i,t)8j,i , 

Na 

SjuHUdWidU-dU.JdJ,,, 0'=1,2, - , 2 « ) 

we have 
-. 2n _ in 

H2n= 2 2 f l « + i , r + 4 - , £ / 2 3J. t9J., (3) 

with 

Hj,j+i,r ~~2'lt(dj,zdj+i,r+ 8lrd?+i,z)-i~1fi(SlT+ ffjVl.r) , 

where we regard the lattice to be twofold as labeled by the spin r = T , I and 8j,T is 
the Pauli spin operator for the /th site of the spin-r lattice 0 = 1, •••, In). We have 
changed the free boundary condition to the periodic one, (72K+I, T = G\, T ( r = T , J-), 
because the thermodynamic limit in (2) is independent of the boundary condition. 
Here, we remark that in the case of (1) with the periodic boundary condition, the 
transformed Hamiltonian does not have a simple periodic structure.7' 

Following Suzuki,2''8' we divide the Hamiltonian (3) into three parts such that 
each one is a sum of operators all commuting with each other, 

„ n „ „ 

HA=Z 2( jJ2;- l ,2( ; T +//2/,2(+l ; l ) , 

~ n _ „ 
TIB— 2( / l2; ,2;+l ; f + H.2l-\,2l; i) 

and 

_ 2n 
2H,=4-iU51di,dli 

to write the finite-Af approximate partition function, 

gW)^^^ g-PHAlMg-MlIM 0-PHBIM -PHilM-iM (4 ) 

In the same way as in the previous papers," i.e., by using the path integral idea, 
(4) can be written as 

Z,2n — T Y\l2M RIMTZMRZM) , 

where 

_ M _ _ 2M 

RZM : = [I1 V2;-i,2i;t V2l,2l+i;i]Uexp[(SM)'il3Udi, 5J.J , 
/ = 1 j=l 
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VjJ+i,r : = e x p [ - ( 8 M ) - ' M 5 / , r - dU.r)} ^ « ; r e x P [ ( 8 M ) - ' M 5 i : - ff/+i.r)], 

Kj°J+i;r : = 2-'(exp[#//lf]+ df,T&f+i.T+dlrd?+ur-exp[-0t/M]ntd;+i,T) 

with the periodic boundary condition, <72M+i,r = <?i,r ( r = t , I ) , and the operator T2M 

shifts any periodic array of the spin states by one lattice unit backwards. Further, 
it can be shown easily that for the n's restricted to multiples of M, 

Zi%l = Tr(OzM)2ML, (L = l , 2 , - ) 

where 

The operator UZM plays the role of the transfer matrix in the "space" direction. 
The free energy per electron in the thermodynamic limit is given by 

/ = - / ? " ' lim lim J V ^ ' l o g ^ ' . 

But, the order of limits can be interchanged by the theorem for the symmetrized 
decomposition.1),3) Therefore, we have 

/ = - /3"1 lim lim(2ML)-1logZ2
(ffi 

= - / ? - ' lim logAM
max, 

M T~ 

where AM
m&x is the maximum eigenvalue of the transfer matrix DIM. 

Now, we write down the eigenstate \BN,,NI> of U2M having Nt down spins for the 
spin- T lattice and A^ down spins for the spin-1 lattice by the Bethe ansatz. We can 
in fact prove that the maximum eigenvalue Aumax is obtained when N^=Ni=M, by 
the same argument as in the previous papers." Therefore, our method makes us free 
from the question whether or not the string conjucture4' provides the complete system 
of eigenstates. Thus, we write down the extended form of the thermal Bethe ansatz,1,,9) 

Ne-l 

\BN,,NL>:= 2 2 S [ II Ayi, yi+i; rQi, r0«+i>)] 

x<r«i, •••, tQNe\A(P)>F(zpi, TQI, yi)---F(zpNe, tQNe, yNe) 

Ne 

X [ I l 5 i . r J | t , - , T> 

(Ne=Nf +Ni; Nu M = l , 2, - , 2M) 

for the eigenstates of U2M, with 
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d(i>i, y . + i ; TQi, TQU+D) : = 

y.=y,+i=even and 
(rQi, r9(,-+i)) = ( t , I ) 

/y>=y.+i=odd and 

\(ro,- = r<Ki+i))=(l, T) 

1 (otherwise), 

F(z, r , y ) : = 

f a{z)z^)l2 (y=odd and r = t ) 
(y=even and r = T) ,yl2 

a(z)b(z)z3"2 (y=even and r = 1) 

I b(z)z{y-l)'2 (y=odd and r = I) 

and 

( r i , - , n » . ) = ( T , - , T, i , - , i), dj,r=2-\dlr~ialr), 

N, spins TVj. spins 

where 11, •••, T > is the state with all the spins up; the first summation runs over all 
integers satisfying 1 S= yi ̂  y2 ̂  • • • ^ y^e ̂  2M, and the next two summations run over all 
the permutations P, Q of (1, •••,Ne). We shall determine the complex numbers z, 
0'=1, •••, Ne), the functions a, b, and the set of ket vectors {|̂ 4(P)>}p as follows. 
Namely, as in the original Bethe ansatz,10' the eigenvalue equation for OIM leads to the 
conditions, 

Yj.j+i(6pj-dpu+»)\A(Pl, - , Pj, PU + D, •", PNe)> 

= \A(P1, - , PU + D, PJ, - , PNe)> , 

\A(P1, - , PN.)> = PlJtP*a-PNm-i.N.\A(P2, •••, PNe, P\)>ZP1, 

WtAj + s2 

aU)=c-,(A*-WJ,-,)1 

(5) 

2j "̂ a-̂ -1) 
b2(zj) = zj, exp[/ft] = a(zj)b(zj) 

and to the eigenvalue, 

AM,Ne=ey.x>l2~lr(Ne-M)\sm-N°AvANe, 

where 

?*.<(ft-ft) 

:= ~[2sin(ft— ft— z»]-'{[sin(ft— ft— z'y)+sin(ft— ft)-sin(zy)] 

+ [sin(ft—ft— zy)+sin(ft— ft) + sin(/y)] f/f,z-2sin(ft—ft)P*,,}, 

c :=cosh(0t/M), s :=sinh(0t/M), 

WA,-:=expt(2M)-1^/i], y := -(2M)"1/?//, 

f* is the Pauli spin operator acting on the £th r spin state and the operator A , i 
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exchanges the vfeth r spin state and the /th one. These equations can be solved by 
using the quantum inverse scattering method.11' As a result, we obtain the system of 
the thermal Bethe-ansatz equations with unknowns Ui, •••, ANe, 6>i, •••, @N >X 

' W^j + s2 

.AAAj-w,-1) 

( / = i , - , A g (6) 

and 

ft sm(0(Ai)-&l+ir/2) _ , TN^-.n s i n ( g , - e * - i » 
JL1isin(5(A*)-e«-i>/2) ^ ; J - \ s in(0 , -©*+«»• 

(/ = 1 , - , M ) (7) 

where 

exp[2i»a)1=a-^X^ + S,)-

Thus, in our thermal Bethe-ansatz method, it is sufficient to find only one solution 
to the system of the Bethe-ansatz equations with N, =Nx = M for calculating the free 
energy in the thermodynamic limit. For solving them numerically, we remark that in 
the high temperature limit 0 i 0, the system of the Bethe-ansatz equations (6) and (7) 
with N1=Ni=M has a solution leading to the maximum eigenvalue in (5). There
fore, by stepping down from /?=0 a decreasing sequence of temperature as in the 
previous papers,1' one can obtain numerical solutions to the system of the Bethe-
ansatz equations for any temperature 0. 

A full account of this work and numerical results will be given elsewhere. 

The author wishes to express his sincere gratitude to Professor H. Ezawa for his 
constant guidance. Thanks are also due to Professor M. Suzuki of the University of 
Tokyo and to Professor M. Takahashi of the Institute for Solid State Physics for 
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= ( - 1 ) " ' 
. ,ft sin(ffQy-

i i , s i n (0a ) -
•e„-tr/2) 
•e* + i>/2) 
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Prog. Theor. Phys. 83 (1990) 655-659 

On p. 657, the second equation in the parenthesis above the bottom line of the page 
should read 

^ 1 , ^ = 0 , 1 , - - - , 2 M 

On p. 658, the second equation above the bottom line of the page should read 

7 := ~{2M)-1PU 

On p. 659, Equation (7) should read 

j i sin(fl(A,-)-e/ + t 7 /2 ) = r_n*.-i TT sin(0, - Ok - i7) 
U s i n ^ - ) - 0 , - ^ / 2 ) ( ] J-=lsin(0,-0,+t-7)' 
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We have calculated the spin correlation length of the half-filled one-dimensional 
Hubbard model down to the temperature of 7"=0.01 x (transfer integral) by the 
Bethe-Ansatz method for the quantum transfer matrix. Its temperature dependence 
shows the crossover from (2 log nT)~' at high temperatures to o r - 1 with the log cor
rections at low temperatures, the low-T behavior being consistent with the prediction 
by the conformal field theory. When the Coulomb repulsion U is small, we have 
found at low temperatures another crossover in the proportional constant a from the 
value for the free electron system to that for the antiferromagnetic Heisenberg model. 
This crossover is due to the disappearance of charge fluctuation. A similar crossover 
has been observed for the linear coefficient of specific heat, C/T. 

The one-dimensional Hubbard model (HM) 
has been of great interest in the condensed-
matter physics as the simplest model of 
strongly correlated electron systems. This 
model can be exactly solved with the Bethe-
Ansatz (BA) techniques as shown by Lieb and 
Wu," and the BA solution was generalized by 
Takahashi to the finite-temperature case on 
the string hypothesis.2' Several thermody
namic quantities commuting with the Hamilto-
nian were obtained by using this method.3,4) 

In contrast to the thermodynamic quan
tities, it has been believed to be difficult to 
calculate correlation functions. As well as 
many other one-dimensional (ID) quantum 
systems, its correlation functions show power-
law decays in space at T=0 and exponential 
decays at 7 > 0 . Recently, some groups have 
succeeded in calculating power-law exponents 
Y] of the spin, charge, and superconductivity 
correlation functions, etc., at T=0 by apply
ing the conformal field theory (CFT).5"7) In the 
CFT, the rj's are given by the conformal 
dimension of each relevant operator,8' and 
they obtained the conformal dimensions by 
the BA techniques. The CFT predicts the tem
perature dependence of the correlation length 
as £~T~l at sufficiently low temperatures.8' 
At high temperatures, on the other hand, it 
is expected that the correlation lengths are 
close to those of noninteracting systems, £~ 

Oogrr1. 
Another important progress was made 

for the exactly solvable ID quantum spin 
systems; their correlation lengths £, at finite 
temperatures have been obtained by the BA 
method.9"'" The calculation of ^ can be re
duced to diagonalization of their quantum 
transfer matrix (QTM) via the formula e_1/<:= 
A2/Ai, where k\ and Xi are the largest and the 
second largest eigenvalues, respectively. The 
QTM is equivalent to the diagonal-to-diagonal 
transfer matrix of a 2D 6- or 8-vertex model, 
and it is known that this can be solved by the 
BA method. The correlation lengths of the 
5 = 1 / 2 ferro- and antiferromagnetic 
Heisenberg and XYZ spin models were ob
tained by using this scheme.9""1 The free 
energy can also be obtained via the formula, 
-jfl/=logA,.12> 

As for the HM, Barma and Shastry showed 
that this model could be mapped into a stag
gered 6-vertex model (S6VM),13) and Bariev 
solved this S6VM as a 2D classical system.14' 
Koma obtained an equivalent BA equation as 
the solution of the QTM of the HM.151 In this 
letter, we shall study the temperature 
dependence of the correlation length of antifer
romagnetic spin fluctuations by numerical 
computation of the BA equation given by 
Bariev and Koma. We restrict ourselves to the 
half-filled case because the BA equation is sim-
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pie in this case, and leave the non-half-filled 
case to further study. Our main interest is the 
quantitative analysis of the crossover of the 
correlation length from the high temperature 
limit to the low temperature limit and the 
effect of the charge fluctuation. We note that 
the correlation length of the spin fluctuation in 
the repulsive HM with the interaction of U is 
equal to that of the s-wave superconductivity 
in the attractive HM with ~C/.l6) 

The Hamiltonian of the HM is 

jo J 

ja 

with standard notations, and the mapping into 
the S6VM is as follows. The first procedure is 
the Trotter decomposition of e~H/T, transform
ing the thermodynamics of the HM at a tem
perature T into that of the S6VM with the 
width of 2N in the time direction, where N is 
the Trotter number.13) The second is a particle-
hole transformation to recover the particle 
number conservation of the QTM.,5) (In this 
letter, we call down and up arrows by particles 
and holes, respectively.) The QTM conse
quently becomes the transfer matrix of the 
86VM with the Boltzmann weights shown in 
Fig. 1(a), and an example of arrow configura
tion is drawn in Fig. 1(b). The solid (dashed) 
lines represent the motion of up-spin (down-
spin) electrons, and electrons interact via the 
on-site Coulomb repulsion at the intersections 
of the solid and dashed lines. The extrapola
tion to iV-»QO should be taken to calculate 
physical quantities;1?) however, because the 
Boltzmann weights are dependent on N, we 
cannot transform the BA equation into an in

tegral equation as in the Lieb-Wu solution. 
We shall numerically take that limit instead. 

We summarize the results of Bariev and 
Koma (please refer to original papers14,15* for 
details). The QTM (R,) for the sites with odd r 
are different from those(R2) for even r as 
shown in Fig. 1(b), but because R2=TRiT™"1 

(T: the shift operator in the time direction) 
and [T2, R|]=0, it is sufficient to diagonalize 
the QTM defined by RsTR t. In the half-filled 
case (i.e., ju= C//2), eigenvalues A of R are de
termined by solutions of the following BA 
equations: 

x [b cospj+ Vc2 — b2 sin2pj], 

2NPj=2nIj+ E <pu(M(pj)-Afi), 
0=\ 

(2) 

(3a) 

2 q>u(M(pJ)-Aa)=:2nJa+ 2 92u(A0-Aa)t 

(3b) 
sin (x+iw) 

P M ( * ) 3 S - i l 0 g , . , . . . 

sin.{x—iu)\ 

M(p)m$in-l(bc~l$mp), U&0U/4N, (4) 
where a, 6, and c are given in Fig. 1(a), N is 
the Trotter number, n is the number of par
ticles, and rt\ is the particle number on the 
dashed-line sublattice. The quantum numbers 
Ij and Ja are half-integers when /Vis even, and 
we shall treat this case. It is easily verified that 
when all variables are real numbers,their range 
can be reduced to —n<Pj<n and 
- 7 r / 2 < / l a < 7 r / 2 . 

The largest eigenvalue Xx is obtained by 
n = 2Nf ni=Nand by choosing {/,-} and {Ja} 

vv vv w /x/\ x\/\ xx/x 

-$t»time 

(a) 

Fig. 1. (a) Boltzmann weights of the S6VM mapped from the half-filled HM. The vertices produced by exchang
ing solid and dashed lines have the same Boltzmann weights, (b) An example of arrow configuration in the 
S6VM. The periodic boundary condition is imposed in the time direction. 2/V=8» /i = 8, /t, = 4. 
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consecutive numbers centered around 
z e r o i4,i5) ^ e j j a v e foun(j that the second largest 
eigenvalue A2 relevant to the spin correlation 
function is given by the same n, rt\, and the 
shift of Ja-*Ja+l for all a with {/,•} un
changed, which we confirmed by direct diago-
nalization of the QTM up to 2N—S. In these 
two cases, {pj} and {Aa} are all real numbers 
and have a characteristic distribution. In the 
case of Ai, {pj} and {Aa} are symmetrically 
distributed around zero; in the case of A2, 
P2N=n, PN=0, AN=K/2, AN/2 = 0, and the 
other elements are symmetrically distributed 
around zero. Consequently, X\ and A2 are real 
numbers and Ai>0, A2<0. This means that 
the most slowly decaying component is like 
z~rlicos nr; i.e., the antiferromagnetic spin 
fluctuation is dominant. 

We have numerically solved the BA eq. (3) 
and obtained Ai, and A2 with decreasing tem
perature for various values of U. We have 
calculated the spin correlation length by the 
formula91 of £s= [log (A,/A2)]-1 and calculated 
several thermodynamic quantities, such as the 
free energy, the internal energy, the specific 
heat, etc., from Ai and its derivatives. Our 
results of the thermodynamic quantities coin
cide with those calculated by the conventional 
BA techniques.14' We obtained these quan
tities by extrapolation to N-* <x> from the data 
for several N, the largest system we used being 
2/V=4096. Down to the temperature 7=0.01 
in units of /, our results are reliable within the 
error of 0.01% at worst except for the specific 
heat for large U (e.g., U=8, the error is esti
mated to - 0 . 5 % at 7=0.0143). 

We show the results of the temperature 
dependence of the spin correlation length £s 

for some typical U in Fig. 2. Above T~ 1.0, 
the effect of the Coulomb repulsion is small 
and the results are close to the value for the 
free electron system (U=0), £sree={2 log 
[V(7r772)2+l-l-7r772]}"1. The temperature 
dependence is, therefore, asymptotically ~(2 
log nT)~' in the high temperature region. The 
effect of the Coulomb repulsion develops 
below 7 - 1 . 0 , and £s shows the crossover 
from (log T)] to a power law. The CFT 
predicts the low-7 asymptotic form as 
£, = vlnT for a wide class of ID quantum 
systems with gapless excitations, where v is the 

velocity of the excitation. In our case, this is 
the spin wave velocity18'19' vs = 2Il(2n/U)/ 
Io(2n/U) (To, I\: the modified Bessel funct
ions) because, in the half-filled case, the 
charge excitation has an energy gap called the 
Hubbard gap A no matter how small U is.1' 
Owing to the Hubbard gap, when T«A, the 
HM reduces to the universality class of the ID 
antiferromagnetic Heisenberg model (AFHM) 
with the exchange integral of Je!f=2vjn. 
However, because the gap is extremely small 
for small t/,18) A ~ 8 n _ l SOexp (-2n/U), in 
contrast to the large-t/ case (A — U—4), the 
charge fluctuation should produce a con
siderable effect on ^s at the temperatures 
A< T. Therefore, we expect that the critical 
temperature region is correspondingly nar
row, particularly when U is small. 

The crossover in Fig. 2 might npt seem to be 
monotonous with respect to U, but we can 
clearly visualize the systematic behavior of the 
crossover by normalizing £s and 7 by their 
characteristic values. The characteristic energy 
scale of temperature is only vs owing to the 
Hubbard gap A at temperatures T«A; this 
has the {/-dependence like vs~2—(J/2n (for 
small U) and vs~2n/U (for large U). 
Therefore, we plot n£sT/vs as a function of 
T/vs in Fig. 3, and the results of the AFHM10' 
and the free electron system (U=0) are also 
shown for comparison. The value n^T/vs 

should converge to 1 in the limit of 7->0 ac
cording to the CFT, while in the case of U—0, 
the limit is not 1 but 1/2 as seen from the 
analytical result <J|rec. Figure 3 indicates that 
the temperature dependence shows a crossover 
from the weak interaction limit (the U=0 
case) to the strong interaction limit (the 
AFHM) with decreasing temperature, and 
that the crossover temperature normalized by 
vs is higher for large U. The crossover tempera
ture is in the same order of A, and this 
behavior is consistent with the fact that the 
half-filled HM reduces to the universality class 
of the AFHM when T< A. When U is so large 
that vs«A (e.g., f/=8), the temperature 
region where the spin wave excitation is domi
nant is well separated from that for the charge 
excitation, and, therefore, the crossover to the 
C/-*°o limit can be clearly found at tempera
tures T<vs. On the other hand, when U is so 
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Fig. 2. Temperature dependence of spin correlation length. Fig. 3. Effect of Coulomb repulsion on the 
crossover of spin correlation length. Fig. 4. Effect of Coulomb repulsion on the crossover of specific heat. 

small that A < T, the charge iuctuation has a 
considerable amplitude at this temperature 
and suppresses the growth of the spin correla
tion. The temperature dependence of £s is con
sequently rather close to that of the free elec
tron system down to the lowest temperature 
used here. Even in this case, when the tempera
ture becomes T« A, the curve should show the 
crossover to the AFHM. 

The singular behavior near T = 0 in Fig. 3 
for large C/is due to the log corrections, which 
were also observed in the AFHM.l0) Applying 
the CFTS we can estimate this from the log 
terms in the finite-size corrections of the ex
cited state energies of the HM Hamiltonian 
given by Woynarovich and Eckle?

20) and the 
result is 

1 71 T 
1 — 

1 1 

2 log (To/ T) 
+ (higher terms) 

(5) 

where TQ is a characteristics energy scale depen
dent on U. However, because the log correc
tion given by Woynarovich and Eckle was 
derived for the large systems where the charge 
iuctuation does not contribute due to the Hub
bard gap, the temperature region where this 
correction (5) is dominant is again T«Min 
{A,vs}. We have found that in the large-1/ 
case (e.g., C/>6), the obtained curve is well 
fitted by the expression (5), but in the small-£/ 
case (e.g., C/<2), as expected from the above 
argument, the curve has not yet reached the 
asymptotic behavior (5) down to the tempera
tures used here. 

The amplitude of the charge fluctuation can 
be measured by the specific heat C. In Fig. 4, 
we plot C/T normalized by its limit value 

y siimr-o C/ T=n/(3vs). The free electron 
case is again an exception;, limr-o C/T=n/iy 

being twice n/(3t;s).
3) The extra contribution is 

due to the charge fluctuation because this is 
also a gapless excitation when U=0. As well 
as &» C/yF also shows the crossover from the 
free electron limit to the AFHM limit with 
decreasing temperature, the decrease of which 
directly indicates the suppression of the charge 
fluctuation. 

The author thanks M. Takahashi and J. 
Suzuki for valuable discussions and thanks K. 
Nomura and M. Yamada for providing the 
data on the AFHM. 
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Correlation functions in the one-dimensional 
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The asymptotic forms of the correlation functions in the one-dimensional 
Hubbard model, when umklapp processes are significant, are obtained. It is 
shown that two types of pairing in the ground state are simultaneously realized. 
The corresponding correlation functions fall off in power-law fashion at large 
distances. 

PACS numbers: 71.10, + x 

The asymptot ic fo rms of the co r re l a t ion functions w e r e recen t ly calculatedC 1 ] 

for a one-d imens ional e lec t ron gas in the absence of umklapp p r o c e s s e s (see 
also1-2 '33). The kinetic energy of the f ree e lec t rons was l inear ized n e a r ±kF, and 
this made it poss ib le to use the so-ca l led "boson r ep re sen t a t i on" for the field 
ope ra to r s ,•4,53 

* „ - V ,/'2e
ikxaiJk) -. (2na)~ V>expf (-1)' [-ikFx + 2A(x,k)pu(kJ)\. (1) 

The exponent t = ( l , 2 ) co r r e sponds here to e lec t rons nea r ±kF, s is the spin in
dex, P<s(fe)=S^aJa(/) + fe)aJa(p), Abc,k) = 2nL-1k-iexp(-a | k\/2-ikx), and Vf-a'1 

is in terpre ted a s the width of the conduction band. 

It will be shown below that the boson rep resen ta t ion technique makes it p o s s i 
ble to find the asymptot ic fo rms of the co r re l a t ion functions also in those c a s e s 
when the umklapp p r o c e s s e s a r e significant. Fo r s impl ic i ty we cons ide r the 
one-dimensional Hubbard model with a half-filled band. The in terac t ion con
stant of the e l ec t rons will be assumed to be smal l : \g\ « 2tvF. Such a sys tem 
corresponds in the r ep resen ta t ion (1) to a HamiltonianC 6 J 

H-k\pfi-K]+h{ai;g\, (2) 

where 

hlP{ ; - g | - 2n(vF + S/2n)L~l 2 [p (k)p (_k) + (_k) (kj] 
A > 0 z 

+ gL~l 2Pi(k)p2(-k) - g(2na)~2 fdxlexp[2l/> 2A(x, h)(?l(k) + p2fk) )] + c . C.}, (3) 

is de te rmined by replacing pj in (3) by a{ and g by — g; pi = 2"1^2(pi, 
+ Pu), crJ = 2 - 1 / 2 ( p J , - p J t ) , where 

IPi ,<7.] = 0, (4) 

kL 

27 
[Pi (k), pA - * ' ) ] - [ a . (k), a. ( - k') ] = ( - 1 ) ' «., 8.. 

1 i '1 ?.* ** 

We note that in the Hubbard Hamiltonian (2) the umklapp p r o c e s s e s cor respond 
to the las t t e r m in h{p{; -g}. 
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We are interested in the correlation functions that describe the fluctuations 
of singlet and triplet Cooper pairs (SCP and TCP), as well as fluctuations of 
the dielectric (CDW) and antiferromagnetic (SDW) type: 

*CDW - < ^ i » r * , « ; ^ V * ' ' ^ 2 f < 0 . 0 ) ^ ( M ) > ~e 2 , * ' X Kj( -* . ) K*(g), 

K S D ? - < y * , « J ^ * , « ^ j , ( l l . « W ; ( 0 ^ > -e2,kFXK+(-g)Kl(g), 

KSCP - < *i,(*.0*n(*,t)**2i(M) ^ ( 0 . 0 ) . > - K-(-g)K.l(g), (5) 

where 

X j ( - « ) - ( 2 i w ) - 1 < e
i ' A ex P [ -2 - , /»2^r* ,* ; ( 'P i ± p 2 ) ] e - " A 

x exp[2~ * 2 / ! (0, k)(Pl ±p2) ] > „ (6) 

here h = h{p{; — g}. K*{g) is obtained from (6) by replacing pt with oi and h 
= hWi;g}. 

The factorization in (5) was made possible by the fact that the field operators 
ipis are expressed in accordance with (1) in terms of an exponential of a function 
linear in pis. Since the commutation relations of pt and oj are the same, 
Kp(—g)= K*(—g) and consequently the problem reduces to finding the four func
tions Kf(gl 0). 

The K*(g>0) can be calculated, inasmuch as a situation of the zero-charge 
type arises at g>0 following normalization in h{cr{;g}. For the calculations we 
note that the parquet approximation was sufficient to find the correlation func
tion in a gas with 6-function repulsion17-91 

KCDV(g> 0 )^ ln < U ) - 3 ^a>- S / 2 7 r ^ ) FSDWfg> 0 ) M l n o > ) ' ^ ' f i / 2 7 r ^ (7) 

On the other hand, the factorization relations of the type (5) are valid also for 
these functions, the factors K$(g) remaining unchanged, while Kp(—g) are r e -
placedj>y #p*(-g). The K*(-g) are calculated from formula (6) with h=h{pi-g}; 
while h{p{;-g} are determined by formula (3) but without the last term (this 
term describes umklapp processes, which do not exist in a gas with^-function 
interaction). h{pf; —g} is quadratic in pit and therefore the function K*{—g) can 
be easily obtained ^ 

Kp(-g) ~ « (8) 

As a result we obtain from (7) and (8) the asymptotic forms of K* (g>0) 

K+{g> 0) = KCDW(g > 0)/«+(-y.) ~ In - 3 / n * 2 - ( v ' < ) 2 ] / [ * 2 - (v'trfi , 0 ) 

ira(g> o) = F C D W ( g > o)/K+r-g; — \ ^ [ x 2 - ( v ' t ) 2 y [ x * - ( v ' t ) 2 } \ (10) 
where v' =vF —g/2w. 

Reducing the problem to a two-dimensional Coulomb gas, it was shown in133 

that at large distances we have the asymptotic behavior 
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K+
a(g < 0 ) ~ const . (11) 

It remains to explain the behavior of the function K„(g<0). It was noted inC2] 

that atg=- (6/5)wvF it is possible to calculate K;{x,t). This circumstance makes 
it possible to find the asymptotic form of K„{g<0), inasmuch as a t ^ < 0 , as the 
result of renormalization, the charge arrived at the point g= — \i(vF, (vF is the 
coefficient at 

2nL-X 2 [ol(k)ol(-k) + o2(-k)a:l(k)] 
k> 0 

in the renormalized fefoj;£•}). Omitting certain details (we note only that vF 

= 1.25(vF-g/Zid+Oig2)), we present the final result 

K-(g<0) e x P | - 2 A [ ' * A " ; 2 - t 2 ] , / S l , (12) 
(x/v'<)2-t2 

where 
„ " = vF + \g\ /2 i r a n d A ~ a~l\ g vF\ ^ e x p t - i r u ^ / l g l ) 

is the gap in the spectrum of the fermion excitations €(p) = [A2 + (v"p)2]i'2. 

It follows from (5) that K~(g<0) enters in Kscp(g>0), KSDVI(g<0), and 
KTcp(g$ 0). These functions fall off exponentially at large distances; in addition 

Im^ c pC6> 0), lmKr
SDX(g< 0), lmKr

rcp(g^0) ~ f l ( | w | - 2 A ) , (13) 

Kr is the susceptibility and describes the response of the system to the action of 
the corresponding external field. 

In the remaining cases we obtain a power-law decrease of the correlation 
functions 

K C D T r«5feO)-e 2 i *^i«- 3 / 2 [* 2 -r« '« ; 2 ] - / [* 2 -rv '« ; 2 ] , '4 . <") 
KSDV(g> 0).~.e2thFXlnHx2 - (v't)2]/[x2 - (v't)2}'* , (15) 

K s c p f g < 0 ) ^ ln%[x2 -(v't)2]/[,2 *-.v't)2fi , (16) 

where v'F=vF— \g l/2ir is the velocity of the gapless excitations. 

The slow (power-law) decrease of the correlation function at large distances 
means that a corresponding type of pairing is realized in the system, although 
no long range order is produced, owing to the strong quantum fluctuations in
herent in a one-dimensional system. It follows from (14)—(16) that two types of 
pairing in the Hubbard model are realized simultaneously: SCP and CDW in the 
case of attraction, and SDW and CDW in the case of repulsion. To excite waves 
of another type it is necessary, according to (13), to expend an energy 2A to 
break the pair. 

In conclusion, the author thanks A.I. Larkin, P. B. Vigman, and D.E. 
Khmel'nitskii for useful discussions. 
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Abstract: A brief introduction to the bosonization method for interacting one-dimen

sional fermion systems is given. Using these results, the long-distance decay of correla

tion functions in the one-dimensional Hubbard model is determined exactly for arbitrary 

bandfilling and correlation strength, using the exact solution of Lieb and Wu. For infinite 

U the results are generalized to the case of nonzero nearest-neighbour interaction. The 

behaviour of thermodynamic quantities, of the frequency-dependent conductivity, and of 

the thcrmopower is also discussed, in particular in the proximity of the metal-insulator 

transitions occurring for half- and quarter -filling. The one-dimensional Luttinger liquid 

is shown to be unstable in the presence of interchain hopping. The results for the metal-

insulator transition are compared with other scenarios developed in higher dimensions. 

1 INTRODUCTION 

A theoretical understanding of interacting fermion systems in one dimension is important 

for a number of reasons. On the one hand, in the physics of quasi-one-dimensional organic 

conductors [1] or of conducting polymers [2] interaction effects play a major role. On 

the other hand, one-dimensional models can be easier to understand than their higher-

dimensional versions, or even exactly solvable, as is the case with the prototypical model 

of correlated fermions, the Hubbard model [3]. They therefore can provide valuable 

information on the role of correlation effects in higher dimension, e.g. on the physics 

of correlated fermions in two dimensions which is thought to be at the origin of the many 

interesting properties of high-temperature superconductors [4,5]. 

The theory of one-dimensional interacting fermions has made progress along two some

what separate lines: (i) Perturbative renormalization group calculations have shown that 

different correlation functions (see e.g. eqs (2.13), (2.14) below) have a. long-range power 

law behaviour, with interaction-dependent exponents [6,7], These exponents in turn 

determine a number of physical properties: temperature dependence of the NMR re-

57 
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laxation rate [8] or X-ray scattering intensities [9], effect of impurities [10], or possible 

low-temperature ordered states in systems of coupled chains, (ii) Specific lattice models 

like the Hubbard model and its generalizations have been studied either by exact solutions 

[3] or numerically to obtain correlation functions [11] and the energetics of ground and 

excited states [12,13]. 

In the present paper, I shall show how results originally obtained in the weak-coupling 

limit (in particular using the "bosonization" method) can be used, for arbitrary inter

action strength, to obtain precise information about low-temperature thermodynamics, 

transport properties, and correlation exponents from energies alone without the explicit 

calculation of correlation functions. In the following section, the bosonization method is 

explained, the peculiar properties of a one-dimensional interacting fermion system are 

discussed ("Luttinger liquid"), and it is shown that the low-energy physical properties 

are determined by only three parameters: the velocities of collective charge- and spin-

density oscillations {uPi„), and a coefficient Kp that determines the long-distance decay 

of correlation functions. In sec.3 the calculation of these parameters for specific lattice 

models is discussed [14]. The reasoning used is a generalization of arguments due to 

Haldane [15] to the case of spin-1/2 fermions. I will illustrate the method using the 

Hubbard model, where exact energies can be obtained even in the thermodynamic limit. 

Even then the eigenfunctions are so complicated that the direct calculation of correlation 

functions like (2.13), (2.14) is hard even for very small systems [16]. The present calcula

tion then provides a rather detailed and exact description of the crossover between weak 

and strong correlation and of the metal-insulator transition occurring when the average 

particle number per site, n, approaches unity. Similar results have been reported recently 

by a number of authors for the one-dimensional Hubbard [17,18] or t — J model [19]. 

Also, the thermopower in the vicinity of the metal-insulator transition is calculated to 

obtain the sign of the charge carriers. Sec. 4 is devoted to a discussion of the stability 

of the Luttinger liquid in a quasi-one-dimensiona! system, and in the concluding section 

the results are discussed and compared with scenarios for strongly correlated systems in 

higher dimensions. 

2 BOSONIZATION, SPIN-CHARGE SEPARATION, LUT

TINGER LIQUID 

2.1 Bosonization Formalism 

One of the important findings in the theory of one-dimensional interacting fermions is 

that fermion field operators can be expressed in terms of boson operators [20,21]. This 

equivalence then can be used to express the fermion Hamiltonian in a particularly simple 

form, in terms of boson fields only (see eq.(2.2) below). Consider for the moment spin-

less electrons, and define a boson field ^(x) by d<j>/dx = irp(x), where p is the deviation 
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from the average density. Then; creating a particle at site x means introducing a kink 

of height w in <j>, i.e. at points on the left of x <j> has to be shifted by 7r. Displacement 

operators are exponentials of momentum operators, and therefore a first guess would be 

^ I ' ( T ) « exp(t7r fZgg Tl(x')dx'), where II is the momentum density conjugate conjugate to 

<j>: [<l>(x), II(y)] = iS(x — y). However, this operator commutes with itself, instead of satis

fying canonical anticommutation relations. Anticommutation is achieved by multiplying 

with an operator, acting at site x, that changes sign each time a particle passes through 

x. Such an operator is exp(±i^(z)) . The final result then is 

V4(x) = lim -7=exp[±ikFx^i(/>(x) + iw / Jl(x')dx'] , (2.1) 
a-° V2na J-oo 

where the upper and lower sign refer to electrons near kF and — kp respectively. A detailed 

derivation of this important relation as an operator identity is given in the literature 

[15,22]. One should also notice that (2.1) is strictly speaking valid for models with linear 

energy-momentum relation. If there is some curvature in the dispersion relation (as is 

necessarily the case in lattice models), all odd powers of exp(i^) appear [23]. 

For electrons with spin, one simply introduces one boson field for each spin orien

tation. Introducing charge and spin bosons via <j>p<a = {<j>^ ± <j>{)/\/2, one then finds 

that the low-energy, large-distance behaviour of a one-dimensional fermion system with 

spin-independent interactions is described by the Hamiltonian [6,7] 

H = HP + H<r + j ^ - j dx cos (vfy . ) . (2.2) 

Here a is a short-distance cutoff, gi is the backward scattering amplitude, and for v = p, a 

Hv = j dx[^f^nl + ~^(dx<f>„)2} • (2.3) 

The phase fields are [24] 

M*) = -TE-«~"w" / a~'*Mp) + M p ) ] - ^ T ' <2-4) 

IM*) = 7 E e-"M-/J-'-Mj>) - "-(P)] + hi I • (2.5) 

Here pT(p) (rrT(p)) are the Fourier components of the charge (spin) density operator for 

right-(r = +) and left-(r = —) going fermions. Introducing the total number operators 

(measured with respect to the ground state) NT, for right- and left-going particles (r = ± ) 

of spin s, the (charge and spin) number and current operators are Nv = [(̂ V+j + ALj) ± 

{N+l + N.x)]ly/2, J„ = [{N+} - yV_T) ± (N+l - N.i)]/y/2, where the upper and lower sign 

refer to charge and spin, respectively. 

The operators <j>„ and IT„ in (2.2) obey Bose-like commutation relations: [<t>v{x), n.M(y)] 

= if>v^(x — !/), and consequently, at least for gt — 0, (2.2) describes independent long-

wavelength oscillations of the charge and spin density, with linear dispersion relation 
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ui„(jfc) = «„|Jfe|, and the system is conducting [25]. The only nontrivial interaction effects 

in (2.2) come from the cosine term. However, for repulsive interactions (gi > 0), this 

term is renormalized to zero in the long-wavelength limit, and at the fixed point one has 

K* = 1. The three remaining parameters in (2.2) then completely determine the long

distance and low-energy properties of the system. It should be emphasized that (2.2) 

can be derived exactly for fermions with linear energy-momentum relation. For more 

general (e.g. lattice) models, (2.2) is still the correct effective Hamiltonian for low-energy 

excitations. 

2.2 Spin-Charge Separation 

One of the more spectacular consequences of the Hamiltonian (2.2) is the complete sepa

ration of the dynamics of the spin and charge degrees of freedom. For example, in general 

one has ua ^ up, i.e. the charge and spin oscillations propagate with different veloci

ties. Only in a noninteracting system one has ua = up = vp- To make the meaning of 

this fact more transparent, let us create an extra particle in the ground state, at / = 0 

and spatial coordinate x0. The charge and spin densities then are easily found, using 

p(x) — —(\/2/Tr)d<j)t>/dx (note that p{x) is the deviation of the density from its average 

value) and az(x) = —(\/2/ir)d(f>a/dx : 

(0|iMxo)p(zWU*o)|0) = 6(x-x0) 

<0|^+(xo)<r,(x)^(xo) |0) = 8{x - x0) . (2.6) 

Now, consider the time developement of the charge and spin distributions. The time-

dependence of the charge and spin density operators is easily obtained from (2.2) (using 

the fixed point value gi = 0), and one obtains 

(0\1>+{x0)p(x, t)rl)+{xo)\0) = 8{x - x0 - u„i) 

<0|^+(x o)ff , ( r ,0^(*o) |0> = « ( x - * „ - « „ * ) • (2.7) 

Because in general u, ^ up, after some time charge and spin will be localized at completely 

different points in space, i.e. charge and spin have separated completely. A interpretation 

of this surprising phenomenon in terms of the Hubbard model will be given in sec.(3). 

Here a. linear energy-momentum relation has been assumed for the electrons, and con

sequently the shape of the charge and spin distributions is lime-independent. If the 

energy-momentum relation has some curvature (as is necessarily the case in lattice sys

tems) the distributions will widen with time. However this widening is proportional to 

\/t, and therefore much smaller than the distance between charge and spin. Thus, the 

qualitative picture of spin-charge separation is unchanged. 
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2.3 Luttinger Liquid 

The simple form of the Hamiltonian (2.2) at the fixed point g{ = 0 makes the calculation 

of physical properties rather straightforward. First note that acoustic phonons in one 

dimension have a linear specific heat. Consequently, the low-temperature specific heat of 

interacting fermions is C(T) = yT, with 

7/TO = ^{vr/up+vF/u„) . (2.8) 

Here 70 is the specific heat coefficient of noninteracting electrons of Fermi velocity vF. 

The spin susceptibility and the compressibility are equally easy to obtain. Note that 

in (2.2) the coefficient ua/K„ determines the energy necessary to create a nonzero spin 

polarization, and up/Kp fixes the energy needed to change the particle density. Given 

that at the fixed point K* = 1, one finds 

x/Xo = vF/ua , K/K0 = vFKp/up , (2.9) 

where xo a r | d K0 are the susceptibility and compressibility of the noninteracting case. 

From eqs.(2.8) and (2.9) the Wilson ratio is 

Rw = * * = - * * - • (2.10) 
7 Xo up + ua 

The quantity Up(x) is proportional to the current density. Obviously, the Hamiltonian 

commutes with the total current, and therefore the frequency dependent conductivity is 

a. delta function at u> = 0. Using the Kubo formula, one straightforwardly finds 

v{u) = 2Kpup6(u) , (2.11) 

i.e. the product Kpup determines the weight of the dc peak in the conductivity. 

The above properties, linear specific heat, finite spin susceptibility, and dc conduc

tivity are those of an ordinary Fermi liquid, the coefficients up,u„, and Kp determining 

renormalizations with respect to noninteracting quantities. We will now consider quanti

ties which show that a one-dimensional interacting fermion system is not a Fermi liquid. 

Consider the single particle Green's function which can be calculated using the represen

tation (2.1) of fermion operators. One then finds for the momentum distribution function 

in the vicinity of kF: 

nk K nkF -/3s\gn{k - kF)\k ~ kF\" , (2.12) 

and for the single-particle density of states: N(u)) « |o;|°, with a = (Kp+l/Kp—2)/4, and 

P is a model dependent constant . Note that for any Kp ^ 1, i.e. for any nonvanishing 

interaction, the momentum distribution function and the density of states have power-law 

singularities at the Fermi level, with a vanishing single particle density of states at EF. 

This behaviour is obviously quite different from a standard Fermi liquid which would have 
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a finite density of states and a step-like singularity in n*. The unusual type of behaviour 

found here has been called Luttinger liquid by Haldane [15]. 

The coefficient Kp also determines the long-distance decay of all other correlation 

functions of the system: Using the representation (2.1) and the Hamiltonian (2.2) at the 

fixed point g\ = 0 one finds for example for the charge and spin correlation functions 

[26,27] 

(n(z)n(O)) = Kp/{wx)2 + Ax c o s ^ x ) * " 1 - * ' l n - 3 / 2 ( i ) 

+A2 cos{4kFx)x-iK' + ... (2.13) 

(S (x )S (O) ) = l/(nx)2 + BiCos(2kFx)x-l-K'\n1/2(x) + ... , (2.14) 

with model dependent constants Ai, B{. The ellipses in (2.13) and (2.14) indicate higher 

harmonics of cos{2kFx) which are present but decay faster than the terms shown here. 

Similarly, correlation functions for singlet (SS) and triplet (TS) superconducting pairing 

decay like x~l~llKf. The corresponding susceptibilities (i.e. the Fourier transforms of the 

above correlation functions) behave at low temperatures as 

XcDw(T)*T*'-l\\n(T)\-3l2 ,Xsmv(T)*TK>-l\\n(T)\ll2 , (2.15) 

Xss(T) « Tl'K>-l\WT)\-3l2 ,XTS(T) « T'l^-'IHT)]1'2 , (2.16) 

i.e. for Kp < 1 (spin or charge) density fluctuations at 2kF are enhanced and diverge at 

low temperatures, whereas for Kp > 1 pairing fluctuations dominate. 

3 H U B B A R D M O D E L 

In a weakly interacting system the coefficients Kp and «„ can be determined perturba-

tively. For example, for the Hubbard model, with Hamiltonian 

H - -i 53(a},a,-+li, + a;+1,,a;.) + V ]T) n^n{i , (3.1) 
i,a i 

one finds 

K„ = 1 - U/(™F) + ... , (3.2) 

where vF = 2/sin(7rn/2) is the Fermi velocity for n particles per site. For larger U higher 

operators appear in the continuum hamiltonian (2.2), e.g. higher derivatives of the fields or 

cosines of multiples of vS<j>a. These operators are irrelevant, i.e. they renormalize to zero 

and do not qualitatively change the long-distance properties, but they do lead to nontrivial 

corrections to the coefficients u„, Kp. In principle these corrections can be treated order-

by order in perturbation theory. However, this approach is obviously unpractical for large 

U, and moreover it is likely that perturbation theory is not convergent. To obtain the 

physical properties for arbitrary U a different approach is therefore necessary. 



Correlated Fermions in 1 Dimension 63 

2.5 

2.0 

-U 1.5 
\ 

b 
<£ 

2 1.0 

0.5 

" " 0 . 0 0.2 0.4 0.6 0.8 1.0 
n 

Figure 1: The charge and spin velocities up (full line) and «ff (dash-dotted line) for 

the Hubbard model, as a function of the band filling for different values of U/t: for u„ 

U/t = 1, 2, 4,8,16 from top to bottom, for up U/t = 16, 8,4, 2,1 from top to bottom in 

the left part of the figure. 

I note two points: (i) in the small-!/ perturbative regime, interactions renormalize to 

the weak-coupling fixed point g{ = 0, K* = 1; (ii) the exact solution [3] does not show 

any singular behaviour at nonzero U, i.e. large U and small U are the same phase of the 

model, so that the long-range behaviour even of the large U case is determined by the 

fixed point g\ = 0. Thus, the low energy properties of the model are still determined by 

the three parameters uP}tr and Kp. 

The velocity parameters are easily obtained from the exact solution. In fact, u„ 

is the velocity of long-wavelength spinwaves, which has been calculated by Coll [28]. 

The identification of up is slightly more delicate: note that the Akf—part of the density 

correlation function (2.13) is entirely determined by $p excitations. On the other hand, 

Coil's "particle-hole excitations" are gapless at 4kp, and consequently are expected to 

at the origin of the power-law in the 4kp part of (2.13). Consequently, up is determined 

by the velocity of Coil's "electron-hole excitations" for q —* 0. Thus, up and ur can 

be found numerically from a straightforward solution of an integral equation. Results 

are shown in fig.l for various values of U/t. Note that for U = 0 one has up = u„ = 

1 1 1 1 1 1 1 | i i I | i i i | i r 
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Figure 2: The Wilson ration Rw for the one-dimensional Hubbard model, as a function 

of the band filling for different values of U/i (U/t = 16,8,4,2,1 for the top to bottom 

curves). 

2tfsin(7rn/2), whereas for U —» oo up = 2<sin(7rn), u„ — (2id2/U)(\—sm(2im)/(2im)). In 

the noninteracting case ua oc n for small n, but for any positive U u„ oc n2 . The Wilson 

ratio, eq.(2.10) obtained from the velocities is shown in fig.2. For U — 0 one has Rw = 1, 

whereas for U —> oo / t ^ = 2 for n ^ 1. 

To obtain the parameter Kp from the exact solution note that the gradient of the 

phase field 0P is proportional to the particle density, and in particular a constant slope 

of <j>p represents a change of total particle number. Consequently, the coefficient up/Kp 

in eq. (2.3) is proportional to the variation of the ground state energy E0 with particle 

number [29]: 

1 d2E0{n) n up 

L dn2 2Ke 
(3.3) 

Note that this quantity is the inverse of the compressibility. Equation (3.3) now allows 

the direct determination of Kp: E0(n) can be obtained solving (numerically) Lieb and 

Wu's [3] integral equation, and up is already known. The results for Kp as a function 

of particle density are shown in fig. 3 for different values of U/t. For small U one finds 

in all cases agreement with the perturbative expression, eq. (3.2), whereas for large U 

Kp —• 1/2. The limiting behaviour for large U can be understood noting that for U = oo 
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Figure 3: The correlation exponent Kp as a function of the bandfilling n for different 

values of U (U/t = 1, 2,4, 8,16 for the top to bottom curves). Note the rapid variation 

near n = 1 for small U. 

the charge dynamics of the system can be described by noninteracting spinless fermions 

(the hard-core constraint then is satisfied by the Pauli principle) with kp replaced by 

2kp. Consequently one finds a contribution proportional to cos(Akpx)x~2 in the density-

density correlation function, which from eq. (2.13) implies Kp = 1/2. One then finds 

an asymptotic decay like cos(2kpx)x~3/2 lnl'2(x) for the spin-spin correlations, eq.(2.14), 

and an exponent a = 1/8 in the momentum distribution function [30]. Ogata and Shiba's 

numerical results [16] are quite close to these exact values. 

As is apparent from fig. 3, the strong-coupling value Kp = 1/2 is also reached in 

the limits n - + 0 , l for any positive U. For n —> 0 this behaviour is easily understood: 

the effective interaction parameter is U /vp, but vp goes to zero in the low-density limit 

(corresponding to the diverging density of states). The limit n —> 1 is more subtle: 

in this case nearly every site is singly occupied, with a very low density of holes. The 

only important interaction then is the short range repulsion between holes, which can be 

approximated by treating the holes as a. gas of spinless noninteracting fermions. Using 

(3.3), one then again finds Kp — 1/2. 

The exact solution of Lieb and Wu can also be combined with the long-wavelength 

effective hamiltonian (2.2) to obtain some information on the frequency-dependent con-
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Figure 4: Variation of the relative weight of the dc peak in the total conductivity oscillator 

strength as a function of the bandfilling n for different values of U: U/t = 1 (full line), 4 

(dashed), 16 (dash-dotted), 64 (dotted), and 256 (dash-double-dotted). The insert shows 

the weight of the dc peak in <r(w) as a function of bandfilling for different values of U/t 

(U/t = 1, 2, 4, 8,16 for the top to bottom curves). 

ductivity <r(u>). On the one hand, from eq. (2.11) there is a delta function peak at zero 

frequency of weight 2Kpup. On the other hand, the total oscillator strength is proportional 

to the kinetic energy [31]: 

/

oo 
tr(u)du = ~ir(Hkin)/L 

-oo 
(3.4) 

Thus, both the weight of the dc peak and the relative weight of the dc peak in the total 

conductivity can be obtained and are plotted in fig.4. As expected, far from half-filling, 

all the weight in atot is in the dc peak. For exactly half-filling the dc conductivity vanishes, 

due to the existence of a gap for charge excitations Ac created by umklapp scattering, 

and all the weight is at UJ > Ac. Fig.2 then shows that as n —• 1 umklapp scattering 

progressively transfers weight from zero to high frequency. The crossover is very sharp for 

small or large U, but rather smooth in intermediate cases (U/t « 16). This nonmonotonic 

behaviour as a function of U can be understood noting that initially with increasing U 

umklapp scattering plays an increasingly important role. Beyond U/t w 16, however, the 
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spinless-fermion picture becomes more and more appropriate, and at U = oo one again 

has all the weight in the dc peak. The linear vanishing of a0 as n —* 1 implies a linear 

variation of the ratio n/m* with "doping". 

An interesting question is the sign of the charge carriers, especially close to the metal-

insulator transition. The standard way to determine this, the sign of the Hall constant, 

is useless in a one-dimensional system. As an alternative, the thermopower can be used 

which is negative (positive) for electron (hole) conduction. In general, calculation of the 

thermopower is a nontrivial task, as the curvature of the bands plays an important role, 

and the approximate form of the Hamiltonian (2.2) is therefore insufficient. Moreover, 

both charge ans spin entropies can play a role. However, close to the metal-insulator 

transition iip < u„, and therefore the entropy of the charge degrees of freedom is much 

bigger than the spin entropy. In the presence of umklapp scattering, which becomes 

important close to half-filling, the charge part of the Hamiltonian can be transformed 

into a model of massive fermions, with energy-momentum relation Si, = ±(t;2A:2 + A 2 ) 1 ' 2 

[32]. A is the charge excitation gap created by umklapp scattering. In general, the quasi-

particles interact, however close to half-filling this interaction can be eliminated [33]. At 

half-filling all negative energy states are filled, all positive energy states are empty. Doping 

with a concentration n* of holes, some of the negative energy states become empty and 

only states with \k\ > kF oc n* are filled. Because of the vanishing interaction, a standard 

formula for the thermopower can be used [34] and gives 

6|e| v*(kF)2(v2(kF)2 + A2)1 /2 ' K ' 

i.e. approaching the metal-insulator transition from n < 1, the thermopower is hole-like, 

whereas obviously far from the transition (n <C 1) it is electron-like. The exactly opposite 

behaviour can be found for n > 1. 

For more complicated models, e.g. the "extended Hubbard model" 

H = -< 5Z(aJ.a-+i,'+ a!+i,.ai«) + ^ Z]n.T">i + V$3«in;+i , (3.6) 

exact eigenvalues can not be obtained in the thermodynamic limit. The parameters in 

eq. (3.3) can however be calculated reliably for finite systems, and this gives rather good 

results, as shown in ref. 14 . 

Exact exponents can be obtained for the model (3.6) in the limit U —> oo: then one has 

effectively spinless fermions (with kF —> 1kF) with nearest neighbour interaction, a model 

which can be exactly solved using the Jordan-Wigner transformation into the XXZ spin 

chain. In particular, the 4fcp-component of (2.13) is related to the correlation function 

of 52 . From the known results [35] one obtains, for a quarter-filled band (n = 1/2), 

K„ = 1/(2 + (4/TT) s in - 1 (v)), up = nts/l - v2/coS-
l{v), with v = V/2\t\. Now K„ < 1/2 

is possible. For v > 1 the system is in a dimerized insulating state. Approaching the 

insulating state from v < 1 both Kp and up remain finite, i.e. <T0 jumps to zero at v = 1. 
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For n ^ 1/2 the parameters up, Kp can be obtained from numerical results [36]. Quite 

generally, one has Kp > 1/8, but Kp — 1/2 for n —> 0 ,1 , independent of v. On the other 

hand, up —•> 0 as n —> 1/2 for v > 1, i.e. in that case the weight of the dc conductivity goes 

to zero continuously, the point (w, n) = (1,1/2) is thus highly singular. The same type of 

singularity also occurs at U — 0, n = 1 in the Hubbard model. Interestingly enough, one 

has Kp> l i f V < - \ / 2 | / | , i.e. a finite amount of nearest-neighbor attraction is sufficient 

to lead to divergent superconducting fluctuations even for infinite on-site repulsion. Also 

note that the singularities in up and Kp at v — — 1 (attractive interaction) represent a 

point of phase separation. 

The Hubbard model also provides a rather straightforward interpretation of the spin-

charge separation discussed above. Consider a piece of a Hubbard chain with a half-filled 

band. Then for strong U there will be no doubly-occupied sites, and because of the strong 

short-range antiferromagnetic order the typical local configuration will be 

• • • U U U T 1 U U - - -

Introducing a hole will lead to 

• • • u n t o n u n ••• 
and after moving the hole one has (note that the kinetic term in the hamiltonian does 

not flip spins) 

•••uoumuu---
Now the hole is surrounded by one up and one down spin, whereas somewhere else there 

are two adjacent up spins. Finally, a few exchange spin processes lead to 

•••nonnnm---
Note that the original configuration, a hole surrounded by two up spins has split into a 

hole surrounded by antiferromagnetically aligned spins ("holon") and a domain-wall like 

configuration, two adjacent up spins, which contain an excess spin 1/2 with respect to 

the initial antiferromagnet ("spinon"). The exact solution by Lieb and Wu contains two 

types of quantum numbers which can be associated with the dynamics of the spinons and 

holons, respectively. We thus notice that spinons and holons [37,38] have a well-defined 

meaning in the present one-dimensional case. Also note that the ground state away from 

half-filling can be considered as a state with a finite concentration of holons, but no 

spinons: on the average, adjacent spins then are antiparallel, which leads to oscillations 

in the spin density of period 2/n (TI is the particle density), i.e. of wavenumber irn = 2kp, 

as in eq. (2.14). The exponent in (2.14) then can be understood as one contribution from 

the spin dynamics (for localized spins, correlations decay like x~x Inl'a(<c)) and another 

contribution, Kp, coming from the motion of the spins. 
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4 (IN)STABILITY OF THE LUTTINGER LIQUID 

The question of the stability of the Luttinger liquid with spin-charge separation in higher 

dimension is clearly of importance and has been studied extensively in the context of 

quasi-one-dimensional conductors [8,39,40]. I here give a simple scaling argument for the 

effect of a nonzero but small interchain hopping term on an assembly of parallel chains. 

Interchain hopping is described by an extra term in the Hamiltonian: 

fli=liE Idx[^x)4>±ii{x) + h.c.) . (4.1) 

Here i, j are chain indices, and the sum is over nearest neighbour pairs. Now notice that at 

zero temperature all excitations of the strictly one-dimensional system are massless and 

correlation functions decay as power laws, as is typical of a critical point. Consequently, 

crossover scaling arguments can be used to determine the relevance or irrelevance of the 

perturbation /fj_. In particular, consider the lowest order correction to the free energy: 

6F™ « < 1 J dxdrG\{x,r) , (4.2) 

where r is the Matsubara imaginary time and G± is the single-particle Green's function 

for right or left going particles. Now 

G±(*i - x2, n - r2) « |1 - 2|-(2+*>+1/*>)/< , (4.3) 

where |1 — 2| is an abbreviation: 

|1 - 2| = ^ [ c o s h ( 2 7 r T ( I l - x2)/vF) - cos(2irT(n - r2))]1 / 2 . (4.4) 

For simplicity I have set u„ — up = Vp, and a factor depending on the angle of the 

vector (x t — z2) 7"i — V2) with the z-axis has been omitted. Note that the prefactor 1/T 

in (4.4) is important to reproduce the correct zero-temperature limit. After the rescaling 

Txi/vp —* Zi, TT{ —• y,-, the integral in (4.2) becomes dimensionless, with the result 

«F<2> oc £:r-i+(*,+i/*,>/a _ (45) 

Compared to the zeroth order term F^0' oc T2 this becomes dominant at sufficiently low 

temperatures provided the exponent in (4.5) is smaller than 2, i.e. if 

3-Vs<Kp<3 + Vs . (4.6) 

Then the interchain coupling is a relevant perturbation, which would imply that the low 

temperature properties are not determined by the one-dimensional Luttinger liquid fixed 

point, but by some other type of behaviour, possibly Fermi-liquid like. The condition 

(4.6) is always satisfied for the one-dimensional Hubbard model, but for more general 

models, e.g. the extended model, eq.(3.6) one can have Kp < 3 — y/S. One would then 

conclude that interchain hopping is irrelevant, i.e. the Luttinger liquid would even exist 

in a. quasi-one-dimensional system [41]. 

Consider now the next order: 
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«F<4> « t*± J rflrf2rf3d4(rT4(l)V»L(2)V'-(3)V'+(4))2 , (4.7) 

where, with the same approximations as before 

(7;v-Ui)^(2)v--(3)v-+(4)> 
rii ii 19 /ni( jr '_l/AV'V4 

* | l l 2||3-4|J 0 l ~ 4|12 " 3|]-(a+X'+1/Jr') /4 • (4-8) 

If one ignores the first term in square brackets, one simply recovers the square of 6F^2'. 

However, this is incorrect: for example, configurations with 1 w 3, 2 w 4 in (4.7) give a 

contribution 

SF<-i'1'> « i 
i
±Jdld2\l-2\-2-2K><xT2K> . (4.9) 

This now is a relevant perturbation for any Kp < 1. Similarly, configurations with 

1 w 2, 3 w 4 lead to a contribution proportonal to T 2 ^ ' , which is relevant for any Kp > 1, 

i.e. we conclude that for any nonzero interchain coupling the one-dimensional Luttinger 

liquid is unstable. One should however notice that in the parameter region where 6F^ 

is irrelevant, the instability comes from (electron-hole or electron-electron) pair hopping 

processes in (4.7), which almost certainly lead to a broken symmetry groundstate (SDW 

or superconducting). Above the critical temperature of that symmetry breaking one then 

would still expect one-dimensional Luttinger liquid behaviour. 

5 DISCUSSION AND CONCLUSION 

In the present paper I have shown how the boson representation of one-dimensional 

fermions can be combined with the Lieb-Wu exact solution of the one-dimensional Hub

bard model to obtain exact results on ground state correlations and the low-temperature 

thermodynamics. In particular, the behaviour in the vicinity of the metal-insulator tran

sition can be studied in detail. 

It seems worthwhile here to compare the metal-insulator transition in the one-di

mensional Hubbard model with other scenarios for strongly correlated fermion systems in 

higher dimension (see the review by Vollhardt for details [42]). In the "nearly localized" 

picture, effective mass effects predominate and enhance both the specific heat and the 

spin susceptibility. Consequently, the Wilson ratio (1/(1 4- F£) m F e r r r u liquid language) 

remains nonzero as the metal-insulator is approached. On the other hand, in the "nearly 

ferromagnetic" (or paramagnon) picture, only the spin susceptibility is enhanced signif

icantly, and therefore Rw can be much larger than unity. The behaviour found here in 

the one-dimensional case is quite different from both these scenarios: generally Rw < 2, 

and approaching the metal-insulator transition Rw —> 0. This occurs because generally 

an enhancement of the mass of the charge carriers (i.e. a decrease of up) has no influence 

on the spin degrees of freedom (see fig.l). This is rather straightforwardly understood 
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in terms of spin-charge decoupling, as explained at the end of sec.3: charge and spin 

excitations move nearly independently of each other, and in particular the spin dynamics 

is determined by nearest-neighbor exchange. This exchange energy is antiferromagnetic, 

whether there is a hole between two spins or not, and consequently the low-energy spin 

dynamics always is that of an antiferromagnetic chain of localized spins. In particular 

the spin susceptibility remains finite even when the mass of the charge carrier approaches 

infinity. 

Let us discuss the metal-insulator transition in more detail. The fact that up and 

<r0 vanish linearly as n —» 1 seems to be consistent with a divergent effective mass at 

constant carrier density because up w 1/wi*, <r0 ~ n/m*. A constant carrier density is also 

consistent with the fact that kp — %n/2 is independent of U. It is not consistent with the 

hole-like sign of the thermopower as n —» 1 from below, nor with the electron-like sign 

as n —» 1 from above: if the carriers are holes, the carrier density is the density of holes: 

n* = 1 — n. Treating the holes as spinless fermions, as already mentioned in sec.3, <r0 —» 0 

because n" —> 0, and 7 —> 00 because the density of states of a one-dimensional band 

diverges at the band edges. What is not so easily understood in this picture is the fact 

that kF (i.e. the location of the singularity of nk) is given by its free-electron value wn/2, 

rather then being proportional to n*. One should however notice that n* is given by the 

single-particle Green's function, which contains both charge and spin degrees of freedom. 

The location of kp then may possibly be explained by phase shifts due to holon-spinon 

interaction. This is in fact suggested by the structure of the wavefunction of the exact 

solution [3,16]. 

Anderson [43] has argued that two-dimensional correlated fermion systems can exhibit 

spin-charge separation very similar to the one-dimensional Luttinger liquid considered 

here. We here simply notice that the two scenarios discussed in the preceding paragraph 

would have drastically different consequences in two dimensions: in the first case (m* —• 

00, n ss const.) one expects 7 —• 00, whereas the density of states at the edges of a two-

dimensional band is finite, and therefore in the second case 7 —* const. (<r0 —» 0 in both 

cases). 

It is interesting to notice that most of the results found here would be expected if the 

system had commensurate antiferromagnetic long-range order (which, because of zero-

point fluctuations, is of course not the case in one dimension). One then would have 

two branches of quasi-particle excitations, with energies e* = ±JvF(k — ir/2)2 + A2 . 

At half-filling the lower band is filled, the upper one is empty, i.e. the system is an 

insulator, but retains the finite spin susceptibility of an antiferromagnet. Doping now 

with electrons or holes one of the bands get partially occupied, leading to a conductivity 

proportional to dopant concentration, a specific heat coefficient inversely proportional to 

dopant concentration, and hole (electron) like thermopower for hole (electron) doping. 

All this is in agreement with the findings of sec.3. One would also expect a singularity 
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in n* at kF, but due to the broken long-range order and the associated halving of the 

Brillouin zone, another singularity would appear at w — kf. This last effect is obviously an 

artefact due to the (false) assumption of long-range order, however, interestingly enough 

all properties which are not directly affected by the change of structure of jfe-space are 

found to have qualitatively the correct behaviour. 

Finally, I notice that the present results place some constraints on the way exper

imental systems can be modelled. For example, in the quasi-one-dimensional organic 

compound TTF-TCNQ one observes strong diffuse X-ray scattering at Akp [9]. From 

eq.(2.13) one then concludes that Kp < 1/2, and therefore the Hubbard model alone 

cannot be sufficient to describe correlation effects in this compound. The experimentally 

determined exponents in a, number of other compounds [8,9] also imply Kp < 1/2, i.e. 

finite-range interactions seem to be rather important in many cases. 
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A b s t r a c t . We introduce a new representation of the Bethe ansatz solutions for ID 
Luttinger liquids which describes the spectral properties and asymptotic behaviour 
of the correlation functions of the 1D Hubbard model in terms of the renormalized 
interaction of charge and spin pseudoparticles. The study of the low-lying eigenstates 
is reduced to the familiar languages of band theory and of the Fermi liquid. Our 
results provide a better understanding of the decoupling of charge and spin degrees 
of freedom in ID interacting systems, generalize the concept of a Landau liquid and 
may be relevant to the physics of higher dimensional systems. 

The purpose of this letter is to provide evidence for the fact that the usual Landau-
Fermi liquids constitute an example of a much wider class of non-trivial many-body 
fermionic systems (probably of all dimensions). The present study is restricted to 
one-dimensional (lD) Luttinger liquids [1] that are soluble by the Bethe ansaiz, and in 
particular to the (lD repulsive Hubbard model. Nonetheless, we believe that many of 
the features found in this letter have a universal character and are also present in the 
low-energy physics of nearly all non-trivial many-body fermionic liquids. These com
mon features follow essentially from the fact that the low-energy properties are fully 
controlled by the departure of the pseudo-momentum distribution(s) of the pseudo-
particles (often many-body collective modes specific to each system) from its (their) 
value(s) in the interacting ground state. Moreover, after renormalization the gener
alized Landau liquids have only forward (or exchange) scattering. As in the Fermi 
liquid, the two-pseudoparticle /-functions (second functional derivatives of the energy 
with respect to the fluctuations) regulate the forward scattering renormalized inter
action of the pseudoparticles in the low-energy regime. Our results are fully consistent 
with the original idea of Anderson [2] that the Luttinger liquid is a fixed point of the 
same renormalization group which, in some three-dimensional systems, leads to the 
Landau-Fermi liquid as a unique fixed point. 

Although we concentrate our investigation on the case of the ID Hubbard model, 
the generalization of the results to the other ID Luttinger liquids is straightforward 
and will be presented elsewhere. A full understanding of the one-dimensional Hub
bard model solution [3] is of interest in its own right, and may provide clues to the 
Understanding of higher dimensional systems [2]. We consider the ID Hubbard model 

0953-8984/91 /060757+09$03.50 © 1991 IOP Publishing Ltd 757 
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at arbitrary magnetic field 

i,° 

where cfg (CJ„) is the creation (annihilation) operator for an electron with spin a at 
site j . The system consists of N electrons on Na sites. We make use of the following 
notation: the dimensionless on-site repulsion u = U/4t , the density n = N/Na 

(fcF = im/2), the spin density s = (^FT — fcj,.) /27r, where kF<T = TtNa/Na, and 
N. = M' and Ny = M are the number of up and down spins in the system. 

Lieb and Wu [3] used the Bethe- ansatz technique to reduce the eigenvalue problem 
for (1) to that of solving a set of coupled algebraic equations. The crystal momentum 
P and the energy E are given by 

N M 

^ = £<?; + ]>>« (2) 
j=l a=l 

N 

E = Y, (~2t cos Ki) - 2»oNaHs (3) 

where we make use of the notation g = (2w/Na) L and pa = (2Tr/Na) Ja. An eigen-
state of the many-body system is uniquely specified by a particular choice of the 
quantum numbers {/,-}, {Ja} (or pseudo-momentum distributions {fy } , {pa})- For 
instance, in the ground state /• and Ja are consecutive integers (or half-odd inte
gers) centred around the origin [3]. After choosing the set {fy}, {pa}, the Lieb and 
Wu algebraic equations determine the charge and spin rapidities Kz = KAqA and 
Sa — Sa(pa), respectively (Sa = Aa/u) [3]. Although our formulation can be ex
tended to excited states described by complex roots [4], we restrict the present study 
mainly to excitations involving only real rapidities. 

In the thermodynamic limit (Na —• oo, n fixed) the roots 7\- = KAqA and 
Sa = Sa(pa) proliferate on the real axis and the Lieb and Wu equations lead to [4] 

K(q) = q+- I ' ' dp'JV^p') tan" 1[5(p') - ( l /u)sin K(q)] (4) 
* J-kF, 

p=- f dq' Mc(q')Un-l[S(P) - (l/u)SlnK(q')] 

- - f "' dp 'yv i (p ' ) t an- 1 [ i (5 (p) -5(p ' ) ) ] . (5) 

(K(q), S(p) are simply related to the distributions of [3].) Moreover, the energy (3) 
yields 

£ = £ / dQ' Mc(J)l-2t™sK(q')]-2n0NaHs (6) 

where 

s = k{\[dq'M<{q,)- /*"' dp'Ni(p'))• w 
\ J — 7T v / _ ^ p | / 



Letter to the Editor 759 

In the right-hand sides of equations (4)-(7) Mc{q) and N^(p) may be interpreted 
as pseudo-momentum distributions of charge and spin pseudoparticles, respectively. 
For eigenstates involving only real rapidities, we always have: K(*ir) = ITT and 
S(tkpt) = l oo . Moreover, for the ground state at fixed magnetization K(q) and 
S(p) are odd functions such that K(2kF) — Q and K(kF.) = B/u, where Q and B 
are the usual cut offs of the Lieb and Wu equations [3]. In this case the distributions 
Mc(q) and N^p) read 

M ° ( 9 ) = e(2kF - \q\) jv°(p) = e(kFl - \P\). (8) 

As in Fermi liquid theory these distributions do not depend on the interaction. In 
the present two-fluid Landau liquid the charge and spin pseudo-Fermi surfaces are 
defined as the set of points {q = ±2fcF, p = ±&F |} separating the occupied from 
the unoccupied region. The limits of the pseudo-Brillouin zones of the charge and 
spin pseudoparticles are {q = ±TT}, {p — ±kF+}, respectively. The restrictions on the 
numbers L and Ja [3] imply that each pseudo-momentum value cannot be occupied 
by more than one pseudoparticle, i.e. the pseudoparticles have fermionic character [4]. 
These can be identified with the 'pseudo-fermions' considered in [5] and are related 
to the holons and spinons [2,4]. The spin pseudoparticles are of the same kind of 
the ones of the Heisenberg chain [4], being closely related to the spin-| 'spin waves' 
introduced in [6]. They are many-body collective modes and in contrast to the quasi-
particles of the Fermi liquid theory, which in the limit of vanishing interaction map 
onto real particles (electrons), the present class of pseudoparticles cannot exist out
side the maiiy-body system for any value of the bare interaction (including vanishing 
interaction). This feature of the Landau-Luttinger pseudoparticles [4] is related to 
the 'infrared catastrophe' of [2]. 

We consider small pseudo-momentum fluctuations around the ground-state distri
butions, equations (8) 

MM) = M°(q) + Se(q) NL(p) = Nf(p) + ^ ( p ) . (9) 

As in Fermi liquid theory, the departure of the pseudo-momentum distribution func
tions of the pseudoparticles from their values in the ground state 6c(q),6^(p), equa
tions (9), fully controls the low-energy physics of the model: This is true both for 
elementary excitations involving real and complex rapidities [4]. The main point in 
our approach is to consider K(q), S(p) and E (see equations (4)-(6)) as functionals 
of the pseudoparticle distributions. Provided that these involve a small number of 
pseudoparticles, an expansion of the energy E — E0 + Ex + E2-\ can be performed 
to arbitrary order in the fluctuations. In the case of excitations described only by real 
rapidities, the leading order corrections read 

Ei = it / ' d«*«M€«w + b i l l dp6i{p)e>ip) (10) 

"" J — fcpj */ —fcpj 

+ £ | /_* dq Jill dq6*iq)6L{p)f"(9,p) • (11) 



760 Letter to the Editor 

As in Fermi liquid theory, the first and second functional derivatives of energy with 
respect to the fluctuations define the bands cc(q) and e,(p) of the pseudoparticles and 
their interactions, the /-functions fcc(q,q'), f„(p,p') and /„(<?,p), respectively. The 
latter are related to the pseudoparticle zero-momentum transfer forward scattering 
amplitudes [4]. Although the fluctuations of the right-hand sides of equations (10) 
and (11) are arbitrary in the sense that the expressions for the bands and /-functions 
are independent of them, only appropriate choices of 6c(q) and S,(p) describe true 
eigenstates of the many-body system [4,7]. The charge and spin pseudoparticle bands 
in the presence of a magnetic field can be expressed as [4] 

rK(q) 

c(q)= dk'2t%(k') (12) 
JQ 

fS(p) 
,(p)= dv^t^v') (13) 

JB/U 

where K(q) and S(p) are the ground-state solutions of equations (4) and (5). We note 
that fic = ec(2kp) = 0, ft, — e3(kF^) = 0. In the right-hand sides of equations (12) and 
(13) the distributions 2trjc(k) and 2trjt(v) are solutions of coupled integral equations 
of the same form as the Lieb and Wu equations except that the inhomogeneous term 
of the first of these equations is replaced by 2tsinfc (and 2no-(A) by (l/u)2tr)s(v), 
v = A/u) [3, 4]. The pseudoparticle velocities are defined as ve(q) = dec(g)/dg and 
vs(p) = dCj(p)/dp. In particular vc(2kF) and v3(kF,) are the same velocities as the 
ones of [8,9] (i.e. obey the same integral equations). A crucial advantage of our 
choice of variables q,p is that, given an eigenstate described by distributions (9), the 
corresponding crystal momentum P is always additive in the pseudoparticle pseudo-
momenta (see equation (2)). In fact, in contrast to the usual representation of Bethe 
ansatz, the back-flow effect only affects the energy bands cc(q) and e,(p) [4]. The 
charge band, equation (12), is such that its bandwidth At, pseudo-Brillouin zone width 
27r and pseudo-Fermi surface points ±2kF remain unaltered when varying H and u, 
which slightly change cc(g). In contrast to ec(q), the spin pseudoparticle band (13) 
is clearly affected by the magnetic field. In fact, the pseudo-Brillouin zone limits 
and Fermi surface points are given by p = ±fcF» and p = ±kF,, respectively. The 
effect of u (H) on the band £3(p), equation (13), is essentially to modify its bandwith 
(pseudo-Brillouin zone). On the other hand n affects both the bandwidth and the 
pseudo-Brillouin zone. 

Except for spin singlet excitations involving complex roots (anti-bound states of 
down-spin pseudoparticles) [4], the elementary excitations can be described in terms 
of pseudoparticle-hole processes in the charge and spin bands. The full description of 
the low-lying excitations in the absolute ground state (H — 0 and kF, = kF) involves 
a 'frozen' up-spin pseudoparticle band which is always filled ('holes' are not allowed 
in the frozen band [4,7]) and an upper 'conduction' charge band, e*(q) = U — £c(<z) 
[4, 7]. The spectra of the charge gapless [10] and across-gap [11] excitations, as well 
as of the triplet two-parametric excitations [10], can be written simply as 

q0 \q0\ < 2kF | 9 l | > 2kF (14) 

% kol < 2£F (15) 

- P i - P o IPOUPII < * F (16) 

Ec = £c(9i) - fc(9o) 

E? = €h
e(qi) - <M 

Et = - £
5 ( P i ) - f , ( P o ) 

P = 9i-

P = Qi-

P = 2kF 
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respectively, where the bands involved in the pseudoparticle-hole processes of the 
right-hand sides of equations (14)—(16) are given by equations (12) and (13) for the 
particular case of the absolute ground state (B — oo). The excitations in the presence 
of a magnetic field are studied in [7]. 

As well as reducing the study of low lowing excitations to the usual language of 
band theory, the Landau-Luttinger approach allows the straightforward evaluation 
of the magnetic susceptibility (which involves the bands and /-functions) and low 
temperature specific heat: These can be readily obtained by replacing in the right-
hand sides of equations (10) and (11) fluctuations 6e(q) and S^(p) of appropriate 
form [4,7]. 

The /-functions of the right-hand side of equation (11), fcc(q,q'), f„(p,p'), 

fcM>P) r e a d I41 

fee (q, </) = 2™c(?)*ee (?, <?') + 1*vcW)*ec (?', q) 

+ [2™c (2fcF)] £ $ c c (2kFj, q) <J>CC (2kFj, q') 
j=±i 

+ [2™, (hi)] E *.e (*Fii.«) *.e (*W><?') (17) 
j=±\ 

L(P,P') = 2 ^ J ( P ) * . 1 ( P , P ' ) + 2™,(p ' )*„(p ' ,p) 

+ [2TW, (fcFi)] J2 $ " ( ^ J . P ) * . . ( tni .p ' ) 
j = ± l 

+ [2™c (2fcF)] E * « (2fcFi,p) *CJ (2kFj,p') (18) 

/« («f. P) = 2™c(?)4>C3 (<?, p) + 2™, (p)$JC (p, q) 

+ [2irvc (2fcF)] E * « (2fcFJ, <?) <*>„ (2fcFi,p) 

+ [2»». (*Fi)] £ * « (*FlJ'.P) *.« (*Fli.«) • (19) 
j=± l 

In order to define the functions $ C C ( 9 > 9 ' ) > < M ? > P ) > , M P > P ' ) > < M P > ? ) ap
pearing in the right-hand sides of equations (17)—(19), it is useful to intro
duce the auxiliary functions $cc(k, k'), $C3(k,v), $„ ( i / , i / ) , $ie(v,k) such that 
*ec{K{q),KW)) = * e e ( « Y ) , *e.(K(q),S(p)) = * e . (« ,p) , * „ (S(p),S(p')) = 
$

3„(P>P')- * « ( 5 ( P ) . ^ ( ? ) ) = *»e(P.?). w h e r e A '(?). 5(P) a r e t h e ground-state so
lutions of equations (4) and (5). The auxiliary functions obey the following system of 
coupled integral equations [4]: 

icc(k,k')= f " dv'A^'\v',k)^c(v',k') (20) 
J-B/u 

*e,(k,v) = A1(v,k)+ f " dv'A<?'\v',k)*„W,v) (21) 
J-B/u 
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*,s(v,v>) = A2(v,v')- f ak'A\k'\v,k')$cs(k>,v') 
J-Q 

- fB,U dv"A2
v"\v",v)Zss(v",v') (22) 

J-B/u 

*„(«,*) = - ^ K t ) - / dk'A[k'\v,k')*cc(k',k) 
J-Q 

- [ " dv'A[v,)(v',v)i3C(v',k) (23) 
J-B/u 

where A^v^) = ( l / ? r ) t an x (v - ( l /u )s infc) , A2(v,vl) = (l/ir)taa~1(^(v — v')) and 

^ ( w , Jb) = dA1(v,k)/dk, A?\v,k) = dAl{v,k)/dv, A2
v)(v,v') = dA2(v,v')/dv. 

The functions $cc(q,q'), $cs(q,p), $„(?>?')> ^sc(P'l) a r e t n e pseudoparticle 
renormalized scattering phase shifts [4]. In fact, the usual Bethe ansatz phase shifts, 
which for the ID Hubbard model are four in number and can be evaluated by the 
method introduced by Korepin [12] for the massive Thirring model, may be written as 
a sum of two terms [4]. The first of these terms can be considered to be the scattering 
part of the phase shift. For the present model the scattering part of the four phase 
shifts are given by equations (20)-(23) [4]. The nature of the second term is discussed 
in [4]. 

The /-functions (17) —(19) regulate the electronic spectral properties of the model. 
In fact, the 'single-particle excitations' are described by fluctuations involving pairs 
of charge and spin pseudoparticles [4]. Each point (k,w) of the two-dimensional space 
where the electronic spectral weight function is defined can be associated to one (or 
two) pair(s) of pseudoparticles [4]. On the other hand, there is a clear connection 
between the value of the electronic spectral function at a point (k,w) and the interac
tion of the pair (or pairs) of pseudoparticles associated with that point [4]. Moreover, 
the interaction of the pseudoparticles determines the form of the electronic correla
tion functions. Particularly, the non-classical critical exponents which characterize 
the power law anomalies of the electronic momentum and the asymptotic behaviour 
of the correlation functions, are determined by the interaction of pseudoparticles 
with pseudo-momenta in the neighbourhood of the pseudo-Fermi points q = ±2fcF, 
p = ±&Fi [4]. These exponents can be derived by the conformal field approach [8, 9]. 
To illustrate the general character of the Landau-Lutt inger liquid theory, we show 
that the finite size energy corrections and expressions for conformal dimensions of 
the fields in the former theory can be obtained by choosing particular forms for the 
fluctuations of the energy functional, equations (10) and (11), in the latter theory. 
For simplicity we restrict our considerations to the case when the number of electrons 
N and down-spin electrons M in the system remain unaltered [4]. We introduce the 
matrices R+(q,p) and R~(q,p) given by 

\i„{P,inF) *„(p,ltP 1)/ 

These matrices describe the scattering of charge and spin pseudoparticles of arbitrary 
pseudo-momenta q, p, respectively, with right ( + ) and left (—) moving pseudoparticles 
of momenta at the pseudo-Fermi points. 
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It follows from equations (20) and (23) that the dressed charge matr ix of [8,9] 
(here we use the definition of Waynarovich [9], which is the transpose of that of [8]) 
can be rewritten as 

Z = 1 + R+(2AF,ibF1) - R - ( 2 t F l J b F i ) . (25) 

The form of equation (25) evidences tha t the matr ix elements of Z are combinations 
of phase shifts associated with the scattering of pseudoparticles with pseudo-momenta 
at the pseudo-Fermi surfaces. 

We consider now fluctuations Sc(q) = Mc(q) — M°(q), S,(p) = NJp) — N?(p), such 
that 

MM) = 0(2fcF + (sgn g)qc - |,|) + I f f e W ' - O + *(« - «P")] 
" p 

- I > t o - t f ) + %- U)]\ (26) 
h > 

N^p) = Q(kFi + (sgnp)p., - |p|) + | l | 2 [ * b - p + ) + *(p-p; ) ] 

where | 9 e | , |2fcF T 9*1, , |2fcF T 7*1 < 2fcF and | p j , | * F i ^ p ± | , \kF[ =Fp*| < fcF|-
The first term of the right-hand side of equation (26) ((27)) includes charge (spin) 
pseudoparticle-hole processes from pseudo-momenta close to —2kF(—kF^) to pseudo-
momenta in the neighbourhood of 2kF(kF^). Dc = (Na/2ir)qc (Ds = {Na/2i:)qs) 
gives the number of pseudoparticles transferred (Dc < JV, J ) , < M). On the other 
hand, the second term of the right-hand side of equation (26) ((27)) describes charge 
(spin) pseudoparticle-hole processes around the points ±2kF (±kF^). The indices p 
and h refer to particle and hole summations. + and — refer to right- and left-moving 
pseudoparticles. The asymptotic behaviour of the correlation functions is determined 
by these pseudoparticle-hole processes which involve exclusively pseudo-momenta in 
the neighbourhood of the pseudo-Fermi points. 

We define the numbers 

(28) 

? 

To evaluate the integrals of the right-hand sides of the energies (10) and (11) we 
expand ec{q) and fj(p) around the pseudo-Fermi points. Moreover to the two leading 
orders only the /-functions connecting pseudomomenta at the pseudo-Fermi points 
give contributions to the energy corrections. The energy and momentum associated 
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with the distributions (26) and (27) are given by [4] 

ENa = E0Na + (2wt, e(2*F) + Y, ( i ) / e e ( 2 * F . 2 * p i ) ) ^ 
^ j=±i ' 

+ ( 2 ^ ( * F | ) + E ( i ) / « ( * F l . * P l j ) ) ^ 
V i = ± l ' 

+ (EW/U(2*F,M) 2 I J« 1 5 . 
s=±l ' 

+ 2™e(2*F)[JV+ + JVc-] + 2wv, (kFi)[N+ + ATf] (29) 

27T 

P = — [NDC + MD3 + N+ - N; + N+ - JVf] . (30) 
1 a 

The use of equations (17)—(19), (24) and (25) allows us to rewrite the energy (29) as 
follows: 

E = E0 + ~[vc(2kF)(At + A;) + v,(kFl)(A+ + A7)] (31) 

where 
+ + + 

A," = | (ZeeDe + ZetDty + Nc- A." = 1 (Z,CDC + SttD,)2 + Wf (32) 

and £ce, £cs, £sc and £J3 are the elements of matr ix (25). As our fluctuations refer 
to the case when AN = AM = 0 (N and M remain unaltered), equations (30) and 
(31) and (32) are precisely the momentum, finite-size energy correction and conformal 
field dimensions A * , A ^ , respectively, of [8,9]. The leading term in the asymptotic 
expansion of the correlation functions decays with critical exponents obtained from 
(32) by minimizing with respect to Dt,Ds (i.e., by minimizing with respect to 6c(q), 
<$j(p)) [4,8,9]. When A N ^ 0 or AM ^ 0, extra energy boundary terms appear in the 
right-hand sides of equations (29) and (32) [4,8,9]. These terms are functions purely 
of A TV, A M and of the renormalized pseudoparticle phase shifts. 

It follows from the present results tha t the critical exponents of the model are 
fully determined by the pseudoparticle renormalized interactions [4]. In fact, these 
exponents are exclusively functions of renormalized scattering phase shifts associated 
to the pseudoparticle forward scattering processes such that both pseudo-momenta 
are pseudo-Fermi points. On the other hand, the Landau-Lutt inger liquid formu
lation introduces a more general framework: it contains full information about the 
pseudoparticle renormalized interactions for any pair of pseudo-momenta [4]. 

In this letter we have introduced the concept of a Landau-Lutt inger liquid. In 
addition to clarifying the physics by reducing the study of the low-lying excitations 
to the familiar language of band theory, the formulation used here allows explicit 
calculation of the /-functions which, as in Fermi liquid theory, are related to the 
forward scattering amplitudes of the pseudoparticles. Moreover, our results show that 
the renormalized Landau-Lutt inger theory has only forward scattering. Although the 
formal similarities with the Fermi liquid theory are striking, we would like to stress 
ihe crucial differences with the latter. It is important to realize that in the former 
the pseudoparticles involved in the description of the low-energy properties refer to 
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exact eigenstates of the many-body system. This is in contrast to Fermi liquid theory 
where the quasiparticles describe approximate eigenstates of finite lifetime near the 
Fermi surface. Finally, there is a second important difference which we believe to be 
common to all non-trivial higher dimensional fermionic liquids for which the overlap 
integral of [2] vanishes ('infrared catastrophe') : there is no one-to-one correspondence 
between the pseudoparticles of such non-trivial liquids (including the present Landau-
Luttinger liquids) and the real particles (electrons) upon turning off adiabatically the 
bare interaction. This is obviously due to the fact that in these non-trivial liquids the 
usual Fermi liquid fixed point is excluded. 

The present results may offer insight into the physics of higher dimensional sys
tems [2] where, in contrast to the ID case, the renormalized interaction of the new 
Landau liquid pseudoparticles could eventually produce bound states, providing a 
mechanism for high-Tc superconductivity. Moreover, we believe they are relevant to 
quasi-one-dimensional materials. For example coupling the charge and spin pseudo
particles to 4kF and 2lcF phonon modes [4], respectively, results in AkF (charge) and 
2/bF (spin) instabilities for large and intermediate on-site U, in agreement with exper
iment [13]. 

This work has been initiated while we were attending the high-Tc Program at the ISI, 
Torino. J C was supported by the Alexander von Humboldt-Stiftung, Un Evora and 
CFMC-INIC (Lisbon). We thank P W Anderson, N Andrei, D Baeriswyl, P A Bares, 
P Fulde, P Horsch, M Ogata and T M Rice for stimulating discussions. 
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Abstract. The finite-size corrections to the ground state and the energy of the low magnetisa
tion ( S « N) states as a function of the size N are calculated analytically for the one-
dimensional half-filled Hubbard model with on-site repulsion (U > 0). It is found that the 
contribution of the charge degrees of freedom is negligible, while the contribution of the 
spin degrees is the same as that in the one-dimensional isotropic Heisenberg model. The 
analytical results are compared to numerical ones obtained for the chain lengths up to 
N = 512. 

As is well known, several strictly one-dimensional quantum systems are in critical 
phases at zero temperature. These systems—similarly to those higher-dimensional ones 
which exhibit real phase transitions at finite temperatures—are believed to form 
universality classes. Within these classes the microscopic details do not play an 
important role, and the critical exponents are common. Due to recent developments 
in studying conformal invariance (Cardy 1984, 1986a, b, Blote et al 1986, Affleck 
1986)—a symmetry widely accepted to be present in critical systems—it is known that 
the dependence of the ground-state energy and low lying part of the spectrum on the 
size of these systems is also universal: 

E0 = AL — TTC/6L En — E0 = 2TTX„/ L (1) 

where the E„ are the energy eigenvalues, x„ are the scaling dimensions of the scaling 
operators and L is the size of the system. The conformal anomaly number c classifies 
the system. Systems for which c and x„ coincide are expected to show identical critical 
behaviour. 

In the present letter we report on analytical and numerical studies on the one-
dimensional half-filled Hubbard model with on-site repulsion, which is known to be 
critical. We have calculated analytically the finite-size corrections to the ground-state 
energy and the size dependence of the mass gap. We have found that both quantities 
follow the rule (1) with c = l and xs = S2/2, just as the one-dimensional isotropic 
Heisenberg chain does (Avdeev and Dorfel 1986, Hamer 1985, 1986, Woynarovich 
and Eckle 1987). It is also found that the next corrections are also the same in the 
two models. The one-dimensional Hubbard model exhibits two kinds of excitations, 
one connected with the charge, the other with the spin degrees of freedom (Woynarovich 
1982a, b, 1983). The latter ones are gapless, and in the infinite repulsion limit they 
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coincide with the excitations of the isotropic antiferromagnetic Heisenberg chain. Thus 
the critical behaviour should coincide in that limit. Since c = 1 would allow for a 
coupling dependence of the critical behaviour (as in the anisotropic Heisenberg model) 
it is remarkable that the spin part of the Hubbard model shows the same critical 
behaviour as the isotropic Heisenberg model for all non-zero values of the on-site 
repulsion. 

The one-dimensional Hubbard model described by the Hamiltonian 

H = - I I,(ct+lvcbr + HC)+U £ c^c^ca N + l = l (2) 
i — 1 cr 1 = 1 

(where ct„ are electron creation and destruction operators) can be diagonalised by 
solving the set of equations (Lieb and Wu 1968) 

N/9 = 2 7 r / J - S 2 t a n - 1 ^ 7 ^ (3) 

Z 2 t a n - ^ - ^ = 2 ^ + § 2 t a n - ^ . (4) 
7 = 1 U11 p = i U11 

Here fc, are the momenta of the electrons and Aa are connected with the spin distribution. 
Ij and Ja are the actual quantum numbers. The magnetisation and the energy per site 
of the Ne electrons described by a solution of (3) and (4) are given by 

S = i / V £ - M (5) 

1 "• 
e = -—Y2coskj. (6) 

Jy 7=1 

In order to obtain the lowest energy state of the half-filled band (Ne = N( = even)) 
with a given magnetisation one has to choose the 7, and Ja sets as 

' ^ + > ' - -™ + G ZT-Z] ^••••" <" 
/ „ + , = / „ + 1 J, = - [ N / 2 - ( S + l ) ] / 2 a = l,2,...,N/2-S. (8) 

The ground and first excited states are characterised by (7) and (8) with 5 = 0 and 
5 = 1 , respectively. 

In calculating the finite-size effects we closely follow the method given by de Vega 
and Woynarovich (1985) and further developed by Woynarovich and Eckle (1987). 
We introduce the functions 

1 / , l r „ .sinfc-AfA dw(fc) 

/ . \ 1 / 1 v . , -l A-sin/c. 1 _, _.A-Afl\ dz(A) , N 
z ( A ) = ^U? 2 t a n -u7T-N¥tan Tit) -dT=<rw(A)-

(9) 

(10) 

With these definitions (3) and (4) take the form 

w(kj) = Ij/N (11) 

z(K) = JJN (12) 
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and a straightforward manipulation leads to the energy per site 

e = e£)-\ ec(k)R(k)-\ e.(A)S(A). (13) 
J -IT J —00 

Here e^' is the ground-state energy per site for an infinite system 

expj-uU/2) dco 
0(o))J1(w)-- — — — (14) 

Too 

' = -4 U 
Jo l + exp(-wt/ /2) w 

and ec(fc) and es(A) are the same as the excitation energies connected with the charge 
and spin excitations (holes in the k and A distributions, respectively) (Woynarovich 
1983): 

f°° exp(-w£//2) dto 
ec(fc) = 2cosfc + 4 M<o)-— : ——cos(wsinfc)— (15) 

Jo l + exp( -«[ / /2 ) in 

f°0Ji(q))cosa)A da> 
e » ( A ) = = 2 w IT/A,—• (16) 

Jo cosh((i)U/4) <o 
The R(k) and S(A) are shorthand notations for 

R(k)=^l8{k-kj)-pN(k) S(A) = ^-Ifi(A-A< , )-ffA , (A) (17) 
iV j TV p 

while J0(w) and Ji(io) are Bessel functions. 
We note that, similarly to the excitation energies, the finite-size corrections to the 

ground state also split up into two contributions, one coming from the charge, the 
other from the spin degrees of freedom. Now we show that for a state characterised 
by an J, set given by (7) the charge contribution is negligible in the sense that as 7V-*oo 
it disappears faster than any power of 1/JV. For this we use the formula 

N ,= h \NJ J(/l-l/2)/N 

Here Am are / and TV independent constants and AM(/, N) depends on both / and 
N, but if the (2/x + l)th derivative of / is finite then it has an N- independent upper 
bound. If / is a smooth periodic function with a period 1, all the terms on the RHS 
are zero except the last one. Since /J. can be any large value, the LHS disappears faster 
than any power of 1/ N as N-*<x>. 

Changing the variables in the contribution of the charge part from k to w (fc, to 
Ijl N) transforms this contribution into the form of the LHS of (18), w i t h / = ec(k(w)), 
which is, for any u > 0, a smooth periodic function with a period of 1. Thus according 
to the above paragraph this contribution is negligible. This is not a surprising result: 
the charge excitation spectrum possesses a gap, so its contribution is expected to be 
exponentially small (de Vega and Woynarovich 1985). 

According to the previous paragraph, the contribution of R(k) can be neglected. 
Moreover, also in (10), we may replace (l/N)1j by jdkpN(k) without introducing 
a significant error. The remaining equation 
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is extremely similar to the analogous equation of the isotropic Heisenberg model. 
Actually it can be treated in the same way (Woynarovich and Eckle 1987). Using the 
formula 

L(,(£)+2x.(*M*r)) 
(20) 

to calculate the contributions of S( A), denoting the largest A„ (A N/2-s) by A, introducing 
the functions 

«rN(A) = j 

O-N(A) = { ' 

(21) 

if A > 0 
i fA<0 

if A > 0 
[^^(A+A) i fA<0 

and using Fourier transforms, (19), (12) and (13) can be transformed into the set of 
equations 

a-N(a>) + 
l + exp(-\<o\U/2) 

1 1 1 
lit 2cosh(wl//4) 

io> 
+ \ 2 ^ + -IN ' l2N2a-(A) 

exp{ia)A)J0(a))-^z (jl 

2iro-%(-w) 1 exp(io>2A) —• 

10) 

2TTL\2N 127VV(A)/ 

exp(-|t»|l/ /2) 
exp(- |w|t / /2) 

<rN(A)- 'rti(o) + aN(a>)) da> 

_ ( S ) _ _ ( 0 ) 
' N COO 

/•ex) 

J — CO 

= l6.exP(-2.A/[/U1(|)[, + (-f)-^^ 

+ o[/1(^)exp(-6wVl/)^(~)" 

(22) 

(23) 

(24) 

1 
UN2(TN{A)U. 

(25) 

with J0(io) and It(x) being Bessel functions. Solving (22) by the method given by 
Yang and Yang (1966) (23)-(25) can be calculated giving 

< r ( 0 ) _ „ ( 0 ) irltfir/U) 1 [ 1 

3 /0(27r/C/)7V2L ' ln[N/0(27r/t/)]3 + 
/ln(lnJV)V 
\ ( l n J V ) 2 | 

(s) ( o ) ~ Ii(2ir/U) S / l n ( l n N ) \ 
\ ( lnN)2A I0(2n/U) N2l* 2ln[NI0(2ir/U)] 

Since the dispersion of the spin excitations is given by (Woynarovich 1983) 

(o>) sin(wA) 

(26) 

(27) 

e.(A) 

2 Jo mi 

-2 f " i 
Jo «> 

cosh(«l//4) 

(&>) cos(oiA) dw 

cosh(wt//4) w 

(~exp(-27rA/ U)I0(2TT/ U) for A » 1) 

(~4 exp(-277-A/ l/)/,(2ff/1/) for A » 1) 

(28) 
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after properly normalising the Hamiltonian (von Gehlen et al 1986) (i.e. to have instead 
of (28) the simple relation es(A) = ps(A) for small momenta) and returning from the 
energy per site to the energy, (26) and (27) yield (1) with the same c and xs as the 
isotropic Heisenberg model, i.e. with c = 1 and xs = S2/2. Moreover, the powers and 
the coefficients of the first logarithmic corrections are also the same in the two models: 

r w - jvr~«»—— f 1+0 3433 L 
6TV\ {ln[NI0(2n/U)]V 

£ ( N = A f e » - — 1 + 0 . 3 4 3 3 — — — — — — - T + . . . (29) 

E^-E^ = 27T-(\--—r } , x + . . . V 
2 \ 2 1n[N/0(27r/t/)] / 

(30) 

Based on the above results one may expect the half-filled Hubbard model to exhibit 
the same critical behaviour as the isotropic Heisenberg model. We have to stress, 
however, that this analogy holds only for U > 0 for two reasons. One is that in the 
l/-»0 limit the corrections due to the charge degrees of freedom grow up: for small 
U the derivatives of ec(k{w)) grow up, and in the t/ = 0 limit ec(k(w)) is not a smooth 
(although it is still a periodic) function, and the argument presented just after (18) 
does not hold. Actually, in this limit the contribution of the charge degrees of freedom 
is just as large as that of the spins. The other reason is that the spin part of the 
corrections itself cannot be continued down to U = 0 due to the essential singularity 
of the model at this point. In our calculation A » 1 has been supposed, but for 1/ = 0 
for all Aa, and so for A too, |A|<1. Actually, at the point [7 = 0 one can solve the 
equations which describe the spin contribution only (equations (31) and (32)) exactly, 
and one finds that the result for the correction to the ground state does not coincide 
with (26). 

We also carried out numerical calculations for the finite-size corrections. We have 
solved numerically by iteration for TV = 8,16, 3 2 , . . . , 512 and several U values that 
form of (4) in which the S, is replaced by the TV J pN(k), i.e. 

1 f" . A a-sin/c „ « , A„-A s 

For the energy per site we used the expression 

e = - J 2cosfcp„(k)dfc = - ^ X { [ ( [ / / 4 ) 2 + cos2(xa /2)]1 / 2-L//4} 

( • 

, . - , / [ ( t / / 4 ) 2 + (Aa + l ) 2] 1 / 2-[(L/ /4) 2 + ( A - l ) 2 ] 1 / 2 \ 
x a = 2 s i n I I 

and for ê J* we used (14). 
Note that (31) and (32) do not contain the finite-size corrections due to the charge 

degrees of freedom. Our findings are plotted in figures 1 and 2. Both the correction 
to the ground state and the mass gap are normalised to their values for TV -> oo. The 
individual curves are labelled by the value of U and oo indicates the Heisenberg limit. 
On the both sets of curves one can observe the tendency that, for fixed but large enough 
TV with decreasing U, the points approach the TV-»oo values. This is due to the fact 
that in the argument of the logarithm TV enters together with IO(2IT/ U) which increases 
with decreasing U. It is striking, however, that for small U and not large enough TV 
the corrections to the ground-state energy are very far away from their N -* oo values. 
This is due to the power law type corrections (indicated in (25) but not in (26)). The 
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Figure 1. Corrections to the ground-state energy normalised to -1 in the N-»°o limit 
plotted against 1/N. The individual curves are labelled by the value of U. 

terms yielding power type corrections are in general of the form 

[ / I ( ^ p ^ ) e x p { - [ ( 2 « + 1)2*AVU}] 

x [lo((2m+
u

1)2V) exp{-[(2m + 1)2. A]/U}] • 

Since 

exp(-27rA/ U)/I0(2TT/ U)~N 

for small U the terms of (33) take the form 

[,, (fiLtiB^ A(2=±2*) fl«2,/ lop-™")-] 

1 1 1 

(33) 

(34) 

N2(m + n)+2 ^ 2 (JJJN)*•»•+») 
(35) 

i.e. their significance is enhanced when U is small. Nevertheless they decay faster 
than the logarithmic terms. The form (35) is an indication that our calculation breaks 
down in the U-*0 limit, as discussed earlier. 
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Figure 2. The gap between the first excited and ground states normalised to 1 in the N -» oo 
limit plotted against 1/ N. The individual curves are labelled by the value of U. 
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The critical exponents describing the decrease of correlation functions on long distances 
for the one-dimensional Hubbard model is obtained. The behaviour of correlators shows 
that Cooper pairs of electrons are formed. The electron tunneling between the chains leads 
to the existence of the anomalous mean values and to the superconductive current. The ani-
sotropy of the quasi-one-dimensional system leads to the rise of critical temperature 7 .̂ 

1. Introduction 

The discovery of high temperature superconductivity1 has excited research 
activity. Various theoretical proposals have been made to interpret the origin of 
this phenomenon.2 We shall consider the one-dimensional attractive Hubbard 
model. In Ref. 3 the arguments were given in favour of this model. The 
superconductors of YBa2Cu307 type (with transition temperature TC ~ 90 K) may 
be considered as quasi-one-dimensional structures consisting of Cu-O chains. 
Taking into account the virtual transitions among the electronic shells of oxygen 
O2 - and O0 the one-dimensional Hubbard model with attraction was obtained in 
Ref. 3. 

The Hamiltonian of the model is 

N N 

j=l S j~[ 

Here N is the number of sites on the one-dimensional lattice. Canonical Fermi 
field ̂ js describes the electron with spin 1/2(5 = t,l)onthesite./(./= 1 , . . . ,7V), 
{¥/,*?,•,,} = SjSf. The value U > 0 is the coupling constant. 

The Hamiltonian commutes with the operators of a number of up and down 
spins 

j-i 

427 
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The operator of number of electrons is equal to 

M=M] + Mi (2) 

and 

2S = A/t - Mj (3) 

is the total spin operator. 
Considering the system in arbitrary external fields it is convenient to pass to 

the Hamiltonian: 

H = H0-AM-hS (4) 

where A < 0 is the chemical potential and h is the magnetic field. In the 
thermodynamical limit N,M—»cc the electronic density D = N/Mis finite. Den
sity is connected with doping in the following way, S = 1 — D. Limiting cases 
3 = 0 and d = 1 correspond to half-filled band and empty band respectively. 

We start with the detailed investigation of the one dimensional model at the 
zero temperature, especially concentrating on the asymptotics of correlators, then 
we shall study the model at nonzero temperature. For the quasi-one-dimensional 
model the temperature of the superconductive transition will be obtained. 

For the one-dimensional quantum models the anomalous amplitude (*F„f
lF/j) 

is equal to zero, it means the absence of superconductivity in the literal sense. As 
pointed out by different authors4'5 there is the analogy to the long range order in 
one dimension — the power decay of the correlator of pairs of fields in the singlet 
state (SCP) regarded as the existence of the superconducting state 

(^:+j^:^^lA) - -• 7 > o (5) 
"-"*> n 

(/J fixed). 
Let us consider also the correlator of Fermi fields (FF) ( T ^ * ^ s), if it decays 

exponentially: 

OOV,} - e-"/{; £>0, (6) 
n-*oo 

then we can say that the electrons are confined in the Cooper pairs. These 
asymptotics mean that the average distance between the pairs are large, but the 
average distance between electrons in the pair £, is small. If both correlators decay 
as a power of the distance — the average distance between pairs of electrons is the 
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same as between single electrons. So the pairs have no remarkable properties and 
the electrons are more or less independent. The important properties of the 
critical behaviour are described by the charge-density correlation function 
(CDW) 

( i i , s ' « , j ^ U ' l , i ) • 

In this paper we shall show, that for the attractive Hubbard model (U > 0) in 
the range of the magnetic field h < hc (the value of the critical magnetic field hc 

is connected with the gap in the model spectrum) the asymptotics of the FF and 
SCP correlation functions is of the required form (5) and (6), while the 
asymptotics of the CDW correlator is: 

(7) 

- < ¥ W , , > - ~ c o s ( j r D / ! ) - | - ; Y>0. 

The critical exponent £ is positive and inversely proportional to the gap in the 
electron excitation spectrum: £ = uA_1. The critical exponent y is the function of 
the Fermi velocity v and compressibility: 

, n 3D 

r'-m- ,8) 

The complete integrability of the model gives the opportunity to express this 
critical exponent in terms of the solution of the "dressing" integral equation and 
to prove that y changes monotonically in the range l / 2 s y < 1. It is equal to unity 
(y = 1) only for the half-filled band D = 1 (Mf = M{). Comparing asymptotics 
(5) and (7) we see that for the nonzero doping 8 the CDW correlator decays faster 
than the SCP correlator. If the magnetic field h > hc = A then all the correlations 
mentioned above will decay as a power of distance. The investigation of this case 
as well as the case of the Hubbard model with repulsion (U < 0) will be published 
later. 

At the finite temperatures all the correlators decay exponentially in one-
dimension. For the quasi-one-dimensional systems the electron tunneling from 
one chain into another leads to the existence of the ordered state at finite 
temperatures, and this state will be superconductive, as is clear from the above. 

In the following, Sec. 2 is concerned with the nature of the ground state and the 
energy of the excited states, Sec. 3 with calculation of the correlation function 
asymptotics both for T = 0 and for nonzero temperature in one-dimension. In 
Sec 4 we consider the quasi-one-dimensional model and give the expression for 



235 

Rapid C'ommuii. 
in Hij>h I , 

430 N. M. Bogoliubov & V. E. Korepin 

the critical temperature of the superconductive transition. 
These results were announced in Ref. 6. 

2. Ground State 

The Hubbard model was exactly solved by means of the Bethe Ansatz7 and was 
imbedded into the quantum inverse scattering method8 in Ref. 9. The case of the 
attractive model was considered in Refs. 10 and 11 and the thermodynamics was 
constructed in Ref. 12. The excitation spectrum was treated in Refs. 13 and 14. 

The ground state of the model with attraction at the zero magnetic field is con
structed by filling the Fermi sphere with two-particle bound singlets. The 
distribution functions of pairs are defined by the equation: 

a(X) + f m.Kfi)o{n)d\i = ^-P'Q) . (9) 

J-A 2JC 

Here P'(X) is the derivative of the bare momentum of the pair 

p(X) = 2Re arcsin (A — iU); 

p'(X) = 2Re[ 1 - (A - iU)rl/2 . (10) 

The integral kernel is equal to 
Id 2U 1 

S?ra,/z) = — — 0(X,n) = — ; 

d{X,H) = 2 arctg 

2ndX it 4U2 + (X - fif 

X — jJL 

(11) 

2U 

The momentum of the pair is given by 

P(X) = p(X) - r e{X,n)o(nW. (12) 

The parameter A is determined by the condition: 

a(X)dX. (13) D = 2 £ 
where D is the density of the electron liquid (nD = 2PF, P(A) = PF is the Fermi 
momentum). 
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The energy of the elementary excitations over the ground state is defined by 
the integral equations 

i; 6(A) + 5^X,fi)e(fi)d/i = E(X) - 1A , (14) 

i: e(k) = — 2cosfc — A — 2 I 55T(2 smk,2fi)e(fi)dii, 

(15) 
— o o ^ A s o o ; ~n<k-&Ti 

demanding that 

6(±A) = 0 . (16) 

Here e(A) is the excitation energy of pairs, and e(k) of unpaired electrons, 
respectively. The bare energy of the pair is: 

E(k) = -4Re[ 1 - (2 - iU)2]U2. (17) 

The ground state energy is 

&(D) = I E(k)o(k)dX, 

(18) 

dD 
= A. 

It follows from (14) and (16) that the spectrum of the pair excitation is gapless 
with the linear dispersion law in the vicinity of Fermi level: 

«(A)*o(/»(A)-/»F). (19) 

Here v is the Fermi velocity 

e'(A) e'(A) 
v = - ^ = — L - L - . (20) 

P(A) 2na(A) v ' 

The gap in the spectrum of unpaired electrons is equal to 
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The problem of the critical exponent y calculation is reduced to the solution of 
the "dressing" linear integral equation1617: 

Z(X) + I 9C{k,n)Z(n)dn = 1 . (22) 

The critical exponent y is defined by the equality 

7 = 2Z2(A). (23) 

The solutions of Eqs. (22) and (14) are connected: 

2Z(X) = ~de(l)/dA . (24) 

One can prove that the gap A is positive for arbitrary A, D and U >' 0. The 
solution of Eq. (22) is a monotonically decreasing function of A. Moreover 

1 dZ(k) dZ(X) 8Z(X) 
- < Z ( A ) < 1 ; — — < 0 ; — — < 0; — — > 0 . (25) 
2 ' dA 3D dU 

We state that the critical behaviour of the attractive Hubbard model at the zero 
magnetic field is defined by Eqs. (14), (22) and by the equality (21). Considering 
some limiting cases we can solve these equations. The simplest one is the case of 
the nearly half-filled (A -* oo) D = 1 — S. For the small doping (3 -* 0, [/-fixed) 
one gets, applying the Winer-Hopf method 

> = 1-T^cm- (26) 

where C = y/Y/ne IQ(n/2U), Ij is the Bessel function. For the half-filled band 
(3 = 0) 

y = i - (27) 

To the second order of 3 the gap is: 

7,(71/217) n , 7,(71/2[/) 
AA = A + 7r<5^-^ - + -82-^-1 -+0(3'). (28) 

I0(n/2U) 2 Il(n/2U) 

Here A is the gap for the half-filled band13: 

2 fx -Jy- 1 
ul (n \dy- ( 2 9 ) 

sinh I — y ) 
\2Uy) 
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Treating the equations by the perturbation method in the small density limit 
(D -* 0, U fixed, D/U-* 0) we obtain a power series expansion for y as follows: 

f = l{' + -2y[^) + °{D,) (30) 

and for A A 

AA = 2<Vl + U2- \)-D2 * + D'^— + 0(D4). (31) 
16>/1 + U2 24U 

The quantity 2(V 1 + f/2 — 1) is the binding energy of the pair for D = 0. 
The results of this section are valid for the magnetic fields h < hc, where 

K = A . (32) 

Here A is the gap (29). 

3. Critical Behavior 

The long distance asymptotics of the correlation functions for the integrable 
models in the external fields was studied in Refs. 16, 17 and 18. The explicit 
formulae for the critical exponents were obtained. 

To study correlators it is convenient to insert the complete set of eigenstates of 
Hamiltonian between fields in the first and «-th sites of the lattice. Asymptotics 
of correlators of fields <t> are defined by change of energy of the ground state under 
the excitation caused by the field <t>. 

Critical behaviour of the system with a gapless excitation spectrum having a 
linear dispersion law in the vicinity of the Fermi level is described by conformal 
field theory.19 To obtain the complete information about infrared asymptotics 
one has to determine the central charge and conformal dimensions of the fields. It 
is known, that if central charge C s 1 then the critical exponents may 
continuously depend on the parameters of the model. The central charge of the 
Hubbard Hamiltonian in the sector under consideration is C = 1. Now we can 
apply the method of Ref. 18, based on the finite-size corrections,20 to obtain the 
spectrum of conformal dimensions: 

2 2 
m ay 

2A± = — + — ± qm + 2/+ . (33) 
2y 2 

Here m, q, I± are integer positive numbers; the critical exponent y is 
proportional to the difference between the ground state energies of the model 
with M + 2 particles and with M particles respectively, 
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nv f / 2\ 2A 1 2 dA 
—y = N\sr\D+-\ &(D) \ = . (34) 
Nr \ N N V ') NdD V ; 

Thus 

n 3D 

'TIT (35) 

Here ZF is the energy of the ground state (18), A the chemical potential, D the 
density (13), dD/dA is the compressibility, and the Fermi velocity is defined by 
(20). Finally, calculating the derivative in (35) using definition (13) and Eq. (14) 
we obtain1718 expression (23) for the critical exponent. The equality (23) and Eq. 
(22) gives us the opportunity to express y in terms of microscopic quantities. It 
follows from the properties of Z(X) function (25) and equalities (27) and (30) that 
the exponent y is the monotonic function of density D. Moreover 

1 dy 
- < y < l , — > 0 . (36) 
2 3D 

For the half-filled band y= l.21 

The long distance asymptotics of the correlation function can be written in the 
form 

, ,-, v^ cos(2PFw«) 
( ^ ( P F , H O < M 0 , 0 ) > - ( ^ ) 2 - Z B{m,I+,I.) K

 - 2 A • (37) 
m,/+,/_ W W 

Here q is the "change" of the field <f)q(W, W) (W = in + vr, x is the Euclidean 
time, v the Fermi velocity (20)). In the case under consideration the uncharged 
field q = 0 is the operator of the conserved current <p0(W, W) = y¥^s(T)x¥n s(r); 
the field with the unit change q = 1 is the creation operator of Cooper pair 
<t>\(W,W) = ^ ( T ^ ^ T ) ; the example of the charged field with q > 1 is the 
product 

Since the ground state is uncharged ((j>q) = 0 for q> 1. The summation is 
performed over integers (33), B is the amplitude independent of distance n and 
Euclidian time x and Pf is the Fermi momentum. 

Using (33) we can write the leading terms of the asymptotics 
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cos(2PF 

The SCP correlator (5) is the special case of this expression. For time 
dependent CDW correlator we obtain 

„ cos(2PF«) T 1 1 "I 
«*,W W)^W, W))) ^ c - ^ - + Z>|_— + —J . (39) 

The asymptotics of many point time-dependent correlation function is of the 
following form: 

(tlK(wn,wn))^Yi\wn-wkr\ 
\ n - l ' n>k 

(40) 

\Wn-Wk\^oo, v„=±l, 2V« = 0-

Here we use notations: W„ = iX„ + vc„, <l>i(Wn, Wn) = ^^A^n^^A^n) and 

0-i = 0i • 
To compute the correlator of the fields (6) we must remove one electron from 

the Fermi sphere, i.e. to destroy the bound pair. This is the reason for the gap A 
(21) in the spectrum of Hamiltonian in this sector which leads to the exponential 
decay of FF correlator 

(Ks%,s) - C{e-n/i, (41) 
rt-»oo 

where £ = v/A. Similarly, we calculate the spin wave correlation function: 

( y ^ y ^ . j ) -* C2e~™. (42) 
n-*oo 

So far we discussed only the zero temperature case. At nonzero temperatures all 
the correlators decay exponentially. The explicit expression for this asymptotics 
is necessary when the quasi-one-dimension limit is considered. We shall find the 
asymptotics (n -*• oo, T-+ 0) of the Matsubara's correlation functions (function 
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with the period 1/7 along the imaginary time axis) using the conformal 
invariance of the gapless spectrum. The correlation functions are to be calculated 
in the strip geometry and are determined in terms of the infinite plane correlation 
functions at T = 0 by using the conformal mapping U — (v/2nT) In W; 
W = n + ivx. For the "charged" correlation function (38) we obtain 

{4>q{W,W)d>_q{W,W)) 

(n/v)T 

sinh (?") 
a + b GO' ( s i„h(^) ) ! (»inh(f *)) 

+ C cos(2PFn) 
(n/v)T 

(nT \ 
s i n h l — W \ 

Uy 
sinh sinhl 

sinhf — w\J Isinhf — w\ 

(43) 

The CDW correlator is written as 

((</><,W W)4>0{W, W))) -* C cos(2PFn) 

+ b 

(n/v)T 

sinh (?") 
Uy 

(si„h(f wjf (si„h(f w)) (H" 
(44) 

While deriving this expression we used the transformation law of the primary 
fields.19 Comparing this result we note that the correlation length of CDW 
function is smaller than that of SCP function: -RCDW/^SCP = y2 < 1 • 

It must be mentioned here that the critical exponent y does not depend on the 
value of the magnetic field h, when h < hc, while £ = v/(A — h). 

4. Quasi-One-Dimensional Model 

Let us treat quasi-one-dimensional model consisting of the attractive Hubbard 
chain and interchain tunneling. By t± we shall denote an amplitude of tunneling 
t, « A. 
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If S > 0, the exponent y < 1 and, as is seen from (5) and (7) CDW correlator 
decays faster than SCP correlator. In that case the CDW phase is suppressed and 
the system is in the SCP phase, by means of techniques similar to Refs. 22,23 one 
can show that the anomalous average appears (*F,lit

,Flii) # 0 and superconductive 
current exists. It must be mentioned here that magnetic flux quantisation in a 
high temperature superconductor implies that the charge carries of superconduc
tivity are Cooper pairs. 

Let us calculate quasi-one-dimensional correlator. First let us denote the one-
dimensional SCP correlator by G0(X,T\X',T') 

{Vt(X,T)Vt(X,T)Vl(x',T')Vi(x',T'))^G0(x,T\x',T') = a 
(n/v)T 

sinh (?") 
(45) 

Here we replace the lattice variable n by continuous space variable x. (We study 
the vicinity of the phase transition point.) Quasi-one-dimensional correlator of 
SCP is denoted by Gtj{x,x\x',x'). Here ij are the numbers of the chains. We 
suppose that chains form two-dimensional lattice, a,-,- is denoted as a two-
dimensional vector, orthogonal to the chain, and pointing from the j-th chain to 
the /-th chain. Following the perturbation theory of Refs. 22 and 23 we obtain Dy
son equations for Gu: 

GU(X,T\X',T') = d'G0(x,x\x',x') 

+ (T) E f" dt r dyG0(x,T\y,t)Gkj(y,t\x',r'). (46) 
\ A / {, j.) Jo J-oo 

Here (i, k) denotes the nearest neighbour chains. All correlators depend only on 
the difference of space (time) variables. This fact permits to solve the equation by 
means of Fourier transformation 

f00 fl/T x-i 
G(K„K±,co)= dxe,K,x dreim 2^e'K±'i0Gjfi(x,Tp,0). (47) 

J-oo J0 j . 

We obtain an equation 

W ± ) 
a*) 

(48) 
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G(K,,KI.,Q>) = G0{K„co) + (j) ^(K±)G0{K]hco)G(K,Kx,co). 

The solution of this equation is 

G^co) = „ ^ " ^ (49) 

1 (|)WjG0(^,o>) 

This formula describes Fourier transformation of quasi-one-dimensional 
correlator in the normal state (above Tc). The pole appears first at 
Kx = A,, = co = 0 (as temperature goes down). This pole corresponds to the 
instability of the normal state and to SC transition.22"24 So the equation for Tc has 
the form 

1 = PG0(0,0). (50) 

Here P = q(tj&)2 (q is a number of nearest neibours chains) is a probability of 
interchain tunneling. The dependence of G0(0,0) on the tempeature can be 
estimated from the formula (45) 

G0(0,0) = f dx (lTdTG0(x,T\0,0)~Tv-2. (51) 
Jx>( JO 

So 7̂  can be estimated as follows 

T-APW-*. 

The anisotropy of the quasi-one-dimensional type generally leads to the 
increase of critical temperature Tc.

n To estimate the value of Tc we must replace 
Hamiltonian (1) by the "physical" one 

"phyS = -t E £ { * ; + A + % - A ) - 4 u i n^n^i 
j - I s j= 1 

and substitute the coupling constant U and the width of the band / from the 
chemical reactions (~ 1/10 eV), we can then obtain Tc ~ 100 K. 

When r a r c the specific heat is the linear function of temperature 



Rapid ( ommun. 
in l l i «h I, 

Role of Quasi-One-Dimensional Structures in HTC 439 

Tl 

ov 

the consequence of the gapless excitation spectrum of the Cooper pairs. 

5. Conclusion 

We summarise the results of the previous sections. The ground state of the 
Hubbard model with attraction is constructed of bounded electrons in the singlet 
state, the charge of such a pair is equal to 2e and the spin is equal to zero. The 
analysis of the correlation function behaviour has shown that the Cooper pairing 
hold in the system. A small magnetic field does not change asymptotics: but there 
exists the critical value of magnetic field which destroys Cooper pairs. It means 
that both correlators FF and SCP decay as a power of the distance. Considering 
the quasi-one-dimensional system with the interchain tunneling (the three-
dimensional system with strong anisotropy) at the non zero doping we have 
obtained the superconductive phase with a rather high critical temperature. 
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Abstract. The finite-size effects in the spectrum of a Hubbard chain are obtained for both 
the repulsive and attractive cases. It is shown that the finite-size corrections—similar to 
the case of a Heisenberg chain or Bose gas—are non-analytic unless some conditions are 
imposed on the chemical potential, magnetic field and chain length. If these conditions 
are met, the spectrum shows a similar tower structure as expected in conformal theories, 
although the model in general is not conformally invariant. In the special case when the 
two Fermi velocities are equal, the model is conformally invariant with c = 2, the indices 
are similar to the Gaussian form and there are four marginal operators. 

1. Introduction 

In the understanding of the critical two-dimensional classical and (l + l)-dimensional 
quantum systems the concept of conformal symmetry put forward by Belavin et al 
(1984) has proven to be a very fruitful one. This symmetry provides an abstract 
classification according to the central charge (c) of the Virasoro algebra describing 
the conformal symmetry of the system (Friedan et al 1984). The conformal anomaly 
c and the scaling dimensions of the primary-order parameters are directly accessible 
through the finite-size effects in an affiliated system defined on an infinitely long but 
finitely wide strip (Blote et al 1986, Affleck 1986). These results have prompted several 
groups to study the finite-size effects both numerically and analytically in different 
critical and conformally invariant systems. 

A condition for a critical system to be also conformally invariant is that the group 
velocity be the same for all elementary excitations. If this holds, the spectrum of the 
Hamiltonian for a chain of length N (in 2D statistical systems, the spectrum of the 
logarithm of the transfer matrix acting along the infinitely long strip of width N) 
should have the so-called tower structure (Cardy 1986a, b) which in the most general 
case (Bogoliubov et al 1988, Berkovich and Murthy 1988) means 

E(n,N+,N-)-E0 = ̂ (xn + N++N-) (1.1) 

EO=NE^SC ( L 2 ) 

6/V 

P(n, N+, AT) - P0 = — (s„ + N+ + AT) + D2kF. (1.3) 
N 
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Here einf is the ground-state energy density of the infinite system and E0 is the 
ground-state energy of the finite one, x„ and s„ are the scaling dimensions and spins 
of the primary scaling operators, N+ and N~ are non-negative integers, D is the 
number of particles moved from one Fermi point to the other, P is the momentum of 
the system, vF is the Fermi velocity and c is the central charge (conformal anomaly). 

There are several examples for systems which are critical, but do not show conformal 
symmetry. These are systems in which there are several kinds of excitations, all 
posessing linear dispersion, but the different excitations have different velocities. Prime 
examples for such systems are the ID spin-5 Fermi gas with 5 interaction or its lattice 
version, the Hubbard chain. In these systems there are two kinds of excitations, one 
connected with the charge degrees of freedom, the other with the spins. Both are 
fermion-like but they have different Fermi velocities. These systems are not conformally 
invariant but are expected to be treatable in terms of two conformal fields (Korepin 
et al 1988). 

In the present work we study the spectrum of the Hubbard chain. It is known that 
in the half-filled case the charge excitations possess a gap (Woynarovich 1982a, b, 
1983a, b), only the spin excitations are critical and they have a spectrum of the form 
(1.1)-(1.3) with c = 1 and x„, s„ of the Gaussian form (Woynarovich and Eckle 1987b). 
Now, to have both degrees of freedom critical, we study the non-half-filled band, and 
to have the possible most general case we introduce also a magnetic field. Thus the 
Hamiltonian is 

A N N 

H = -1L Z(c/+i,o-c,-,(r + ct(Tc1-M><T)+[/ £ «/T«U 
i = l a- i = l 

+ M I (n.-t + n . - i ) - ^ £ (n , T -n a ) (1.4) 

where cio. {<? = { or f) are the spin-j fermion operators at site i, n,T and niif are the 
numbers of up and down spin particles at site i, and /x and h are the chemical potential 
and magnetic field, respectively. 

As is well known, this system is exactly treatable by the Bethe ansatz (Lieb and 
Wu 1968), and by now there is also a well established method to calculate the finite-size 
corrections in Bethe ansatz systems (de Vega and Woynarovich 1985, Woynarovich 
and Eckle 1987a). Treating the model this way we have determined the low-lying part 
(scaling with 1/ N) of the spectrum for the Hamiltonian (1.4) for both positive and 
negative U. We have found the following. 

(i) This spectrum ((2.44) for U > 0 and (2.50) for U < 0) is not analytic in JV unless 
extra conditions imposed on /x and h are also satisfied (similar to the case of the 
Heisenberg chain in magnetic field or the ID Bose gas (Woynarovich et al 1989)). 

(ii) If the extra conditions are satisfied, the spectrum has a structure (3.7) which 
can be considered as the generalisation of (1.2) and (1.3): it looks as the finite-size 
corrections would come from two independent c = 1 fields, but this independence is 
not true, however, since both of the x depend on the state of both Fermi seas. 

(iii) There are special values of U, n and h where the two Fermi velocities coincide. 
In these points the system is conformally invariant with c = 2. The scaling indices are 
of generalised Gaussian form (3.21) (similar to that found in nested Bethe ansatz 
systems by Suzuki (1988)), and there are four marginal operators. 

In the next section we give a detailed derivation of the energy and in § 3 we discuss 
our results in detail. 
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2. The energy of a finite chain 

The Bethe ansatz equations for the Hubbard chain are 

Nkj = 2TTIJ + I 2 t a n - ' / s m ^ ~ M {2Aa) 

I 2tan-'(^^^) = 2nJa + I 2tan l(^M. (2.1b) 

Here Nc is the total number of particles and Ns is the number of down spins, u is the 
interaction strength in units of the bandwidth u = U/4, and the quantum numbers Ij 
and Ja are integers or half-odd-integers, depending on the parities of the numbers Nc 

and Ns: 

Ij = NJ2 (modi) Ja= (Nc + Ns +1)/2 (modi) . (2.2) 

Once these equations are solved, the energy and the momentum of the system are 
given by 

E = -2 £ cos kj + /u.Nc + h(Ns-NJ2) (2.3) 

r-fa-%iW-)- i2A) 

We solve these equations at U > 0 for those states which have a spectrum scaling 
l ikel /N. (The U < 0 case can be obtained from the U > 0 one through a transformation 
(Woynarovich 1983b).) For this we choose the 7, and /„ sets as follows: we choose 
I± = (Ns + l)/2 (modi) a n d / ± = (JVc + N s)/2 (mod 1) so that 

i+-r = Nc i++r = 2Dc 
(2.5) 

J+-J~=NS J+ + J~ = 2DS 

with DC(S)« N. The Ij are all the numbers equal to NJ2 (mod 1) between I+ and I~ 
while the /„ are all the numbers equal to (Nc + Nj +1)/2 (mod 1) between J+ and / _ . 
This corresponds to two Fermi seas with Dc and Ds particles moved from the left 
Fermi points to the right ones. (Later on particle-hole pairs can also be introduced 
but care must be taken that the number of holes and particles must be the same around 
all four Fermi points separately (i.e. not to change Nc, Ns, Dc and Ds). Excitations 
with complex k and A will not be considered as they have a gap.) 

Now we define 

(2.6) 

and 

Pc(k)=dzc(k)/dk p.5(A) = <9zs(A)/3A. (2.7) 

With this notation 

zc(kj) = Ij/N z,(Xa) = JJN. (2.8) 
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Using the formula 

*I/(iH::>-^(^)-m) -
(2.7) can be written in the form 

P - ( f c ) ^ ( 1 - 2 4 N ^ A l C O S ( f c ) X ' l ( s i n f c - A " ) + 2 4 7 v 4 ( A + ) C O S ( f c ) J C ; ( S i n f c " A + ) 

+ cos(fe) X,(sinfc-A')ps(A')dA'J (2.10a) 

P.(A) = ±( 1 
2TT \ 24N2p 

+ 

Pc(k-) 

1 

cos(fc )K[(\ - s in fc ) 

24N2pc(fc
+) 

1 

24N2ps(A~) 

k* 

T-cos(fc+)A:;(A-sinA:+) 

K 2 ( A - A - ) - 1 
24N2ps(A+) 

- K 2 ( A - A + ) 

+ Kx{\- sin k')pc(k')dk'- K2(\ -A')ps(A') dA'J. 

Here 

K,(x) = 2 ^ — - j K2(x) = 2-
2M 

(2u)2 + x2 ' 

and K',-2 are the derivatives of Kl2 and fc* and A* satisfy the equations 

zc(k
±) = I±/N z,(k*) = J*/N. 

(2.10ft) 

(2.11) 

(2.12) 

These four equations (2.12), together with the definitions of p and (2.5), are equivalent 
to 

fk+ N 1 / f"• f *~ \ 1 fA+ D 

J +
 p<{k)=Jj -2\\ + ^ ( f c ) _ J P c ( f c )j~i^J 2tan-1(A/u)ps(A)=^ 

£*<»>-* -Kj> (A)-ii f t<A,)-N-

JV 
(2.13) 

(2.14) 

In the following a central role will be played by the solutions of equations of the type 

cos i jsfc fA+ 

xc(k\k±,X±) = x0c(k)+- X,(sinfe-A')xs(A'|fc±,A±)dA 
2w JA-

xs(A|fe±,A±) = x0s(A) + hi" Ki(A_ 
2-7T Jfc" 

sinik')xc(fc'|fc±,A±)dfc' (2.15) 

277" JA" 2(A-A')x1(A'|fc*,A±)dA'. 



Finite-size effects in a Hubbard chain 4247 

This system of equations we shall write in the symbolic form 

x(k, A | k±, A*) = Xo(fc, A) + K(fc, A | k', A'| k±, \±)®x{k', A'| fc*, A*). (2.16) 

Here x(k, A) is a column vector with upper and lower elements xc(k) and xs(A), 
respectively, and K is a 2 x 2 matrix with integral-operator elements which can be read 
out from (2.15). We shall also use the equation 

y(k, A | k±, \±)=y0(k,\) + KT(k, A | k', A'| A:±, A*)®y(k', A'| fc±, A*) (2.17) 

which is analogous to (2.15) but the integral-operator matrix KT is the transpose of 
that in (2.15): 

KT(fc,A|fc',A'|fc±,A±) 

( ° dA'K,(sinfc-A') . 

dfc'/C,(A-sinfc')cosfc'... dA' K2(\ - A ' ) . . . 

2 

(2.18) 

It is clear that 

p(fc, A) = px(k, A) +—i-3 ( —^— p,(fc, A | fc*, A") 
24N \pc(k ) 

+ ~7T^P^-k' ~A \~kT> -^)+^T-,P2(K A | fc*, A*) Pc(k ) ps(A ) 

+ -T^:P2(-k,-\\-k\-n) (2.19) 

with pco, pt and p2 determined by (2.16) with the inhomogeneous part x0 replaced by 

° / — cos(fc)K',(sinfc-A+)l 
I 277 

— cos(fe+)X'1(A-sinfc+)l \ - -^-JC 2 (A-A + ) 

(2.20) 

respectively. 
The energy according to (2.3) and (2.9) is 

E = N {hc-2 cos k)Pc(k) + Nhs ps(A) 

1 2s in fc + -—— -—— 2 sin iT (2.21) 
2ANpc{k+) 24Npc(k~) 

with hc = p. - /»/2 and hs = h. This, using (2.19), can be written in the form 

E = Nex(k
+, k~,\\ A") + - J - (e,(fc+, fc~, A+, A") 

24N 
+ e,(-fc~, -fc+, -A", -A+) + e2(k

+, k~', A+, A") 

+ e 2 ( - f c - , - f e + , -A- , -A + ) ) (2.22) 
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(/ic-2cos/c)p00(fc)+ Vco,(A) (2.23) 5co= ( / i c -2cos /c)p0O (fc) + 

^=-jj-^\2sink+-j (hc-2cos k)Pu(k)-\ hspu(X)j (2.24) 

J ^ ( (/ic-2cosfc)p2,(fc) + j hsP2s(\)\ (2.25) 
PS(A" 

Eco is actually the energy density of an infinite system at the given fc* and A±. It is 
instructive to write it in another form. Since the formal solution of an equation of the 
type (2.16) is 

x(k,\)= £ (K(fc,A|ik',A'|fc±,A±)®)',xb(fc',A') (2.26) 

Poo will be given by (2.26) with x0 replaced by the first column vector in (2.20). 
Substituting this into (2.23) one obtains that 

1 ffc 

, = — ec(fc|fc*,A±)dfc 
2TT Jfc-

where 

with 

e(*,A|fc± ,A±)= I (KT(fc,A|fc',A'|fc±,A±)®)"e0(fc',A') 

( hc — 2 cos k\ 

(2.27) 

(2.28) 

(2.29) 

i.e. e(k, A) satisfies (2.17) with y0 replaced by e0 . ec(fc) and es(A) can be considered 
as the dressed energies. 

The infinite chain is in the ground state at the given p. and h if ex is minimal with 
respect to fc* and \±. This condition, using (2.27) and the integral equations determin
ing ec, lead to the conditions 

ec(k
+\k±,\±) = 0 ec(fe-|fc±,A±) = 0 (2.30) 

es(A
 + |fc±,A±) = 0 es(A"|fc±,A±) = 0 (2.31) 

i.e. in the ground state the dressed energies are zero at the Fermi points. From symmetry 
it is clear that in the ground state k~ = - k+ and A ~ = -A + . Let us denote the ground-state 
values of k+ and A+ by k0 and A0, respectively. Now we can expand e ,̂ up to second 
order in (fe±:F fe0) and ( A ± : F A0) . Since the conditions (2.30) and (2.31) are satisfied at 
fc* = ±fc0, A* = ±A0 there are no cross derivatives and we find 

1 ri 

eoc(k+, k~, A+, A~) = e^fco, -fc0, A0, -A 0 )+ 77 - 77 ec(k\±k0, ±A0) 
P«,c(ko) dk 

x\[(pXc(k0)(k
+-k0))2+(Pooc(k0){k- + k0))2] 

k=k0 

1 
•es(A|±/c0,±A0) 

Poos(A0) d\ 

x 5[(p=cs(A0)(A
 + - A0))

2 + (Poos( A0)( A ~ + A0))
2]. (2.32) 
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Utilising the equation for e and those for p, and p2 it is not hard to see that with an 
accuracy of 1/ N2 (the error coming from the 0 ( 1 / JV2) difference between p and px) 

1 
Pcoc(fco) dk 

1 d 

P»s(A0) d\ 

ec(/c|±fc0,±A0) 

es(A|±fc0,±A0) 

_ f i ( ' c o i k0, A 0 , A 0 ) 

— £i(ko, k0, k0, A0). 

(2.33) 

As a next step we express (fc±=Ffc0) and (A ± = FA 0 ) by the deviation of Nc, Ns, Dc 

and Ds from their ground-state values. For this we can use (2.13a, b). First we note 
that, since the energy contains the square of these deviations only, it is enough to 
calculate them up to 0(1/TV), i.e. in (2.13a, b) pc and ps can be replaced by p^ and 
Pcos, respectively. Denoting Nc/N = vc, Ns/n = vs, DJ N = 8C, DS/N = 8S, from 
(2.13a, b) we have 

TTT=-T7r=Pooc(fco)( 1+ o-ic(fc)) = p<x>c(k0)£;u 

7 7 T = _ " ~ r ^ = P o o c ( K o ) 0 " l S ( A ) = Poo c(Ko)5l2 

d\ + ~ dk 
~ = P o o s ( A 

f *0 

0) 
J-fco 

0"2cCc) = P o o S ( A o ) 6 l 

<9A" 

d8c i98, 

dk+~ dk 

+ = - T p = p r a (A 0 ) l l+ o-2s(A) l=p0OS(A0)^2: 

1 fA» "I 
tan (A/u)o-u =p0oc(fc0)zn 

^ = ^F = -^ ( f c o ) K[/ , s "L 0 < 7 i s ) = p o ° c ( f c o ) z i 2 

1 1 rA° 1 

- t a n ' ( A 0 / M ) + — tan '(A/M)O-2S = Pao,(Ao)z2i 
7T " " J - A 0 -I 
T = T T T = P a . s ( A 0 ) - ( 1 ~ <T2s + ff2s 1 = Poos(Ao)Z22 

(2.34a) 

(2.345) 

(2.34c) 

(2.34d) 

(2.35a) 

(2.35b) 

^5, 
3A 

^5 : 

dk 

(2.35c) 

(2.35d) 

where o-j and a2 are denned by (2.16) with the inhomogeneous part x0 replaced by 

1 
0 

— Kt(k-sin k0) 1 
. 277 

2TT 
cos(fc)Ki(sin fc-A0) 

-^-K2(k-k0) 
27T 

(2.36) 



4250 F Woynarovich 

respectively. Using the formal solution (2.26) of (2.16) for <r, one can convince oneself 
that the matrix £ in (2.34) is 

: = / f n £ 2 \ /fn(*o) f.2(*o)\ 
\&i £22/ \&i(A0) fe(Ao)/ 

(2.37) 

where the £(k, A) matrix is defined through the equation 

i(k, A) = l + KT(fc, A | fc', A'|±fc0, ±A0)®f(&', A') (2.38) 

with I being the 2 x 2 identity matrix. This £ matrix can be considered as a generalisation 
of the dressed charge (Korepin 1979). Taking the derivatives of the elements of £ and 
reintegrating the first row from k0 to IT and the second row from A0 to infinity one 
finds that the z matrix in (2.35) is 

z = \{fV (2.39) 

with the upper index T corresponding to transposition. Compiling (2.22), (2.32), 
(2.33)-(2.37) and (2.39) one arrives at the energy expression correct to 0(1/N2) 

E = Ne^iko, -k0, A0, -A0) 

l 2 

+ 
1 ^ ([t22(Nc-vcN)-{2l(Ns-vsN)r 1 \ 
NE\ 4T5eTi? H€nDc + faD.) - - ) 

NS2{ 4Td^tl? +<&.A + & D . ) ~Vl) N 
(2.40) 

where e, and e2 are given by (2.24) and (2.25) with k± = ±k0 and A± = ±A0, and vc 

and vs are the densities of the particles and down spins, respectively, in the ground 
state of an infinite system at n and h. 

The total momentum of the system according to (2.4) and (2.5) is given by 

P = ^-(NCDC + NSDS). (2.41) 
2TT 

As a final step we have to deal with the excitations. As an example we treat a 
particle-hole pair around the right Fermi point of the k sea. Suppose that the particle 
and hole are characterised by the quantum numbers /£ and 1^, respectively. This 
defines their positions in the k space: 

zc(K) = i;/N zc(K) = lt/N. (2.42) 

The presence of this particle-hole pair modifies p(k, A) by -pi(k, A Ifc*, A±)(fcp -
k£)/N and gives a contribution to the energy elpc{k+)(kp -k^)/N. According to 
(2.42) and the definition of p, pc(k

+)(kp -k£) = (Ip -I^)/N. The momentum of such 
a particle-hole pair is 2ir(Ip -1^)/ N and thus, due to this excitation we have contribu
tions e , ( /p - /h ) / JV and 2ir(Ip-lt)/N to the energy (2.40) and momentum (2.41), 
respectively. This and the analogue calculations for the particle-hole excitations in 
the A sea justify the notation 

ei-liTV,. e2 = 2TTVs (2.43) 
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with vc and vs being the Fermi velocities for the two Fermi seas. It is not hard to see 
that the energy and the momentum of a state with all four possible particle-hole 
excitations are 

E = jVe0O(fc0, — K0, AQ, — AO) 

N \ 4(det£)2 

+ (ZnDc + £12Ds)
2-i-2 + n: + n;) 

2TTVS / [f I 2(N c - vcN) - f u ( AT, - psN)f •.([in 
N \ 4(det£)2 

+ (i2iDc + S22D,)2-h+n:+n7) (2.44) 

Here 

p h h p 
(2.46) 

With /p (/h), Ip (Ih), Jp (/h) and / " (7^) being the quantum numbers of the particles 
(holes) near to the right ( + ) and left ( - ) Fermi points of the k and A seas. 

The above results are valid for the case £ />0 but can be easily translated for 
negative U. A way to do this is provided by the 'complementer solutions' of the 
Lieb-Wu equations (2.1a, b) (Woynarovich 1983b). Suppose that in a {kj, Aa} solution 
of these equations the kj are distributed in (k+, k~) according to pc(k) with holes at 
fch and particles at kp. In the complementer solution the Aa are unchanged, but the 
kj set is replaced by a kg set in which there are real k and also complex k pairs. The 
real kg are distributed in (—IT, k~) and (k+, IT) according the corresponding part of 
pc(k) (pc(k) is denned by (2.7) for the whole ( — 77, IT) interval) with holes at kp and 
particles at kh, while the complex kg pairs are determined by the A: 

sink* = Aa=Fiw ±lmfc*>0. (2.47) 

The total number of kg is N + 2NS — Nc, Also this {kg, A„} set will solve (2.1a, b) of 
course with an {Ig,J'a} set different from {Ij,Ja} (but Ij•.- Ig = integer and Ja-J'a = 
integer). The sum of the energies and momenta of these complementer solutions is 

T -2 cos kj + Y -2 cos k. - N,U 
(2.48) 

l1kj + Yjkg = ir(N + Ns + l). 

Utilising all this one can see that the set {kg + v,-\a} will satisfy (2.1a, b) with u 
replaced by —u and {Ij,Ja} replaced by {Ig + N/2, J'a}. This solution describes an 
eigenstate of the attractive chain (interaction: —U) in which there are Nr= N — Nc 

'free' particles and Nb = Ns bound pairs, and the total spin is S = Nf/2. (The parities 
of the numbers 2Ig + N and 2J'a will correspond to the periodic boundary condition 
(2.2), if in the positive u equations the quantum numbers are chosen as 7, = (N+ Nb)/2 
(modi) ; Ja = (N b +JV f +l) /2 (modi) (accordingly I* = (N +Nb+l)/2 (modi) and 
J± = (JVf + Nb)/2 (mod 1)).) Through (2.48) one can see that, if for the chain with - U 
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we chose fi'=(U+h)/2 and h'= U + 2/x, the eigenstate for this attractive chain 
described by {kg + IT, —Aa} will have the same energy as the state {kj, A„} in the repulsive 
chain (1.4) (apart from a macroscopic constant). Thus, after substituting 

K = Df 

>, = - A , 

vc = \-vf 

vs = vb 

nc =nf 

± =F 

ns = n b 

NC = N-Nf 

Ns = Nb 

into (2.44) we have 

£ ( - U ) = N(sUk0, -k0, A0, - A 0 ) - / t + */2) 

2TH;C / [ f a ( N r - vfN) + t2l(Nb- vbN)f 

(2.49) 

+ f AT \ 4(det£)2 

+ (£n£>f-£12Db)2-A+n^ + «f-j 

2«>, / [ g i z W - «TN) + f n ( N b - fbN)]2 

+ N \ 4(det£)2 

+ (6 1 O f -^2 J D b ) 2 -A+n b - + «fcj (2.50) 

and (2.45), (2.48) and (2.49) gives 

P = 7TN + ^(NrDf+nt-n7+NbDb+nb
h-nb). (2.51) 

Since 2i>s=£ ^ < 1 , «' f+2»'b«l. 

3. Discussion of the energy spectrum and finite-size effects 

First we have to notice that the spectrum (2.44) is not analytic in N: for the finite 
system in the ground state Nc and Ns should minimise (2.44), but since Nc, Ns and 
N are integers, the optimal values of Nc and Ns are not analytic functions of N. This 
phenomenon is known already for other systems (Woynarovich et al 1989) and is 
thought to be connected with the possibility of a consistent definition of the continuum 
limit for the system. In the present case the spectrum will be analytic if vc and vs are 
rational and only special values of N are allowed. To be definite, if 

Vc=Pc/qc vs=Ps/qs (3.1) 

with pc and qc (ps and qs) being relative prime integers, then only 

N^qN' (3.2) 

values are allowed for N, where N' is an integer and q is the least integer dividable 
by both qc and qs. If (3.1) and (3.2) are met, the ground-state values Nc and Ns are 

Ko = Pc(q/qc)N' Ns0 = ps(q/qs)N' (3.3) 

and in the excited states 

&Nc = Nc-vcN &Ns = Ns-vsN (3.4) 
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are integers. Whether Dc and Ds are integers or half-odd integers depends on the 
parity of the numbers Nc and Ns. Due to the restrictions (2.2) 

Dc = (Nc + Ns + l) /2 (modi) 
(3.5) 

Ds = N c /2 (modi) . 

In the ground state both D are zero only if Nc0 is even and Ns0 is odd (otherwise at 
least one of the two D is ±5, i.e. the ground state is degenerate). This imposes a 
restriction on the numbers pc, ps, q/qc, q/qs and N' : ps, q/qs and N' should be odd, 
while one of pc and q/qc should be even. If these requirements are met, the finite-size 
corrections to the ground-state energy are 

E0~Nex=--—-•— (3.6) 
6N 6N 

just as it would be in the case of two independent conformal fields. These fields are, 
however, not independent as all ANC, ANS, Dc and Ds appear multiplied by both 
Fermi velocities: 

W ( g 2 2 A N c - g 2 1 A N J ^ , _ 
N \ 4(det£)2 E-E0 = ——[ 2 +(inDc + ii2DsY + i c + n J 

+ l v " l 4(de7i? + ( & . A + foA) + « . + « , j . (3-7) 

Another interesting feature is that Dc and Ds are not independent of AATC and AN,, 
as even if the parameters are such that in the ground state ANC = ANS = Dc = Ds = 0, 
in the excited states due to (3.5) 

Dc = (ANc + ANs)/2 (modi) 
(3.8) 

A = ANc/2 (modi) . 

Examining (2.50) analogous conclusions can be drawn for the case of the attractive 
chain. 

An important special case is when U > 0, h = 0, i.e. the ground state is non-magnetic 
(vs = vc/2). From our formulae we can get this case by taking the A0-»°o limit. This 
can be done by solving the equations for the A-dependent quantities at A » 1 with 
Wiener-Hopf techniques and then taking the A0 -* 00 limit. As a result one obtains that 

\ o 1/V27 
lim £ = [* * ' ) (3.9) 

where 

£ = £(sinfc0) (3.10) 

with £(x) solving the equation 

£(x) = l + - J - I"""0 K(x-x')t{x')dx' 
2nJ-*ink0 (3.11) 

K{x)=re-^-^> exp(i«x)d* 
J _co 2 cosh <au 
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In this case (2.44) and (2.45) simplify to 

E = Nex + ̂ ( ^ £ + ? ( D c + Ds/2f-i-2+n; + n;} 

+ ̂ ~aS2HD2
s-^2+n: + n7) (3.12) 

and 

P = ^ N c 0 ( D c + Ds/2) + ^ [ A N c ( D c + Ds/2) + n : + « n 

+ -£(-SD, + nt-n7) (3.13) 

with 

S = NJ2-NS. (3.14) 

It is also interesting to give the Fermi velocities in this limit: 

2TTVc = B'c(k0)/pc(k0) 

' ( 3 ' 1 5 ) 

(£))( exp(^s infc jp c ( fc ) j . 

Here pc(k) and e'c(k) satisfy the equations 

and 

27n>s = M exp( —sinfcjee(fc)j( exp( —sin fcjpc(fc) j . 

lations 

A: (sir 
J-k„ 

X(sinfc —sir 
J-fco 

pc(k)=—+—-cos(fc) I K(sinfc-sinfc')Pc(fc') (3.16) 
2TT Z7r 

e^(fc) = 2sinfc + -—cos(fc) I K (sink-sin k')e'c(k'). (3.17) 
2TT 

For the negative U case the A0-*°° limit corresponds to the half-filled band 
v(+2vb= 1. 

We have to comment also on the k0 -» IT limit. For the positive U case this 
corresponds to the half-filled band. In a strictly half-filled band Nc = N, and there are 
no such charge excitations as described in this work since there is no place for the 
particles (for Nc = N the only possible charge excitations are those with complex k, 
but those have a gap). It is possible to create such particle-hole excitations only if 
first Nc is decreased, i.e. a AJVc<0 is introduced. Even in this case, however, we do 
not get a contribution to the energy as vc = 0 if k0 = IT (indicating that the spectrum is 
quadratic, i.e. the excitation energy 0 ( 1 / N2). If U is negative, the k0 = ir limit 
corresponds to the zero magnetisation, i.e. to states with no 'free' particles, only bound 
pairs. It is possible to break up pairs to create free particles and this does not cost 
large amounts of energy since the magnetic field and chemical potential are such that 
both the bottom of the band for the free particles and the Fermi points of the sea of 
bound pairs are at zero. The fact that vc = 0 indicates that the spectrum of the free 
particles is quadratic, as it should be at the bottom of a band. 

An important case is when vc = vs: in this point the model is conformally invariant 
with c = 2. In the Hubbard model (1.4) there are three parameters U, /M and h, or 
equivalently U, vc and vs. In principle one can define through the equation 

vc(U, vc, vs) = vs{U, vc, vc) (3.18) 
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a function U{vc, vs) which gives the value of U where (3.18) is satisfied at the given 
vc and vs. Not all (vc, vs) pairs define such a U, but for a certain part of the 
0 < 2vs =s vc < 1 parameter space such a U can be found. (An example for this is the 
vs = vc/2 case, where for pc-*0 (fc0->0), vs/vc->0, while for vc-* 1 (fc0~* ir), vs/vc-*oo 
at any U (see (3.15)), so there is a pc to any U where vc = vs. This means that there 
is a whole range in 0 < vc< 1 where, with vs = vc/2, (3.18) can be satisfied.) In those 
points, where vc and vs are rational and satisfy the requirements discussed in the first 
paragraphs of this section, the model has a conformally invariant continuum limit with 
c = 2, provided U is chosen according to (3.18). In this case the scaling indices of the 
primary operators are 

x(ANc, AJVS, Dc, Ds) = I 2 +(f i iD c + ^ 1 2D J r I 

<Ul2bNc-{uANs)
2 x 

• ( S 

+ (f2.A + foA)2 (3-19) 4(det ^)2 

5(ANC, AJV,, Dc, D J = AJVCDC + ANSDS 

with ANC, ANj being integers, and Dc, Ds satisfying (3.8). It is worth noting that 
(3.19) is a generalisation of the Gaussian form: with the notation 

we have 

x(AN, D)=\±NTXlA.N + DTXD 
(3.21) 

s(AJV,D) = AJVTD. 

In addition to the above operators, there is a class of operators with AN = D = 0 and 

x = «c + n7 + «J + «7 s = « J - « 7 + « ^ _ « 7 - (3.22) 
It is remarkable that four of them are marginal (x = 2; s = 0). Although we cannot 
read out the scaling indices from the spectrum directly if vc ̂  vs, we expect that some 
of these operators are marginal even if vc ̂  vs. The reason for this is that in the most 
general ID model of spin-3 fermions there are several coupling constants and the model 
is critical in a whole region of a four-dimensional parameter space (for a review see 
Solyom 1979). Thus there must be a set of marginal operators which govern the motion 
of the Hamiltonian in this parameter space. The Hubbard model is one special line 
parametrised by U in the critical region of the more general model, and the operator 
which, by adding it to the Hamiltonian, changes the value of U can be constructed 
readily: 

l ( n.-T«u+—(n,-T + n a ) - r —(niT~"u)) (3-23) 
i \ du Z du / 

where d/i/du and dh/du are partial derivatives at fixed vc and vs. This operator does 
not change the complete integrability of the model. Nevertheless—if U was such that 
vc = vs—it drives out the system from the conformally invariant point. The operators 
driving the system off the Hubbard line are not present explicitly in the Hubbard 
Hamiltonian. Nevertheless they should also be marginal. 
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We present a general method for the calculation of correlation functions in the repulsive 
one-dimensional Hubbard model at less than half-filling in a magnetic field h. We describe the 
dependence of the critical exponents that drive their long-distance asymptotics on the Coulomb 
coupling, the density, and ft. This dependence can be described in terms of a set of coupled 
Betlie-Ansatz integral equations. It simplifies significantly in the strong-coupling limit, where 
we give explicit formulas for the dependence of the critical exponents on the magnetic field, hi 
particular, we find that at small field the functional dependence of the critical exponents on //. 
can be algebraic or logarithmic—depending on the operators involved. In addition, we evaluate 
the singularities of the Fourier images of the correlation functions. It turns out that switching 
on a magnetic field gives rise to singularities in the dynamic field-field correlation functions that 
are absent at ft=0. 

I. INTRODUCTION 

Recently, the relevance of correlation effects in inter
acting electron systems to high-T^ superconductivity has 
led to growing interest in the computation of correlation 
functions for the one-dimensional Hubbard mode l 1 - 7 

since it combines the essentials of correlated electrons 
on one hand with the attractive feature of complete in-
tegrability on the other. 

As a number of other systems in one spatial dimen
sion, the Hubbard model has a critical point at zero tem
perature. For these models correlation functions decay 
as powers of the distance asymptotically. The calcula
tion of these powers—the critical exponents—is of major 
interest. For some of these systems, for example, spin-
less fermions and the spin-i Heisenberg chain, this can 
be done within Haldane's Luttinger liquid approach, 8 - 1 1 

based on the fact that these models belong to the same 
universality class as the Gaussian model.12 Due to confor-
mal invariance,13 the possible universality classes of criti
cal theories are related to a single dimensionless number: 
the central charge c of the underlying Virasoro algebra 
(c=l for the Gaussian model). Furthermore, the finite-
size corrections in the spectra of these models are closely 
related to the scaling dimensions of the fields present in 
the theory,14 ,15 which in turn determine the critical ex
ponents. Common to all of these systems is the property 
that they have a single critical degree of freedom only. 
As is known from Lieb and Wu's16 exact solution the 
Hubbard model does not belong to this class: in general, 
both charge- and spin-density waves are critical. Only 
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in a sufficiently strong magnetic field—where the spin-
density waves have a gap—or at half-filling—where the 
Hubbard model is insulating and the charge excitations 
are massive—the remaining critical degree of freedom can 
be described within the scheme outlined above. 

Based on the Bethe-Ansatz solution the finite-size cor
rections for the half-filled Hubbard model at zero mag
netic field have been calculated analytically and the crit
ical theory has been found to be described by a single Vi
rasoro algebra with central charge c= l . 1 7 The Hubbard 
model with attractive interaction at arbitrary filling also 
has central charge c = l ; the critical exponents depend on 
the density of electrons.18 The magnetic field dependence 
of the critical behavior in a theory of this type has first 
been investigated in the Heisenberg spin chain.19 The 
critical theory still corresponds to c = l . The scaling di
mensions, however, are found to depend on the magnetic 
field. 

For systems with more than one critical degree of 
freedom—the situation is more complicated: the under
standing of this class of systems is based on exact finite-
size calculations20,21 in models that are soluble by a 
hierarchy22 of Bethe Ansatze (the Hubbard model be
longs to this class). It has been found that they can be 
understood as a direct product of Virasoro algebras each 
having central charge c = l . As in the one-component case 
this continues to hold in a generic situation, i.e., with ex
ternal fields coupled to the critical degrees of freedom.21 

Woynarovich has calculated the finite-size corrections 
in the spectrum of the Hubbard model at less than half-
filling analytically.23 His results can be interpreted in the 

5653 ©1991 The American Physical Society 
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framework of conformal quantum field theory following 
the lines mentioned above: the critical theory describing 
both charge- and spin-density waves is based on a prod
uct of two Virasoro algebras each having central charge 
Ci = l. In a previous paper we have used these results to 
calculate the critical exponents for the Hubbard model.5 

There we have shown that while the central charges are 
universal the critical exponents depend on all the system 
parameters, i.e., density (or, alternatively, the chemical 
potential), coupling constant, and the magnetic field. In 
the present paper we concentrate on the magnetic field 
dependence. It is found to be logarithmic in the generic 
case—very similar to the situation in the spin-^ Heisen-
berg model.19 In fact, this similarity has been exploited 
before to show that the small field magnetic suscepti
bility x exhibits logarithmic singularities as h —• 0 and 
as a further consequence the specific heat coefficient is 
singular.24 Since the critical exponents are closely related 
to thermodynamic quantities such as x it is not surprising 
that they show the same singular field dependence.5 For 
the full Hubbard model (that is, including charge degrees 
of freedom) we find an additional linear field dependence 
in the corresponding contributions to the critical expo
nents. This is much weaker than the logarithmic one and 
shows up in certain correlators only. 

At this point we would like to emphasize the dif
ference between our approach5 and that of several 
other authors:3 , 6 , 7 the exact solution of the model and, 
in particular, the spectrum of low-lying excitations23 

show that the contributions of charge- and spin-density 
waves cannot be described by two independent effective 
Hamiltonians—charge- and spin-density waves do inter
act. This means that the spectrum of conformal operator 
dimensions in this model is determined by a 2 x 2 matrix 
(the so-called dressed charge matrix, see below) rather 
than two scalar coupling constants. At zero magnetic 
field this fact is obscured to some extent since the dressed 
charge matrix is found to be triangular and the nonzero 
off-diagonal element is just one-half of one of the diagonal 
ones.23 Due to this fact, the critical exponents obtained 
when starting from two independent critical theories3,6 , 

coincide with the ones found on the basis of the exact 
finite-size corrections.5 

In the presence of a magnetic field, however, this sit
uation changes: no simple relation between different el
ements of the dressed charge matrix holds and, as we 
show in this paper, the functional dependence of the var
ious matrix elements on the field is significantly different. 
An important consequence of this is the appearance of 
an additional singularity of the electronic field correla
tion function in momentum space if the magnetic field 
is switched on. We do not think that this effect can be 
obtained within an approach that starts from separate 
effective theories for charge- and spin-density waves, re
spectively. 

The Hubbard model describes spin- | electrons on the 
lattice. The electrons are described by canonical Fermi 
fields ipo, xp\ and the Hamiltonian is given by the follow

ing expression: 

N 

* = - £ E (W+i.^.' + ^VJ+I ,») 
j = l c 

N N 

+Au ^ ni]nji + ft £ ) ( n i T + nn) 
3=1 j = l 

h N 

-2 X)("JT - nn) • (i-i) 

Here Jija = -0J VJ,<T is t n e number of spin a electrons at 
site j , 4u > 0 is the on-site Coulomb repulsion, ft is the 
chemical potential, and h is an external magnetic field. 

Our paper is organized as follows: In the following 
section we shall review the Bethe-Ansatz solution of the 
model (1.1) in the aspects relevant to the present work. 
In Sec. Ill we consider the strong-coupling limit u - > o o . 
In this limit the dependence of the critical exponents on 
the magnetic field h simplifies essentially. In particular, 
we investigate this dependence for small fields and close 
to the critical field hc where all the spins are aligned and 
the model becomes ferromagnetic. In Sec. IV we apply 
these results to compute the critical exponents for a few 
interesting correlation functions. In the final section we 
calculate the singularities in the Fourier images of these 
correlation functions. 

II. THE BETHE-ANSATZ SOLUTION 
FOR THE HUBBARD MODEL 

Lieb and Wu16 have constructed a complete set of 
eigenfunctions of the Hubbard Hamiltonian (1.1). In the 
thermodynamic limit the zero-temperature ground state 
of the model consists of two Fermi seas, characterized 
by distribution functions pc{k) of charges with "holon" 
momentum k and p,(X) of down spins with spin-wave 
("spinon") rapidity A. Lieb and Wu have written down 
integral equations describing this configuration: 

1 cos k [*" 
Pc(k) = 7T + ~r~ d\K(sink- A;u)p,(A) , 

(2.1) 

P>W = 7T~ / dkK(\ - sink;u)pc(k) 
2lrJ-ko 

1 /"Ao 

-IT / dfiK{\ - ft; 2u)p,(fi) . 

The kernels of these equations are given by 

K(x;a)= 9
2 Q , . (2.2) 

v a2 + x2 v ' 
The values of Ao and ko are related to the number of 
electrons per lattice site nc — Nc/N and the magnetiza
tion M = (JVf - Ni)/2N (Na is the number of spin-<r 
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electrons) by the following equations: 

/

kg 

*0 

dhpc(k) •• 
N 

(2.3) 

/

Ao 

•Ao 

A° N, 1 

Another way to describe the system is in terms of integral 
equations for excitation energies: 

ec(k) = 4°)(fc) + ^ - / ° dXK(sin k - A; u)e.(A) 

(2.4) 

e,(A) = £<
i
0)(X) + ^- f ° dk cos kK(\- sin Jb;u)ec(fc) 

—^-J dtiK(X-p;2u)e,(n) . 

Here £c(fc) is the energy of a charge-density excitation 
with momentum k, e„(X) that of a spin-density wave with 
rapidity A. The bare energies scJ are 

40)(*) = \i — — — 2 cos t , 40)(A): (2.5) 

The solutions of Eqs. (2.4) define the energy bands. The 
ground-state configuration corresponds to the filling of 
all states with ec(k) < 0 and £S(X) < 0. Consequently, 
the conditions 

£c(ko) = 0, £ , ( A 0 ) = 0 (2.6) 

provide another way to define the values of kg and Ao for 
the ground state for given magnetic field h and chemical 
potential fi. At zero field h — 0 one finds Ao = oo, the 
critical field h = hc where all the spins are pointing up, 
corresponds to Ao = 0. From (2.6) it is found to be 

_ 2u r*n< 

* J-xnc 

""" cos k — cos iznc 

dk cos k- u1 + sin2 k 

At large coupling u the value of hc scales like 1/u: 

(2.7) 

— sin 2?rn, 
2TT + °W- for u ^> 1 

(2.8) 

The quantity that determines the critical exponents is 
the dressed charge matrix:5 

ZCc ZC3 \ 

,6c(*oK».(Ao) 
Z = to V (2.9) 

Here the matrix £y is defined as the solution of the fol
lowing integral equations:2 1 , 2 3 '2 5 

£«(*) = 1 + 2*J_ 
dXZC!(X)K(X-smk;u) 

Ao 

(2.10) 

1 fko 

fC3(A) = — / dk cos k£cc(k)K(sin k — A; u 
2*J-k„ 

1 fx° 
-IT I d^c,(n)K(ii-\\2u), 

t.c{k) = 7 - /" ° dXt..(\)K(\ - sin k; u) , 

i rko 

£„(A) = 1 + — / dk cos k(.c(k)K(sin k - X;u) 
2*J-k0 

-^J_°dfti,.(ji)K(n-X;2v). 

Other quantities of relevance are the Fermi velocities ve 

and vs of charge- and spin-density waves: 

1 

2irpc(k0) 

1 

e'c(ko) > 0 , 

< ( A 0 ) > 0 . 

(2.11) 

2irp,(X0) 

and the Fermi momenta VF,\ and VF\ for electrons with 
spin up and down, respectively, i.e., 

T>FMl) = h(™<±1*M) (2.12) 

We already mentioned in the Introduction that the 
critical behavior of the repulsive Hubbard model at less 
than filling (nc < 1) is described by the direct product of 
two Virasoro algebras, each having central charge c = l . 
The corresponding conformal dimensions of the primary 
fields are given in terms of the elements of (2.9) as5 

2 A f ( A N , D ) = 

2 A ? ( A N , D ) = 

ZCcDc + Z3CD, 

±Z„ANC - ZC„AN, 

2detZ 

ZCSDC + ZSSDS 

ZCCAN,-ZSCANC 

2detZ 

(2.13) 

Here AA^ and AN, are integers which describe the quan
tum numbers of the operators involved in the correlation 
functions considered, i.e., the change in the number of 
charges and down spins with respect to the ground state. 
Dc and D, are integer or half integer depending on the 
parities of ANC and AN,: 
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ANe + AN, ANC 

Dc = mod 1 , D, = —-— mod 1 . 

(2.14) 

Knowing the conformal dimensions (2.13) the long
distance asymptotics of zero-temperature correlation 
functions is then given as a sum of terms 

exp(-2iDcVFAx) exp[-2i{Dc + D,)VFtix] 

(x — i t ; c r ) 2 A c (x + ivcr)2A' (x — JUJT)2 A> (X + iv,r)2A' 

(2.15) 

(we use Euclidean time r ) . As discussed above, ANC 

and AN, are fixed by the correlator one considers while 
summation has to be performed with respect to Dc and 
D,. The leading term in the asymptotics is given by the 
term in this sum which minimizes A*. 

Conformal quantum field theory also describes the cor
relation functions at small nonzero temperatures. Their 
exponential decay is given by the same dimensions (2.13) 
(see Ref. 5). 

III. THE STRONG-COUPLING LIMIT 

To illustrate the dependence of the critical exponents 
on the magnetic field let us consider now the limit u —• 
oo. This simplifies the integral equations (2.1), (2.4), 
and (2.10) significantly. After proper rescaling they can 
be rewritten in the following way: 

, , 1 cos k 
PoW = 7T- + -7T-

Zir Ziru L Ao 

.2p.(A) 
1 + A2 

for k < kg 

(3.2) 

ec(k) = 2(cos k0 — cos k) + O 

For the calculation of the elements of the dressed 
charge matrix (2.9) we shall neglect the corrections in 
\/u. These contributions can, however, be obtained from 
(3.1) and similar expressions for the other elements. (For 
h=0 they have been written down in Ref. 5.) In this ap
proximation they are given by 

^CC — 1) Zc, — 0 , 

Z,C = ^- I ° d\Z„{\)K{\-\) . 

(3.3) 

For vanishing magnetic field Ao = oo and Eqs. (3.1) can 
be solved by Fourier transformation. This case has been 
discussed in great detail in our previous paper.5 The 
dressed charge matrix has been found to be 

2 0 
1 y/2 

(3.4) 

^ ( A ) = ^TTx>~~ti ° <*/**(*-/*;2)MAO 

+° [* 

e>W = h - j ^ - ^ I J d?K{\ - /i;2)e.(|i) 

(3.1) + ° ^ 

f..(A)= 1 + 
sin&o 2Z,, 

iru 1 + A2 

~kLld/iA(A - ^ " M + 0 ( i 

(Ao differs from its value used in the previous section 
by a factor of u.) At u = oo the value of the critical 
field hc (2.8) vanishes—an infinitesimal magnetic field is 
sufficient to magnetize the system completely. From (3.1) 
we see, however, that at first order in 1/u we already 
obtain nontrivial behavior. 

The density and energy of the charge-density waves are 
given by the following expressions: 

(3.6) 

For small magnetic field (and Ao large but finite) one 
can use the Wiener-Hopf (WH) method as outlined in 
the Appendix together with the condition 

£,(A0) = 0 (3.5) 

to find the field dependence of Ao: 

2 fh0\ Hfl 
Ao = - In — , h 0 - \ — h c . 

•K \h J V 2e 

(A similar dependence has been found for the isotropic 
spin-i Heisenberg magnetic chain.19) For the magnetiza
tion M. we obtain in an analogous calculation 

and for the elements of the dressed charge matrix in a 
small magnetic field: 

v/2 
1 + 

1 

41n(/i0//i) 
+ 0 

1 

[ ln(V)]5 

(3.8) 

To calculate the leading correction to Z,c for finite Ao 
we make use of the fact that Eq. (3.3) can be written 
alternatively as 

Mo 
Zxc. — _L f 

ncJ-\0 

dXp,(X) = 1 -
M 

(3.9) 
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[this is possible, since the kernel of the integral equations 
(3.1) is symmetric]. Hence, we obtain with (3.7) 

h 
L /") I 

i 2 h ^ 

zsc = \- — — + o 
(3.10) 

, / i c ln( / io /h) , 

Note the different functional dependence on h of Zss and 
Z,c near h=0. This has an interesting consequence on 
the conformal dimensions (2.13) entering the expressions 
for the correlation functions: 

2 A ± ( A N , D ) = (£>c + \D. ± ±A/VC)2 

Ah 

n2hc 

(3.11) 

2A±(AN,D) = \[D. ± (AN, - ±AJVC)]2 

1 
•[D3.-{AN.-±ANC)3] 

41n(fc0//i) 

The magnetic field dependence of the critical dimensions 
for the charge excitations is much weaker than that of the 
spin excitations. This is not surprising since the magnetic 
field couples directly to the spin degree of freedom. In 
general, the exponents of equal time correlators (where 
only the sum of Ac and A, enters) will be dominated by 
the latter; in time-dependent quantities, however, this 
effect should become observable. 

As h approaches the critical field (2.8) from below, i.e., 
near the ferromagnetic state, Ao vanishes like 

A n = f c ^ Y / 2 . (3.12) 

FIG. 1. Magnetic field dependence of the elements Z,3 

(upper curve) and Z,c (lower curve) of the dressed charge 
matrix in the strong-coupling limit. Note the drastically dif
ferent functional behavior as h —• 0. 

The dressed charge matrix in this regime is given by 

- A N 1 / 2 -0:K(- 0 0 
2 - 1 

(3.13) 

(this agrees with the limiting case h = hc considered in 
Ref. 5). The field dependence of the conformal dimen
sions to leading order is given by 

A / • \ 1/2 

2Af(AN,D) = (£)c±iAiVc)2 + - h - — J (DC±±ANC)D, , 

o / h \ 1/2 
2Af (AN, D) = (£>, ± | A A g 2 - - ( l - — J (D, ± \ANS)[DS ± (ANC - ±AJV, 

(3.14) 

At h > hc a phase transition similar to the one found 
at half-filling occurs: excitations with spin develop a gap 
and the corresponding contributions to the correlation 
functions decay like exponentials asymptotically. 

In Fig. 1 we present numerical results based on 
Eqs. (3.1) and (3.3) for the magnetic field dependence 
of Zss and Zsc for the entire region 0 < h < hc. 

IV. CORRELATION FUNCTIONS 
IN T H E STRONG-COUPLING LIMIT 

The results obtained in the last section can now be 
used to obtain the magnetic field dependence of the crit
ical exponents of certain correlation functions. The ba
sic procedure for this has been discussed in our earlier 
paper.5 

First we consider the field-field correlation functions 

G$(*>0 = M,(*.WJ(0.°)>. * = U • (4-1) 
For <r'=f the quantum numbers of this operator are 
ANc=l and AJv"s=0; from (2.14) we find that DC and 
D, both take half odd integer values. Hence the leading 
contribution with wave number 7V,T t o GjJi is 

exp(iPF,jx) 

(x — ivcr)2A' (X + ivcT)2^' (x — it)sr)2A» (x -f iv3T)2A-

(4.2) 

where the expressions for the A*, are given by Eq. (2.13) 
with A/Vc = 1, AJV, = 0, Dc = -D, = - f Near h = 0 
these expressions simplify considerably due to the simpler 
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structure of the Z matrix. We obtain 

2A+ - J- 'J— 3/i 
2A~ — -2. 4- . 

c ~ 16 + 2»*fce ' 
2A--\{id^))2' (43) 

^ ' ~ 2 + 2 \4Hh0/h)J • 

The logarithmic field dependence of A* cancels to first 
order. Fortunately, the next order is completely fixed by 
the leading correction to Z„, (3.8). 

As h approaches hc one obtains for this contribution 

2A+ = 0 , 2AC" = 1 - l ( l - • 
1/2 

1/2 

1/2 

(4.4) 

[Here we neglect contributions of order 0(1 — h/hc).] 
There is also a contribution with wave number VF,\ + 

1VF,\, (corresponding to Dc = Ds = —|) with 

2A+ - -*- - h 2 A - - 2S - 5 / t 

c ~ 1 6 2TT2 /IC ' c ~ 1 6 2TT2/IC ' 

2A '=^4(4iniA))2 ' (45) 

2A' = 2 UwVoJ ' 
for small magnetic field A <C hc (again the corrections 
of order [ln(/io//i)]_1 cancel). As h approaches hc one 
obtains for this contribution 

1/2 
2A+ = 0, 2AC" = 1 + - ( 1 - — 

1/2 

1/2 

(4.6) 

For the spin-down field correlator we have AJVC=1, 
AN, = l and Dc now runs through all integer, D, through 
all half odd integer numbers. The leading terms in the 
correlation functions are the ones given above for the 
spin-up correlators with VF,-\ and VF,I interchanged. For 
small magnetic field the dimensions are the ones given in 
Eqs. (4.3) and (4.5) with h replaced by —h in the ex
pressions for A~. For h —̂  hc the exponents for the 
contribution with wave number VF\ (DC — 0, D, = — %) 
are 

2A± = i =F 
T V he 

2A; = I - - hc J 

1/2 

1/2 

2A+ = 0 

(4.7) 

and for the component with wave number 27V,t + "PF,i 
(Dc = - 1 , D, = | ) we find 

, / i \ 1/2 

2A7 = f - f ( l - ^ ) , (4.8) 

2 / /A 1 / 2 

2 A * = 1 " ( 1 - * : ) • 2 A 7 = 0 -

Another correlation function of interest is the density-
density correlation function 

(x,t) = (n(x,t)n(0,0)) 

n(x,t) — 7ij(x,t) -f ni(x,t) 

(4.9) 

This operator has quantum numbers ANC = AN, = 0 
and DCI D, take integer values. The leading contribu
tions to the asymptotics apart from the constant are 
found to have wave number 2VF,I (corresponding to 
Dc = — D, = —1). For small magnetic field the cor
responding critical dimensions are 

2Af = i + 
2ft 2Af = 1 + 

1 

41n(/i0//i) ' 
(4.10) 

The contribution with wave number 2VF,\. (DC — 0 and 
D, = —1) has the same dimensions with h in the expres
sion for A * replaced by — h. At h = 0 the amplitudes 
of these contributions are known to be vanishing in the 
strong-coupling limit.1 

As h —> hc the leading terms beyond the constant in 
the asymptotics of the density-density correlation func
tion are found at zero wave number: 

• + 
1 

• + • 
1 

+ • 
1 

(x — iVf-r)"2 (x + iv c r ) 2 (x — iv,r)2 (x + iv,r)2 

(4.11) 

and at wave number 2(PF,-\ + "PF,I) {DC = —1, D, = 0): 
the dimensions do not depend on the magnetic field to 
leading order. At infinite coupling u they are known to 
be 2A± = 1 and 2A± = 0.5 

The longitudinal spin-spin correlation function 

GJ„(x,*) = (S'(x,t)5'(0,0)> (4.12) 

(where Sz(x,t) = [n^(x,t) — nj(z , / ) ] /2) has the same 
quantum numbers as the density-density correlator. 
Hence, the leading term beyond the constant is the one 
with wave number 2VF,-\ a n ^ dimensions (4.10). The 
contribution of the spin-density waves A± is the same as 
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the one found in the isotropic Heisenberg chain.19 Finally 
we want to consider the transversal spin-spin correlation 
function 

G^(x,0 = (5-(x,05+(0,0)) (4.13) 

with S+(x,t) = ipl(x,t)ipi(x,t). The leading term in the 
asymptotics has wave number TF,} + "PF,I a n d vvith the 
corresponding quantum numbers ANC = 0, ANS = 1, 
Dc = —| and D, = 0 we find for the dimensions in the 
strong-coupling limit 

2A? = • 

2A* - i 

2Af = \ 
1 

41n(/»0//i) 
for h - • 0, 

(4.14) 

2Af = i + 2. 
i-fi-A 1/2 

for h —* he . { e 

In our previous paper5 we have evaluated the long dis
tance asymptotics of correlators for singlet and triplet 
pairs in addition to the ones presented here. The calcu
lation of the corresponding critical exponents is straight
forward but will not be presented here, since they are 
larger than 2 for all values of h. 

V. CORRELATION FUNCTIONS 
IN M O M E N T U M SPACE 

The long-distance asymptotics of zero-temperature 
correlation functions consists of terms of the form (2.15), 

g(x,r) = • 
exp(ifcoz) 

(x — ivcT)2A' (x + iucr)2 A« (x — i i ; , r ) 2 A ' (X + i u , r ) 2 A ' 

To compute the Fourier transforms 

g(k,u>) = I dx f dte-{i-kx-^g(x,t) , 

we first have to rotate the time coordinate from Euclidean time r to real time t. Analyticity requires 

T = it + sgn(i) . 

(5.1) 

(5.2) 

(5.3) 

Equivalently, the correct regularization of the cuts in the complex time coordinate can be obtained by replacing r = it 
in (5.1) and giving an infinitesimal imaginary part to the velocity: 

v, —• Vie . 

All the following equations are to be understood that way. This gives 

exp(ikox) 
g(x,t) 

(x + vct)™c(x - vct)
2^{x + v,t)2*t(x - vst)

2A-

(5.4) 

(5.5) 

As mentioned above, this expression holds asymptotically only. Nevertheless, it allows us to calculate the behavior of 
the Fourier transforms g(k,u) near the singularities 

u> = ±vCi,(k - k0) . 

Standard methods yield 

g(k,u>)-
const[w =F vc(k - fc0)]

2(Ai'+Ar+A?)-1 for ui « ±vc(k - k0) 

const[w =F v,(k - fc0)]
2(A?+A="+A?)_1 for u « ±v,(k - fc0) 

(5.6) 

(5.7) 

This formula is applicable only if all the dimensions Af For the Fourier transform of equal time correlators, 
are nonzero. If one of them vanishes (as is the case for i.e., terms like 
the field-field correlator at zero magnetic field) the cor
responding singularity disappears, i.e., const=0. -, , , . _ f • -ikx / t _ n+\ 

Note that the integral in (5.2) is not absolutely con- J ' ~ 
vergent in general. To prove (5.7) mathematically one r p-i(k-ka)x 
should consider the case where ^ A * > 1 and the sum = j dx 
of three of the A's less than j and then continue analyt 
ically to obtain this expression. 

( z - i 0 ) 2 A + ( z - H 0 ) 2 A - ( 5 ' 8 ) 

(here A * = A* + A * ) , one has to consider k > ko and 
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k < ko separately. Contour integration yields 

g(kg + p) sin 27rA 

g(ko — p) sin 2xA+ = ( - l ) 2 p > 0 (5.9) 

where s = A+ — A_ is the conformal spin of the operator 
under consideration. From (2.13) it is clear that 2s is 
always an integer. Using this we find that 

G $ ( * « VF,i) ~ sgn(* - VF,i)\k - VF,I\" 

(-£) 
1/2 

(5.14) 

y ( J b « f c 0 ) ~ [ s g n ( * - t o ) ] i ' * l * - * o r 

i/ = 2(A+ + A c - + A + + A 7 ) - l . 

(5.10) 

The extra sign will appear in correlation functions of 
Fermi fields, e.g., the field-field correlator (4.1). 

The results (5.10) and (5.7) are very general and can 
be applied to any correlation function.5 To illustrate this 
let us consider here a few examples in the strong-coupling 
limit. 

The static field-field correlator has a singularity at 

TFA 

G(}i(k « VFJ) ~ sgn(k - VFA)\k - VF,tf 

1 

* [41n(ft0/ft)]2 

, 3 / h^1" 

hc 

for ft -> 0 , 

for ft —> ft. 

(5.11) 

G $ ( * « 1VFa + VFii) ~ sgn(k - 2PFA - VFA) 

x\k-WFA-VFA\¥ , 

- l -K-s) 
1/2 

The singularities of the correlation function G^l(ui,k) 
can be obtained from (5.7). For the contributions with 
wave number k « VF,] w e find 

Gffi(w,*)~[W-t;e(*-7>f,T)r 

with 

1 
16 [41n(ft0/ft)]2 

1 / . _ftN1/2 

ft. 
- 1 

for W W D c ( i - ' P j r ] T ) , 

(5.15) 

a s ft —• 0 , 

as ft —> ftc , 

The ft=0 exponent v = g for the strong-coupling limit 
has been obtained before. 3 - 7 At zero magnetic field v is 
a monotonous function of the coupling constant u and 
goes to 0 as u —+ 0. For large but finite u the leading 
correction is5 

G $ ( « , * ) ~ [ W + t ; e(*-7>f,T)]* 

with 

for u> « — vc(k — VF,\) , 

(5.16) 

IU m i 3 1 n 2 • i/l ft = 0) = -s sm Trn, 
8 47TU 

(5.12) 

Another singularity is at VF,\ + %PF,I (b is a positive 
constant): 

& k « 7V,T + 2VF,i) ~ sgn(i - 7>F,T - 2 7 ^ ) -Vv>v 

(5.13) 

a + r . , , , , , . • , , for ft —> 0 , 8 [41n(ft0/ft)]2 

1/2 
\ + - ( 1 - f- ) for ft — ftc 

as ft —* 0 , 1 6 "[41n(f t 0 / f t )P 

for 

with 

1 
8 2[41n(ft0/ft)]2 

. 2-U ANl /2 
4 2TT V ft. 

=SV,(fc-7>F ,T) , 

(5.17) 

0 , 

as ft 

As mentioned above, the corresponding singularities for 
the spin-down correlation functions at small magnetic 
fields are obtained by replacing VF,I with VF,I and vice 
versa. Near ft = ft, one obtains 

For the Hubbard model without a magnetic field these 
singularities have also been found by Ren and Anderson.7 

For finite ft there appears an additional singularity at 
ui + v,(k — 7V,T) W 0 (this effect exists at any value of 
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the coupling u): 

=.(T) G(ll(u,k)~[u, + vs(k-VF,i)r , 

+ • 
1 

for u w — vs(k — VF,I) , 

with (5.18) 

as h —• 0 , 

as h —> hc . 

At h — 0 the amplitude of this contribution to &Ji(k,ui) 
vanishes since A+ —• 0 in this limit. Similarly, there will 
appear an additional singularity at w — v,(k — VF,\ — 
27>FII) ^ 0 in the presence of a magnetic field. 

For the static spin-spin correlator (4.13) we find for the 
singularity near wave number VF,\ + ~PF,I 

8 ' 2[41n(V>0] 2 

t _ _ 3 _ / ^ 1 / 2 

4
 2TT hc 

Gj„(k » VFJ + 7V,i) ~ I* - T>FA ~ PF,I\" 

where 

1 

v - < 
21n(/i0//i) 

for /i 

. T V. "c 
for /J 

(5.19) 

(5.20) 

VI. CONCLUSION 

In Ref. 5 and the current paper we give a complete de
scription of correlation functions in the one-dimensional 
Hubbard model. Based on exact finite size calculations 
and the principles of conformal quantum field theory we 
find expressions for the critical exponents that describe 
the long-distance asymptotics of the correlation functions 
in coordinate space or, equivalently, the singularities of 
their Fourier transforms in momentum space. The val
ues of the critical exponents are given in terms of the 
elements of the dressed charge matrix, which in turn is 
defined as the solution of a set of Bethe-Ansatz integral 
equations (2.10). The critical behavior depends on all the 
system parameters, i.e., the density of electrons, the cou
pling constant, and the magnetic field. In Ref. 5 we have 
concentrated on the dependence on the density and the 
coupling constant at zero field and at the critical field 
where the ground state becomes ferromagnetic. In the 
present work we have computed the magnetic field de
pendence of the critical exponents in the limit of strong 
coupling. 

To conclude, we would like to emphasize again that 
the integral equations (2.10) fix the critical behavior for 
arbitrary values of the system parameters. The reason 
for studying limiting cases is to simplify the expressions 
for the critical exponents. Furthermore, the analysis of 
the critical behavior is not restricted to the correlation 

functions considered here. The method presented can be 
applied to arbitrary operators. 
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A P P E N D I X : W I E N E R - H O P F METHOD 
FOR EQS. (3.1) 

In this appendix we review the Wiener-Hopf method 
used above to solve integral equations of the type 

/(A) = /W(A) - £ A o * /(A) , (Al) 

where K is an integral operator whose action is defined 
by 

27rJ-lo 

for large but finite Ao. 
First we extend the definition of the bare function / ' ° ' 

and of the kernel K to the entire real axis. Following 
Yang and Yang26 we rewrite (Al) as 

(1 + Koo) * /(A) = /(°'(A)+ 1- (j~^° + J") 

xdfiK(\ - /i;2)f(n) . 

(A3) 

The operator (1 + £„>) can be inverted by Fourier trans
form. Denoting 

( I + K O O J - ' E I - C (A4) 

the integral equation (A3) can be written as 

fW--
: f°°w+i ys+r) ^^ - ̂ ^ 

(A5) 

where f^, is the solution of (Al) for Ao = oo and K is the 
kernel of the integral operator K, introduced in Eq. (A4). 
In the system considered here it is given in terms of its 
Fourier transform by 

K{u) 
1 

l + exp(2M) 
(A6) 

Using that /(A) is an even function of A and shifting the 
variables in (A5) A = A0 + x we obtain finally 
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/ ( * ) = /ooC^o + x ) + / dyK(x - y)f(y) 
Jo 

r°° 
+ dyK(2X0 + x + y)f(y). (A7) 

Jo 

N o t e t h a t K(2X0 + x) is 0 ( A ^ 2 ) for la rge A0 a n d posi t ive 

x. T h i s fact, allows us t o t r e a t t h e last in tegra l in E q . (A7) 

as a p e r t u r b a t i o n . T o every o rde r t h e resu l t ing e q u a t i o n s 

a re of Wiene r -Hopf t y p e : 

g(x) - / dyK(x - y)g(y) = gl°\x) . (A8) 
Jo 

Fourier t r ans fo rma t ion yields 

[1 - K(u,)}g+(w) + j - ( w ) = gm(u>) , (A9) 

where g±{ui) = JdxQ(±x)g(x)exp(iux) a re t h e p a r t s of 

g(ui) t h a t are ana ly t i c for ± I m ( w ) > 0 [G(i-) is t h e s t ep 

funct ion] . T h e key t o t h e so lu t ion of th i s e q u a t i o n is t o 

find a decompos i t ion of t h e kernel in to factors G t h a t 

are ana ly t ic in t h e u p p e r and lower complex u> p lane , 

respect ively: 

l-K(u>) = [G+(u)G-(w)]-1 l im G±(u) = 1 
UJ—• CO 

( M O ) 

For t h e p resen t p r o b l e m t h a t is s t r a igh t fo rward : 

[G-(zx)]-l = [G^(-irx)]-1 

= -^=r(A + . x ) ( « ) - ' V . (All) 

Using th i s fac tor iza t ion E q . (A9) becomes 

[ G + H ] - V H + G-(u)g-(u) = Q + ( w ) + Q-(w) , 

(A12) 

where Q^(LJ) a re ana ly t i c for ±Irn(u>) > 0, 

Q+(u) + Q~{u) = G-(w)ff<° '(w) . (A13) 

T h e ana ly t i c p rope r t i e s of t h e funct ions involved allow 

for t h e so lu t ion of Eq. (A 12): 

» + ( « ) = G + ( u , ) Q + ( u O . 

In t e r m s of th i s solut ion we have 

(A14) 

f°° 
/ dxg(x) = ff+(u) = 0) , g(x = 0) = —i l im wg+(w) . 

Jo "~ °° 
(A15) 

T o i l lus t ra te t h e s cheme ou t l ined above we apply it t o 

t h e ca lcula t ion of t h e m a g n e t i c field dependence of Ao 

(3 .6) : s t a r t i n g from Eq . (3.1) for e, we find 

(A16) 

F r o m th is we o b t a i n 

n+<u,\ - - - ^ 5 i + . - r W 2 * f c « g - ( - ' > / 2 ) 
V (W> ~ 2i w + »0 + 2»(w + i7r/2) 

+0(e-3*Xo/2) . 

T h e second e q u a t i o n in (A15) gives 

(A17) 

£ , (Ao) = H£M _ e - ,W2^G-HW2) . ( A 1 8 ) 

Fina l ly us ing ( A l l ) a n d (3.5) we have t h e resul t (3 .6) . 
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We identify the boundary energy of a many-body system of fermions on a lattice under twisted bound
ary conditions as the inverse of the effective charge-carrying mass, or the stiffness, renormalizing non-
trivially under interactions due to the absence of Galilean invariance. We point out that this quantity is 
a sensitive and direct probe of the metal-insulator transitions possible in these systems, i.e., the Mott-
Hubbard transition or density-wave formation. We calculate exactly the stiffness, or the effective mass, 
in the ID Heisenberg-Ising ring and the 1D Hubbard model by using the ansatz of Bethe. For the Hub
bard ring we also calculate a spin stiffness by extending the nested ansatz of Bethe-Yang to this case. 

PACS numbers: 71.30.+h, 75.10.Jm 

It is intuitively clear that one can distinguish between 
a metal and an insulator by studying the variation of ei
genvalues under changes in boundary conditions (BC's). 
This was proposed by Kohn u as a means of studying the 
Mott transition—a metal-insulator transition that re
quires the combination of strong correlations and a 
single-band model of fermions. We present here what 
we believe is the first application of this idea, in two non-
trivial many-body problems in ID exhibiting the metal-
insulator transition. These are the Heisenberg-Ising 
model undergoing a CDW (charge-density-wave) transi
tion, and the Hubbard model undergoing a Mott transi
tion. 

We first sharpen the arguments of Kohn, specializing 
to a one-band ^-dimensional-lattice Fermi system, and 
deduce the main implications—some of which seem to 
be insufficiently appreciated in literature. Consider a d-
dimensional hypercubic lattice of linear dimension L, 
with spinless fermions having a nearest-neighbor hopping 
matrix element t and arbitrary density-dependent in
teractions that are lattice-translation invariant, and as
sume periodic BC's. We now introduce a uniform vector 
potential Axx, which modifies the hopping in x-directed 
bonds by the usual Peierls phase factor, t—-1exp(±iO/ 

L), where Q—LAxe/hc and the lattice constant flo~l-
Expanding the exponential we find the perturbed Hamil-
tonian H'-H-<t>jx/L- j<t>2Tx/L

2+0(<t>i), where jx 

-2/Y.sinkx CkCk, Tx--2/ EcosifcxCtCK, and H is the 
Hamiltonian for the interacting Fermi system. The en
ergy shift of the ground state (g.s.) in the presence of the 
field is E0W-E0(0)=D<P2/L2~''+O(<t>4), with the 
stiffness constant D given by second-order perturbation 
theory as 

Ld ^ 7 < - 7 - > - I 
2d v*o 

I<O|A|V)|2 

(D 

where (T) is the kinetic-energy expectation in the g.s. 
and Eo(0)=Eo. We have assumed that (jx) is zero. 
Higher-order (nonquadratic) terms in the energy-shift 
formula are important when the energy shift is compara
ble to the energy gaps in the spectrum of H. The latter 
are 0(1//.) in metals and so in this case corrections arise 
when O is 0(1/1 ( l ,~ l ) / 2 ) . Level crossings would occur 
and perturbation theory would break down for <t> of or
der it. 

We next specialize to Ax—- Axexp( — imt) leading to 
an electric field Ex— Ax(i0/c)x, from which the usual 
linear-response formula3 gives the imaginary part of the 
ac conductivity, 

3axx((o)' 2e2 

Ldh2o> 2d ( -D-P l |(0|A|v)|2(£y-£o) 
2 _ * 2 m 2 v*o (Er — Eo)—h(o 

(2) 

From (1) and (2) we see that \ima,^0<oJoxx(a>)-(2e2/h2)D and Wm^ ~,a>3 oxx(a>) -(e2ldh2Ld)(-T). The high-
frequency behavior of the imaginary part of the conductivity implies for the real part, through the usual dispersion rela
tions, the well-known3 /-sum rule: 

f~^!RoxxMda,-^j<-T). 

More interesting is the small-o behavior, implying that 

3icfxx(ea)~ 2ite2 

W(A«) + - 7 Z \(0\jx\v)\28«Ev-E0)
2-h2a>2) (3) 
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The coefficient of Sihw), if nonzero, implies free ac
celeration or infinite dc conductivity, which is reasonable 
here since there is no dissipative mechanism in the model 
at T— 0. The coefficient is essentially the inverse of the 
effective current-carrying mass (for free electrons it is 
xpe2/m). Therefore the /-sum rule is satisfied by the 
sum of two terms of the same order, the stiffness D and 
the "intraband dipole matrix elements." A method to 
calculate Eo(&) is to study different BC's—we can ab
sorb the Peierls phases by a pseudo-gauge-trans
formation4 and shift the effect of O into twisted BC's for 
the wave functions: 

*(. . .,r + £x,. . .)-exp{i<I>}¥(.. . ,r, . . . ) . (4) 

A crucial point (familiar from Landau's Fermi-liquid 
theory) is that for a Galilean-invariant interacting sys
tem, an analogous calculation would give the coefficient 
of S(hm) in (3) unrenormalized by interactions since 
[/'*,//]— 0 [the first term in (1) becomes the particle 
density]. For lattice fermions the operator jx commutes 
with the hopping part of H, but not with the interaction 
piece in general5 and hence for interacting lattice fer
mions there is the possibility that the two terms in (1) 
cancel as some parameter is varied, signaling a metal-
insulator transition. The absence of Galilean invariance 
thus allows the charge-carrying effective mass to vary 
with interactions, and in fact to diverge.6 

We now consider the ID Heisenberg-Ising (H-I) mod
el of spinless fermions, with twisted BC's on a ring of 
length L described by 

«--Z(C„tC„ + i+H.c.)-2AX(pn-})(pn + l - i - ) , 

with p„—cHc„. Much is known about the model 
without the twist, and we merely note here that it has a 
gapless phase for — 1 < A < +1 which is the conducting 
phase, and an ordered state with a gap for — 1 > A, the 
insulating state. Bethe's ansatz is readily generalized to 
the case of twisted BC's (4) and the g.s. energy is 
known7'8 for all <I> for the repulsive case (0> A > — 1). 
The angle <t> has the physical interpretation of a magnet
ic flux through the ring in units of hc/e. In brief, 
the Bethe equations generalize to Lk„~2xI„+& 
" Z » * n 9 f t . , ' j i ) with the usual phase shift9 9 . In the 
sector with M—L/2 particles the g.s. quantum numbers 
are / „ - - ( £ + l ) /2+n for 1 < « < £ ; this is the half-
filled band corresponding to Sf0t=£/2—A/—0 in the 
spin representation. In general, a calculation of the 
stiffness D requires a precision in total energy of order 
\/L in ID. In this problem, however, it is possible to ob
tain D through a thermodynamic calculation8 using a re
markable property of the generalized Bethe equations, 
and the result (with A — —cos//) is 

D-- sin/j 
4 n(ic~n) 

As A—- —I, (i—»0 and D approaches a nonzero value 

j . For A < — 1 there is a gap in the spectrum and D is 
zero—thus the stiffness and the effective mass have a 
jump discontinuity. 

This transition is tracked by the interesting variation 
of certain eigenvalues of the H-I model. The state of the 
H-I model obtained8 from the g.s. by adiabatically in
creasing O from 0 to 2n is one with a total momentum K, 
and can be found from the set of generalized Bethe equa
tions by shifting all g.s. integers by unity; the energy 
above the ground state is AE\ —4Dn2/L ™;r3(sinj/)/ 
n(n—^)L. A third state of relevance is the g.s. in the 
sector Sz — 1 (corresponding to removing a particle) with 
an energy (above the absolute g.s.) given by Yang and 
Yang9 as AE2"x(.ir~n)(sin//)/fiL in the entire gapless 
range, — 1 < A < + 1 . These levels cross at the critical 
point where A—• — 1. This degeneracy is accounted for 
by the rotational invariance of the H-I model at A - — 1. 

In the ordered state A < — 1, the second state above 
(with quantum numbers leading to A£|) is asymptotical
ly degenerate with the g.s. (the splitting vanishing more 
rapidly than \/L" for any n). Its energy splitting from 
the g.s. is fortunately available from the work of Baxter 
who calculated the interfacial tension of the six- and 
eight-vertex models.I0 Baxter's beautiful result trans
lates into D~e\p( — L/^), where the correlation length 

1 2 1 

S - l / l n h I 

2x 1/2 n \+x" 
- i 1+x" 

with A— — coshX, x~exp( — X). This phase is therefore 
insulating in the thermodynamic limit. The third state 
above corresponds to removing a particle, and develops 
an energy gap in this region,9 A < — 1, with 

A£2-2(sinh\) £ ( - 1 ) " 
-oo cosh(n>.) 

The above behavior of D implies that although the sys
tem is insulating in the infinite-lattice limit, for a finite 
system, provided Lit, is not too large, we should see a 
small "free acceleration" response arising from adiabatic 
sliding between the almost degenerate "ground" states. 

We next consider the repulsive U > 0 Hubbard model 
in ID containing two species of particles, spin up and 
spin down. The boundary angles for the two are treated 
as independent parameters <J>j and Oj. There are two in
dependent stiffnesses that we may calculate. Setting 
<2>t «.<j>j — <f> the energy shift gives the "charge stiffness" 
Dc and setting d>j — — d>, —<D gives the "spin stiffness" 
Ds. These have expressions identical to Eq. (1), with Dc 

involving the sum of the up and down currents and Ds 

the difference in the matrix element, and both containing 
the total kinetic-energy expectation. This general case 
requires a generalization of the Bethe-Yang ansatz that 
was employed by Lieb and Wu'' for the solution of the 
model with periodic BC's. We present here, in brief, the 
analysis necessary to ensure that the model remains solv
able with the twisted BC's. 
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The model is described by the usual Hamiltonian and 
we denote by L, TV, and M the number of sites, particles, 
and down-spin particles. The Bethe wave function is 
written in the form 

l*>- I I[exp(/2>/.„x„U(0„}|/')] 
l < 7 , < • •• < ; « < « 

xc;,, ci, • • • c ; „ , i o > , 

where f is a sum over the N\ permutations and 
A(\j„) \P) is the amplitude. The wave function satisfies 
the difference equations that follow from the Hubbard 
model in the interior of the chain as usual with energy 
E~ — 2YiCoskn (setting t—• 1), provided the amplitudes 
satisfy the usual consistency conditions."12 We impose 
the boundary conditions Eq. (4) with different boundary 
angles for the two spin species by transporting the parti
cle at x i to x i + L, and this gives 

exp(ikFlL)A(,{j')\P') 

-{exp(/*iS,„,)+exp[;0,(l-Sy„,)}/K(/„}|/>). (5) 

Here P' is obtained from P by a cyclic permutation and 
j'„ ~j„ — 1 (mod/V). It is convenient to write these in vec
tor form by introducing \A{P))—"L\\j„\)A{[j„}\P) 
with the vector | {/'„}> denoting the basis state with over
turned "spins" located at the "sites" j \ , . - - , j „ - The 
BC's Eq. (5) translate into the following N eigenvalue 
conditions that must be simultaneously satisfied: 
expUkjL)\Ao)~Lj\Ao>, where \AQ) is the vector for 

the identity permutation, the /V-string operators are 

Lj —XJ+IJ • • • XNJDJX\J • • • Xj-ij , 

the operators A",,,—Cy,,y—P, ,;)/(>>,• ,j — 1), with y,,j~2i 
x (sin/c,• — sinkj)/U and P,j the usual permutation 
operator, and the new operator is 

Dj-exp(/<J>,)(l +<T/)/2+exp(/<D))(l -<r/)/2 . 

We must now verify that the N operators Lj commute, 
and then diagonalize these. This task is neatly per
formed with a generating (monodromy) operator Yg act
ing on a (TV +1 )-site spin chain, Yg(X)—DglN.g(X) 
• • • /i,g(X), where g is the extra 0V + l)th site and the 

scattering operator 

l„,t(X)-msink„ -\)-U/2PnJ/li(smk„ -X)-U/2]. 

The TV-string operators Lj can be obtained from the 
generating operator by using that TrxYj(X—sinfc,) 
—LJ{ — lk„]). The commutation relations between Lj 
are guaranteed if TrgYg(X) commutes with similar 
operators differing in the spectral parameter X. This is in 
turn true10 if an operator Rg,g' exists such that 
Yg(X)Yein)Re,gik,n)-Rg,giX,n)Yg(^)Yg(.X). In the 
present problem the Y operator differs from the zero-flux 
case through the Dj operators with the property that 
DgDg'—c exp[rf((r| + CT|')]. Noting that the Rg.g1 for the 
Heisenberg spin chain fulfills the commutation rules in 
the zero-flux case and further commutes with <rg + og; 
we conclude that the twisted-BC case is also satisfied by 
the same R operator. The diagonalization of the Lj 
operators was done by a variant of the nested Bethe-
Yang ansatz and the resulting transcendental equations 

Lk„-2nI„+<t>} + 2 J ) arctan[4(Ay-sin*n)/l/], 
j—i 

N M 

2 £ arctan[4(A7-sin*„)/t/]-2^y /+Oj-<I>,-l-2Xarctan[2(A J-A,)/t/], 
B~l i*j 

(6) 

(7) 

with I„,Jj as the usual quantum numbers (integer or half 
odd integer). 

In order to study Dc, the charge stiffness, we set Oj 
—0i""2;r, and argue that the excitation energy is 
(4n2/L)Dc. The underlying assumption here and in the 
next section (justified for the H-I model in Ref. 7) is 
that the energy EQ(Q>) remains quadratic in 4> out to this 
value, in spite of a level crossing that occurs prior to it. 
With this assumption, we can calculate Dc, in the gen
eral case, from the excitation energy of the state, ob
tained by adding unity to the g.s. quantum numbers /„. 
An evaluation of Dc requires a detailed study of the 
finite-size effects. Here we are content to observe that 
the general structure of the equations forces Dc to vanish 
as TV— L, i.e., as we approach half filling for any 
nonzero value of U. This follows from the fact I„+L 
and /„ lead to the same solution, and further, at half 

filling, the set of 7V~I g.s. integers /„ exhaust all the al
lowed distinct values — (L — 1 ) / 2 , . . . , (L — 1 )/2, where
by Dc "0. To leading order in l/U we can see this ex
plicitly. Here A; are of 0(U), and hence the two sets of 
equations decouple. It is readily seen that the charge 
stiffness is identical to that of spinless fermions with a 
density S ~ (L — N)/L, and hence Dc —- 0 linearly as 
S—• 0. It is also worth remarking that this vanishing 
stiffness can be equally well interpreted as a vanishing of 
the density of the effective carriers of charge, the 
"holons" of Anderson." 

The spin stiffness can, however, be related with the 
help of a remarkable identity to the bulk spin susceptibil
ity, which in turn can be calculated readily by the 
method of integral equations for relevant densities. Con
sider the state for even N, with M—7V/2 and <1>| — <I>| 
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—0; this is the g.s. for this filling and has the quantum 
numbers taking on values /„ — — (N +1)/2+« for 
l < n < A ' a n d Jj- -(N/2+D/2+J for \<j<N/2. 
Suppose that we have found the solutions for k„ and Ay. 
We now turn on <t> so that <I>t •• — ic and Oj ~ic, thereby 
"deforming" the previous solution. This case, however, 
can be solved by a neat observation (analogous to the 
H-I model in Ref. 8). The self-consistent solution is that 
Am ax- + «>. Equation (7) for y'-y'max is identically 
satisfied, and the remaining N/2—1 equations for 
1 < j < N/2 — 1 can be written as 

/v 
2 X arctan[4(A.-sin*„)/C/] 

/V /2 -1 

-2itJj + 2 Z arctan[2(A,-A,)/t/], 

with J] —Jj + y; in Eq. (6) we drop the <t> and sum j 
over the N/2 — 1 finite A's. This set is recognizable as 
the g.s. equations in the sector M—N/2 — 1. Hence, the 
spin stiffness Ds-(L/4x2)lE0(N,N/2)-E0(N,N/ 
2—1)]. With the magnetization variable y - 1 —2M/N, 
the g.s. energy in a sector with fixed M is EQ(N,M) 
—Neo(y)+ jNx~,y2+0(y4), defining the susceptibili
ty. From the smallest allowed value of y — 2/N we con
clude that Ds -tt/2n2)(L/N)x~'. This identity is true 
at all U and can be used to extract Ds from the calcula
tion of the susceptibility. The latter has been calculated 
numerically14 at several fillings and U. Qualitatively it is 
nonzero at all fillings, and resembles the Pauli suscepti
bility renormalized by U. Physically a nonvanishing Ds 

implies that the model has long-ranged (presumably 
power-law) spin correlations at all fillings. 

The origin of the above relationship, between Ds and 
X, is in the rotation invariance of the model for any U or 
filling. It follows from the degeneracy of the lowest exci
tations of Sz —0 with those of S2 — 1 (with appropriate 
momenta). Apart from the normalization factor of L/N 
this is the same relation as in the Heisenberg-Ising mod
el at A— —1, i.e., the isotropic point. In general, the 
relation between the two for the H-I model is D 
- I l /2U- / i ) 2 U-' . 

In conclusion, we have given two nontrivial examples 
where a metal-insulator transition occurs due to interac
tions and is reflected directly in the effective mass ob
tained by twisting the BC's. For the ID Hubbard model 
the spin stiffness has been related to the bulk susceptibil
ity through an interesting identity. It is clear that the 
ideas explored here have possible applications in higher-
dimensional models, where numerical investigations with 
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twisted BC's are possible for small systems. 
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The persistent current in microscopic and mesoscopic Hubbard rings threaded with magnetic flux is 
studied as a function of the flux and the Coulomb repulsion parameter U. For microscopic rings having 
very large U, we find that as the flux is increased by one quantum, a magnon hole traverses the magnon 
sea, generating a periodicity of \/Nc in the persistent current, but with no changes in the overall spin 
magnetization, in contrast to the earlier suggestion of Kusmartsev. For non-half-filled mesoscopic rings, 
we use methods developed by Woynarovich for the zero-flux case to build a rather complete picture of 
the variation of persistent current with magnetic flux. We find the periodicity to be a half flux quantum 
or a whole one, and show how the critical flux values at which the current reverses vary with system pa
rameters. We show how the behavior characteristic of microscopic rings goes over to that of mesoscopic 
rings as Nc /U increases. 

I. INTRODUCTION 

Recently, several authors have examined the behavior 
of microscopic and mesoscopic Hubbard rings threaded 
by magnetic flux and, in particular, have examined the 
persistent currents generated in such rings by the flux.1_5 

The Hubbard ring is interesting as an example of a 
strongly-correlated-electron system that is solvable using 
the Bethe ansatz.6 It has been argued to be a good model 
for the optical properties of such quasi-one-dimensional 
conductors as TTF-TCNQ,7 various aromatic molecules, 
and systems of connected quantum dots.4 It is also possi
ble that understanding its properties might be helpful in 
analyzing the physics of the Aharonov-Bohm effect in 
mesoscopic metal rings.8 

In this paper we map the persistent current as a func
tion of magnetic flux for Hubbard rings over a wide range 
of ring sizes and values of the Hubbard Coulomb-
repulsion parameter 17. For convenience we usually plot 
the ground-state energy as a function of the threading 
magnetic flux; the persistent current is then just minus 
the slope of this curve. For a Hubbard ring, the effect of 
a small magnetic flux is to twist the boundary conditions 
on electronic eigenstates through an angle <1> proportional 
to the flux. A flux quantum corresponds to a twisting an
gle of 277, and so <t>/2ir measures the threading magnetic 
field in units of the flux quantum hc/e. Evidently, the 
ground-state energy E0(®) of the electronic system is 
periodic in * with period 2ir. (By "ground state" we 
mean the lowest-energy state of the system for a given an
gle of twist, which is in general not the state given by fol
lowing adiabatically the quantum state lowest for zero 
twist as the angle is increased. A trivial counterexample 
is provided by a single noninteracting electron.) 

Very recently, Kusmartsev4 has pointed out that for 
microscopic Hubbard rings with very strong Coulomb 
repulsion (/between electrons, that is, U/Nc » 1 , where 
Nc is the number of electrons in the system, the ground-
state energy varies with a surprisingly short period, 
k®=2ir/Nc. He states that this oscillation is driven by 

spin-flip processes, the number of spin-up electrons jump
ing by l for each period, so that the spin magnetization of 
the system varies over its maximum possible range as the 
flux increases by one flux unit. We examine these small 
Hubbard systems in Sec. Ill and confirm Kusmartsev's 
result that the ground-state energy (and hence, of course, 
the persistent current) does oscillate with the shorter 
period as <!> increases. However, we do not agree with his 
assertion that the spin magnetization varies over a wide 
range as the flux changes by one quantum. It is true that 
if U is actually infinite, the energy levels, including the 
ground state, become degenerate with respect to spin 
magnetization, and so Kusmartsev's choice of the succes
sive ground states is as good as any other. Nevertheless, 
in the physically interesting situation of large but not 
infinite U, the degeneracy is broken, and we find that over 
the whole range of <t>, states having total spin 0, \, or l 
(depending on the number of particles present) have 
lower energies than the spin-magnetized states discussed 
by Kusmartsev. 

To see what happens when an increasing magnetic flux 
threads these small Hubbard rings with large U, consider 
the Bethe-ansatz equations (2.3) (given below) for U going 
to infinity, giving (3.1) (following Kusmartsev). The point 
to note is that in this limit, the magnon sea contributes 
the same constant phase shift to each of the charge (or 
holon) momenta, so that its effect is the same as that of 
an added fractional flux proportional to the total momen
tum of the magnon sea. Now, on increasing the external 
twist angle O on the system (i.e., the magnetic flux) from 
zero, the lowest-energy state of the system for a particu
lar <J> is given at large U by generating a compensating 
momentum in the magnon sea, that is to say, a momen
tum which will counterbalance as much as possible the 
extra holon phase shift 4> and, hence, minimize the in
crease in energy of the holon distribution. Of course, for 
finite U, there is some energy cost associated with creat
ing momentum in the magnon sea. However, for large U, 
the spin degrees of freedom are equivalent to those of a 
Heisenberg antiferromagnetic chain with coupling of or-
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der Nc /NU. Thus, for large enough U, it is always worth 
creating momentum in the magnon sea, which costs ener
gy of order Nc /NU, because the consequent lowering of 
energy of the charge Fermi sea is independent of U in 
leading order. It is of order 1 /N. As discussed in Sec. 
Ill, the energetically most economical way to create a 
given magnon momentum less than v is to create a single 
des Cloizeaux-Pearson excitation, that is, a single hole in 
the sea. As * is increased, this hole moves from one Fer
mi point to the other. 

It should be noted that since the magnon momentum is 
itself quantized, it cannot perfectly compensate for the 
effect of a smoothly increasing twist angle 4>, and from 
(3.3) it is evident that this remaining imbalance leads to 
the energy oscillating with the short period 2ir/Nc. The 
picture is somewhat complicated by the parity require
ments (integer or half odd integer) on the numbers of 
charges and spins. It is necessary to deal with the four 
possibilities separately, as they lead to different sets of 
ground-state configurations. A full analysis is presented 
in Sec. III. 

Thus, for large enough U in a microscopic ring, the 
function £0(<I>) has a sequence of Nc parabolic segments 
between zero and 2ir. The analysis outlined above en
ables us to identify the states of the system corresponding 
to these curves However, it also suggests how E0{®) will 
change as U becomes smaller or the size of the system in
creases. It is a good initial approximation just to add the 
appropriate magnon energy to each parabolic segment. 
This clearly means that, as U decreases, segments corre
sponding to higher magnon energies are raised and their 
share of the range in <J> shrinks and disappears. Beyond a 
certain point, only two segments remain: those corre
sponding to magnon momenta zero and IT. By numerical
ly solving the Bethe-ansatz equations, we have confirmed 
that this is indeed what happens, even when higher-order 
terms are included. For example, we find that for 16 elec
trons on a chain having 32 sites, there are only two seg
ments remaining if U is less than 100. This means that 
for U below this value, there are no holes in the sequence 
of magnon quantum numbers in the lowest-energy state. 

Since the relevant parameter in determining the num
ber of segments is Nc/U from the discussion above, it 
certainly seems safe to conclude that for mesoscopic rings 
having U in the range of physical interest (U < 100, say), 
there will be no holes in the magnon distribution in the 
ground state. This implies that we can construct E0(<&) 
for mesoscopic rings by extending some of the work of 
Woynarovich on the finite-size corrections to . the 
ground-state energy of a Hubbard ring with the usual 
periodic-boundary conditions (no flux).9 Among other 
things, Woynarovich found that the energy changes in 
these rings when the particle sea and/or the magnon sea 
is shifted over by discrete amounts (i.e., particles or spin 
quantum numbers are moved from one Fermi point to 
the other). But this is precisely what happens (for parti
cles) when a magnetic flux is introduced through the ring, 
except that the flux gives a continuous shift rather than a 
discrete one. Woynarovich found the energy of the set of 
states generated in this way to vary as the square of the 
displacement, with a coefficient that could be expressed in 

terms of the Fermi velocities and the dressed charge. 
(The dressed charge, a renormalization factor, can be cal
culated from the Bethe-ansatz equations.10) Using his re
sults, we can map out exactly the lowest-energy state of 
the system as a function of the magnetic flux. The graph 
is a sequence of parabolic segments, as it would be for 
noninteracting fermions, but the interaction changes both 
the curvature of the parabolas and their relative minima, 
so the segments are in general of different lengths. In 
fact, we find that the parabolic segment centered at the 
origin for a ring of An electrons disappears entirely near 
half filling. Another important difference from the 
noninteracting case is that the allowed quantum numbers 
for the particles can be either integer or half odd integer, 
depending on the numbers of excitations present, and this 
affects the ordering of energy levels at a given flux, as dis
cussed in detail in Sec. IV. 

It is instructive to compare the E0(&) derived for 
mesoscopic rings using Woynarovich's approach with 
that following from our approximate analysis, and exact 
numerical work, on microscopic rings. The connection is 
clear. The mesoscopic £0(<I>) given by (4.14) has two 
parabolic segments centered at zero and IT. That at ir is 
raised by uvs /N, the magnon energy of a IT magnon in a 
finite system. This is just what we found above on extra
polating the microscopic analysis. (It should be noted 
that in both microscopic and mesoscopic cases, what we 
refer to as the magnon energy here means the energy in 
the spin degrees of freedom. Introducing that same mag
non into a system constrained by peri'od/c-boundary con
ditions would cost more energy, because of the holon-
phase shifting. That is the same effect, with opposite 
twist, as increasing <J>, which is what we have introduced 
the magnon to compensate.) However, the change in cur
vature of the parabolic segments, in other words, the 
dressed charge, is not given by our simple approximation 
of just adding the magnon energy, although it is a \/U 
effect. This point is discussed in more detail in Sec. III. 

Finally, we consider the exactly half-filled Hubbard 
ring. The curvature of the energy as a function of flux 
near the origin, which is essentially the Drude weight 
measuring the low-frequency optical response of the sys
tem, has been analyzed by Fye et al.2 They find it to be 
negative (paramagnetic) for rings with An sites, positive 
for An +2 sites, and exponentially vanishing with increas
ing system size. Stafford, Millis, and Shastry3 emphasize 
what they term a rather peculiar property, namely, that 
for N electrons on a ring of N =An sites, the distribution 
of charge quantum numbers, which must be integers in 
this case, is* necessarily not quite symmetric, going from 
-N/2 to JV/2-1 or - i V / 2 + 1 to N/2, giving a 
ground-state momentum of ±ir. Unfortunately, our 
methods based on Woynarovich's results do not work for 
the half-filled case. This is because there is no headroom 
at the Fermi surface to insert extra particles—that is 
why the charge excitations have a gap. We did, however, 
note one unexpected point concerning the distribution of 
momenta in the ground state. Even though the distribu
tion of quantum numbers may not be symmetric in the An 
ground state, as discussed above, the distribution of mo
menta is. The reason is that one of the momenta is exact-
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ly at TT (for zero flux), well away from the others in a finite 
system. It is immediately apparent, on inspecting the 
Bethe-ansatz equations (2.3) below, that this is the 
m o m e n t u m value corresponding to the quantum number 
N/2. When the flux moves away from zero, this particle 
rapidly descends, and the overall energy drops, al though 
by a much smaller amount than the single-particle contri
bution as a result of backflow in the rest of the Fermi sea. 
For this system no level crossings take place as the flux 
varies. The (4w+2)-particle systems vary in a similar 
way, except that the maximum energy as a function of 
flux is now at tr rather than at 0. This rapid movement of 
an isolated root as the twist angle varies through a sym
metry point is closely related to that found by Sutherland 
and Shastry for the Heisenberg-Ising c h a i n . u 

II. BETHE-ANSATZ FORMALISM 

W e first review the standard Bethe-ansatz solution to 
the Hubbard ring. The Hamiltonian of the model is 

# = - i 2(«"''e^]+1>^;.„+^'eM^+',^ 
j = l a 

7 = 1 

(2.1) 

Ns N-Ns + l 
Ij = ^- (modi) , Ja= (modi) (2.4) 

The energy and momentum of the system in a state corre
sponding to a solution of (2.3) are given by 

£ = - 2 2 cosfc; . 
7 = 1 

(2.5) 

7 = 1 
K> N 

III. MICROSCOPIC RINGS 

We study in this section a small chain with very strong 
on-site repulsion, U/Nc » 1 . As discussed by Kusmart-
sev,4 in the limit U/Nc—> » , the sinfc,- terms in (2.3) can 
be neglected, leading to 

Nkj=2w '>+i 2 J a + <J> . (3.1) 

Equation (3.1) is identical to that describing a set of 
noninteracting spinless fermions on a ring threaded with 
a flux: 

*/2^+77-2^ (3.2) 

Here N is the number of lattice sites of the ring, 
rtja = ilijtafjia is the number of spin-«r electrons at site j , 
and U > 0 is the on-site Coulomb repulsion. A =<I>/7V is 
the vector potential for the magnetic flux. W e have 
neglected the interaction of the spin of the electrons with 
the magnet ic field. W e will study rings with a fixed num
ber of electrons. The current in the ring at zero tempera
ture is given by 1 2 

dE0(<t>) 

3 * 
(2.2) 

where we used units ft— 1 and e= 1. 
The eigenstates of a chain with Nc =7Y t +Ni electrons 

and JVj =7Y; down spins are characterized by the momen
ta kj of charges and the rapidities A,a of spin waves. For 
a chain with twisted-boundary conditions, the Bethe-
ansatz equations are6 , 1 

Nkj-2irlj+^- 2 2arctan 
0=1 

Msinkj—kp) 

U 

2 2arctan 
7 = 1 

4(ka —sinfc,) 

U 

(2.3) 

=2wJa+ 2 2arctan 
/s=i 

2(A.„-V 
U 

Here N is the number of sites in the ring. The quantum 
numbers Ij and Ja are either integers or half odd in
tegers, depending on the parities of the numbers of down-
and up-spin electrons, respectively: 

If the Ij's are consecutive quantum numbers, the energy 
of the state is 

E0{<»)=-Emcos 
2v 
N 

* l *• 
(3.3) 

where Dc is defined by X>c = ( / m a x + / m j n ) / 2 , and Em is a 
positive constant: 

sindrJNL/TV) 
Em=2-

sin(ir/7V) 
(3.4) 

W e assume in the following that the system is not exactly 
half filled, for if it were, the above expression for Em 

would be zero. The energy J?0(<1>) can be minimized for 
4> by choosing the set / „ such that 

2/V, 2ir 27V„ 

It is evident from (3.3) that, with these Ja, the graph of 
£ 0 (4>) as a function of O is a sequence of identical para
bolic segments (strictly, parabolic in the limit of large N), 
giving a function with period l /Nc of a flux quantum. 
T h e problem is that this infinite- U system is highly de
generate. There are many ways of choosing sets of / a ' s 
to give the same s u m — o n e can adjust the total number 
of down spins, following Kusmartsev. There are, howev
er, other possibilities. For example, gaps can be intro
duced in the magnon quantum-number distribution. The 
question to resolve is what states are the lowest-energy 
states when U is large but finite and the degeneracy is lift
ed. T o find out we examine the leading-order \/U 
corrections to the Bethe-ansatz equations for infinite U. 
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This 1/1/expansion is actually quite tricky, as we shall 
discuss later. On examining the Bethe-ansatz equation 
(2.3), we note that, for large U, the ka's will be of order 
U, whereas the sink's are, of course, of order unity; for a 
small system, the ka's will be widely scattered and, with 
one possible exception, will have |A,| » 1 . With this pic
ture in mind, we expand the arctangent functions to lead
ing order in sin(/c; )/(/and define scaled variables xa by 

xa= lim (2ka/U) . (3.6) 

For large but finite U, the kj's in (2.3) have leading \/U 
corrections: 

bk, 
2&Mkj) 

NU '-+x2 
(3.7) 

-xB) (3.8) 

where the xa satisfy the equations 
», 

2NcaTCtan{2xa) = 2irJa+ 2 2arctan(xQ 

0=1 

The corresponding correction to the energy is easily ob
tained from (2.5): 

F = -
•^spin 

4 
NU 

= - '2 -

2 sin2fc, 
U" = l 

1 

Ns 

2 [r + xl 

-+X2 
(3.9) 

q=2ir'2lJa/Nc. This problem has been studied by des 
Cloizeaux and Pearson.13 For zero momentum the state 
of lowest energy of the Heisenberg chain is the singlet 
state. However, for a given nonzero momentum, the 
lowest-energy state is the des Cloizeaux-Pearson spin-
wave excitation, a triplet state described by real [xa], 
with a hole in the distribution of the quantum numbers 
\Ja}- Creating a single-hole excitation of this kind is the 
most energy-efficient way of generating a given total mag-
non momentum, because the spin-wave energy plotted as 
a function of its momentum curves downward below its 
low-energy linear form, so it would cost more energy to 
produce the same momentum using several excitations. 
In particular, we find that for finite U, the states in Ref. 
4, where the total spin magnetization undergoes large 
fluctuations as 4> increases, have higher energies than the 
single-hole states with the same magnon momentum. 
States with complex ka are also found to have higher en
ergies than these states (compare the remarks of Woy-
narovich in Ref. 9). For large U this follows from a con
sideration of the corresponding states of the equivalent 
finite antiferromagnetic Heisenberg chain. Translating 
the quantum numbers back to the Hubbard model, we 
find that, for U »1, the states minimizing the energy for 
nonzero flux depend on the values of NC,NS (mod 4). 

A. Nc=4n+2,N,=2n+l 

In this case, from (2.4), the J.'s are half odd integers 
and the Ja's are integers. For zero flux, the quantum 
numbers Ij's and Ja's are both distributed symmetrically 
about the origin. For nonzero flux, the new ground state 
has a hole in the Ja distribution. The ground state for a 
chain with flux 

We note that the energy £spin and Eq. (3.8) are just the 
energy and Bethe-ansatz equations of an antiferromagnet
ic Heisenberg spin chain of exchange coupling / , with Nc 

sites and with Ns spins down. 
Finding the lowest-energy state of a Hubbard chain 

with sufficiently large U in a magnetic field is thus re
duced to finding the state of lowest energy of a Heisen
berg spin chain with a certain momentum is 

I 

/ , 7^ = —(iVc —1)/2 (Nc-\)/2, 

Ju...,JN=-(Ns + \)/2,-(Ns-\)/2 -(Ns-2p + l)/2,-(Ns-2p-3)/2 (JV,-l)/2 . 

(2p - 1 )/2Nc <Q/21T<(2p + l)/2Nc 

(3.10) 

The Ja from the hole at —(JV,-2p - l ) / 2 has been 
moved to the left Fermi surface. This is a state with a 
magnon excitation of momentum —2vp/N and is the 
lowest-energy state from approximately 4>/2ir 
=(2p-l)/2Nc to <S>/2TT=(2P + \)/2NC. We say "ap
proximately," because different parabolic segments have 
had their bottoms raised by different amounts of order 
1 /V, so the points of intersection will have shifted to this 
order. 

B. Nc=4n,N,=2n 

The Ij's must be integers, and all the / a ' s must be half 
odd integers. The energy at zero flux is minimized by 
taking 

Ij = -Nc/2,-{Nc-2)/2,... ,{Nc-2)/2 , (3.11) 

/ 0 = - ( JV, -3 ) /2 , - ( JV J -5 ) /2 (JV. + D / 2 . (3.12) 

We note that one of the / a ' s has been moved from the 
left Fermi surface to the right one and the state has 
momentum P=2nNs/N. For nonzero flux, 
(2p — 1)/2NC <<t>/2ir< (2p +1)/2NC (approximately, as 
discussed above), the ground state is the one with the pth 
Ja from the left moved to the left Fermi surface. 

C. Nc=4n+l,N,=2n 

For this case the Ij's and Ja's all have to be integers. 
At zero flux the quantum numbers are 
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h = -•(Nc-l)/2,. 

-Ns/2 

..,(Nc-l)/2, 

1,1 Ns/2. 
(3.13) 

There is a hole at Ja=0. This state has momentum zero. 
For (2p -\)/2Nc<<b/2tr<(2p + \)/2Nc, the ground 
state will be the one with Ja =p moved to 0. We note in 
particular that for <$>=ir/2, the J a ' s are consecutive in
tegers. 

D. A T c = 4 n - l , A f , = 2 n - l 

In this case all the Ij's and Ja's must be half odd in
tegers. For zero flux the ground-state quantum numbers 

Jj = -Nc/2,...,{Nc-2)/2 , 

(3.14) 

Ja = -(N,-2)/2,. \,...,{N,+2)/2. 

We note that there is a hole between — j - and | . As the 
flux increases, the hole will move to the right. For 

(2p - 1 )/2Nc <<$/2TT<(2P+ l)/2Nc , 

the hole is at / a = (2p + l ) / 2 . At * equal to half a flux 
quantum, the Ja quantum numbers all consecutive half 
odd integers. Beyond that the Ik quantum numbers will 
all shift to the right by 1, and the hole in the Ja distribu
tion will move to the negative side. 

What we have done in the above analysis is to find, by 
evaluating the leading term in 1/1/ for a small system, 
just which of the many degenerate (at infinite U) states 
has lowest energy at finite but large U. At the same time, 
we have determined approximately what the energy split
ting is and how the parabolic segments are moved up and 
down relative to each other by amounts equal to the ap
propriate magnon-energy differences. We wish to exam
ine the range of validity of this picture as we go to small
er U or to larger systems. From (3.9) we see that the en
ergy cost of creating the magnon has order of magnitude 
NC/NU. From (3.3) the untwisting of the boundary angle 
made possible by creating the magnon lowers the energy 
of the k distribution by an amount of order 1 /N. Thus 
the relevant parameter in assessing the reliability of our 
picture is Nc/U. It is also clear from our remarks before 
Eq. (3.7) why this is so. For mesoscopic systems, 
JVC » U, and many ka's are of order unity. In this case, 
taking only the leading-order term in the Taylor expan
sion for each of them and adding is clearly not a reliable 
approximation. 

Despite these limitations the analysis gives a picture of 
£0(4>) as a function of <t>, in good agreement with numer
ical results from infinite U down to U of order 50. The 
main point is that the sequence of parabola bottoms— 
and for infinite U there are JVC of them per period—are 
raised by amounts of order 1/17, reflecting the magnon 
energy at the appropriate momentum. Those parabolic 
sectors raised least therefore become the lowest-energy 
states over larger and larger intervals in <I>. Thus sectors 
corresponding to large spin-wave energies disappear from 

the JE0(<I>) curve, until finally only two sectors remain: 
those corresponding to magnon momentum zero and IT. 

The above picture can be verified for small chains by 
direct diagonalization of the Hamiltonian for various flux 
values. Figure 1 gives the ground-state energy of a ring 
of eight sites and four electrons, calculated by both direct 
diagonalization and minimization of energy of states 
within the sector of real k using the Bethe ansatz, with 
the same result. As can be seen, for very large U 
(f/=20O in the figure), there are four cusps and four par
abolic segments in the energy-versus-flux curve in one 
flux quantum, as many as the number of electrons in the 
ring. However, for smaller U, the width of some of the 
segments gets smaller and smaller, until at some U they 
are taken over by others. 

The assumption that only real k appear in the ground 
state for any flux thus proves to be correct for large U, 
where a map to the Heisenberg model is possible, and for 
small chains, where direct diagonalization of the Hamil
tonian is possible. As will be seen in the next section, the 
assumption is also correct for large systems, in which 
case the energy of various states can be analytically cal
culated up to 1 /N. We therefore assume it to be true for 
any chain size and U and minimize the energy of the sys
tem by using only real k for various sizes of the chain. 
This is, of course, much more feasible than allowing gen
eral complex k. Figure 2 is the ground-state energy 
£(4>) calculated for chains with 17=100 and density 
nc =0 .5 . The energy for the chain with four sites has four 
pronounced cusps. For the chain with eight electrons, 
the energy has eight parabolic segments in a period, but 
some become very narrow, while the segments around 
4>=0 and IT widen. For 16 electrons, these two branches 
take over the whole period. 

As mentioned above, these two sectors correspond to 
the singlet ground state of the spin chain and the spin-
wave state with momentum q=tr, respectively. These 
two states have the same energy in the thermodynamic 
limit, as indicated by the spin-wave dispersion relation. 
However, for finite chains, the spin-wave state has an ex
citation energy proportional to \/Nc. For large yet finite 
chains, this spin-wave excitation energy scales as a func
tion of the chain size N the same way as the energy 

FIG. 1. Ground-state energy £ ( * ) for a chain of eight sites 
and two spin-up and two spin-down electrons for the Hubbard 
repulsion t/=20,40, and 200. 
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FIG. 2. Ground-state energy £(*) for chains with U=l0O 
and density nc =0.5. For the chain with 4 electrons, the energy 
has 4 pronounced cusps in one period. For 8 electrons there are 
8 parabolic segments, but some are very narrow. For 16 elec
trons there are only two segments. Larger chains also have two 
level crossings. Note that the energies have been scaled. 

reduction achieved in E0 by the partial flux cancellation. 
As a result, for large chains, the widths of the two sectors 
at 0 = 0 and IT approach values independent of the size of 
the chain. However, the width of the two sectors is 
dependent on the on-site repulsion U and the density of 
electrons. 

Again, for chains with U»l, this relative width is 
easy to find, at least in certain limits. For very large U, 
the magnon energy is negligible, and the two sectors 
should have almost the same width. However, for chains 
with density close to half filling, Em in Eq. (3.4) is propor
tional to the hole density and is very small. The magnon 
energy in this case becomes dominant, and the sector 
with a magnon of q =w will not be the ground state for 
any flux value. In this case the ground-state energy will 
have only one parabolic sector in the whole period. 

In the next section, we will discuss mesoscopic chains 
with N » 1 and N/U»l. In this case the kj and A.a be
come continuously distributed on the real axis. We can 
analytically discuss the flux dependence of the ground-
state energy without resorting to the 1 /U expansion. We 
will find that any chain with N/U »1 has qualitatively 
the same behavior as chains with N/U»\ and U»\, 
independent of the value of U. 

IV. MESOSCOPIC RINGS 

In the thermodynamic limit, the momenta kj of the 
electrons and rapidities ka of the magnons are continu
ously distributed on the real axis, and the Bethe-ansatz 
equations can be reduced to a set of integral equations, 
making them much easier to solve. This is the standard 
approach for finding the ground-state energy of a large 
system, for example. However, it has to be used carefully 
for the problem we are considering. The persistent 
current has an order of magnitude equivalent to that gen
erated by a single electron at the Fermi level. In other 
words, for a noninteracting gas, this would be the current 
resulting from moving all the electrons to the right in 

momentum space by just one quantum state—a \/N 
effect. In fact, the change in the ground-state energy aris
ing from such a shift is down by a factor 1 /N2 from the 
total ground-state energy, since to leading order the ener
gy gained in the shift at one Fermi point is lost at the oth
er. This implies that simply replacing the sum over mo
menta in the Bethe-ansatz equations by an integral will 
miss the effect we are looking for, since that introduces 
an error of order 1 /N2. 

Fortunately, a complete analysis of these finite-size 
corrections for the usual periodic-boundary conditions 
has been carried out by Woynarovich,9 and it is not 
difficult to adapt his work to the case of twisted-boundary 
conditions. Woynarovich succeeded in calculating the 
energies of those states which resemble the ground state 
in that both momentum and spin quantum numbers form 
consecutive sets; that is to say, there are no holes in the 
distributions. (He later went on to add low-energy excita
tions, but these are not relevant to our present considera
tions.) These hole-free states differ from the standard 
half-filled nonmagnetic Hubbard ground state in that 
they may have different total numbers of particles, Nc, 
and of down spins, Ns, and they also may be shifted off 
center, by displacements Dc and Ds, respectively. It is 
easy to see that for the states under consideration these 
quantum numbers can be written in terms of the max
imum and minimum occupied single-particle and -mag

non quantum numbers /„ 
lows;9 

x> ^min. •'ma*. a n d ^min a s fol-

*max • ' m i n - ' - ! •<vc> 'max ' -*min *'*-'c ' 

•'max "'min"'"! "s> •'max ' • ' ir -2D, 
(4.1) 

Woynarovich found that, to order 1 /N, the energy of a 
hole-free distribution defined as above is 

E=Nem + -
2irv„ 

+ -
2TTVS 

N 

N 

2 

(Nc-ncN)2 

4? 

2 s 

-+? A. 
D, 

+ -!-02- — 2 ' 12 

J_ 
12 

(4.2) 

Here vc and vs are the so-called holon and spinon ve
locities, that is to say, the speeds of excitations near the 
Fermi points in the charge and spin distributions, £ is the 
dressed charge, and nc is the ground-state density in the 
thermodynamic limit. These parameters can all be found 
as functions of the electron density and on-site repulsion 
strength by solving some integral equations, as has been 
shown by Woynarovich. 

The important thing to note in Eq. (4.2) is that the en
ergy has a simple quadratic dependence on the four pa
rameters NC,DC,NS, and Ds. 

Now adding a phase twist 4> to the boundary condi
tions in the Bethe-ansatz equations is equivalent to a uni
form shift in the quantum numbers Ij—*Ij+q>/2ir. Evi
dently, then, the generalization of (4.2) to twisted-
boundary conditions is just to replace Dc by Dc +4>/2ir, 
giving 
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E=Nta,+ 
2vvc 

N 

(Nc-ncN)2 

+ -
2vv, 

N 

+? 
N, 

4|2 

* D, 
12 

12 

2 s + iD 2 -
2 s 12 

(4.3) 

That is, we define the 

It is clear from this equation that the curvature con
stant, the coefficient of <J>2, is just the charge-stiffness con
stant discussed in Refs. 1-3. 
charge-stiffness constant by 

lit ' a. (4.4) 

The analogous spin-stiffness constant 2)s is defined by 

B . 
2it 

(4.5) 

for the systems that we consider. (For systems having 
finite spin magnetization, the dressing factors are more 
complicated.) The spin stiffness becomes relevant when 
the lowest-energy state for a given flux has a shifted mag-
non sea. 

It is now straightforward to find how the ground-state 
energy of the Hubbard ring varies with the magnetic flux 
enclosed. For a given total number of electrons, Nc, and 
given magnetic flux 4> threading the system, the expres
sion for the energy in (4.3) is minimized by appropriate 
choice of the other quantum numbers. Obviously, as <I> is 
increased from zero, at certain values the best choice of 
these other quantum numbers will change, and so the 
graph of ground-state energy as a function of <I> will be a 
sequence of parabolic segments. 

The only other complication in this analysis is a book
keeping one—the quantum numbers Ij and Ja, and 
hence the displacements Dc and Ds, are integer or half 
odd integer, depending on the parities of the numbers of 
electrons and of down spins, so one must consider sepa
rately the different possible total numbers of electrons 
modulo 4. 

The physics of the problem is contained in the curva
ture of the parabolic segments, that is to say, the second 
derivative of total energy as a function of <D, and the 
switch points, or level crossings, the values of 4> at which 
the lowest-energy state moves from one parabolic seg
ment to another one defined by a different set of quantum 
numbers. These determine the periodicity of the energy, 
and hence of the persistent current, as a function of the 
threading magnetic field. It is evident from (4.3) above 
that these points are determined by the Fermi-point ve
locities and the dressed charge, which in turn can be cal
culated from the total electron density and on-site 
Coulomb-repulsion parameter U. 

For the convenience of the reader, we summarize here 
the equations derived by Woynarovich for computing the 
Fermi-point velocities and dressed charge (for the case of 
no net macroscopic spin magnetization) and solve them 
analytically in some simple limits. 

The dressed charge | is given by 

where £(x) satisfies the integral equation 

| U ) = 1 + - L - f . K(x-x')$(x')dx' , 
7ir J — stnh 

vi \— f" exp(— c> If/4) , . . , 
K(x)= I r ' ' exp(it<>x)a 

J - » 2cosh(<»l/V4) 

The holon and spinon velocities are given by 

2irvc=e'c{k0)/pc{k0) , 

co 

2nv = 
-k. exp 

2ir sink 

X S-l exp 

U 

2-n-sinfc 

E'c(k)dk 

(4.6) 

(4.7) 

(4.8) 

U 
pc(k)dk 

Here pc(k) and t'c(k) satisfy the integral equations 

pc(k)=^- + ^-cosk f ° K(sink-sink')pc(k')dk' 

(4.9) 

and 

E'(k) = 2sink + ^-cosk f ° K(sink-sink')e'Ak')dk' . c 2ir J - * 0 

(4.10) 

These equations can be solved analytically in the follow
ing limits. 

A. Strong coupling limit 

_ In the limit U»l, the kernel of the integral equations 
.K—>4irln2/l/. The Fermi velocities and % can be explic
itly obtained: 

vc=
z2sin(/rrnc) 

4 

4irln2 
U 

n c[2+cos(irn c)] 

vs nil 
[2irnc— sin(2irnc)] , (4.11) 

t , , 41n2 . , , 
S = H r-sin(irnc) . 

We note that the charge-stiffness constant approaches the 
finite value corresponding to free spinless fermions, while 
the spin-stiffness constant goes to zero. 

B. Close to half-filled chain 

As is well known, a half-filled repulsive chain is an in
sulator, and the charge stiffness S)c is zero. Close to the 
half-filled limit, the charge stiffness is proportional to the 
hole density:14 

v £2 

S c = ^ - = 4 n c ( l - n c ) 6 / a 2 , (4.12) 

where b and a are two functions of U introduced in Ref. 
14. On the other hand, the spin-stiffness constant is relat-
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ed to the magnetic susceptibility, which has been ob
tained by Shiba in Ref. 15: 

1 I0(2v/U) 
2w^=v^2^=27^7U) (4.13) 

where Iv is the Bessel function of imaginary argument of 
order v. We see that in this limit the spin stiffness is a 
nonzero constant, while the charge-stiffness constant goes 
to zero as the density approaches the half-filled limit. In 
general, the two stiffness constants are of comparable 
value and have to be calculated numerically. 

We now discuss the possible level crossings as the flux 
through the ring changes. As always, the ground state of 
an individual ring depends crucially on the parities of the 
numbers of up- and down-spin electrons. Below we give 
the ground state and its energy as a function of flux for 
each of the four possible cases. Note that because 
E(— <P)=E(&), we only give the ground-state energy for 
0 < * < 7T. 

C. Nc=4n+2 

In this case, Ns = 2n + l. There are odd numbers of 
spin-up and spin-down electrons in the ground state. The 
quantum numbers Ij must be half odd integers, and the 
Ja are integers. From (2.4) this gives Dc = 0 (mod 1) and 
Ds—0 (mod 1). For * close to zero, the ground state is 
the state with Z>c=Z>s=0. We will call this state (0,0). 
However, for 4> close to TT, the state (0 , -1) with Dc=0, 
Ds — — \ may have lower energy. The energies of the two 
states are 

£0 >o(*)-£(0) = 
2-rrN 

§24>2 

E o , - i ( * ) - - E ( 0 ) = ——-tl IT—<t>r+—— 
ITTN N 

(4.14) 

Here £ (0) is the ground-state energy at 4> = 0. These two 
energy levels will cross at 

tional to (1 — nc) for any nonzero U, as can be seen from 
(4.12). The current is maximum for quarter-filled rings. 
Now we discuss where these levels cross. 

In the strong-coupling limit, the spin stiffness is very 
small, and these two levels cross at the point <bc=-rr/2. 
The energy is close to periodic in the flux with period half 
a flux quantum. At the level crossing, the current 
changes from a diamagnetic one to an paramagnetic one. 
We emphasize that here the period halving is caused by 
level crossing; none of the usual averaging has been intro
duced. 

Near half filling, on the other hand, from (4.12) and 
(4.13), the charge-stiffness constant is very small and the 
spin stiffness is not small. It follows that, close enough to 
half filling, the two levels in (4.14) will cross at some 
point beyond <J> = ir, and in this case the state (0,0) will 
first intersect (—1,0), which then becomes the lowest-
energy state, and (0 , -1 ) is never the lowest-energy state. 
In this case the period of the current is one flux quantum. 

For general U and filling, we have numerically calcu
lated the level-crossing point 4>c. Figure 3 is a contour 
graph of the width of the branch of the parabola centered 
at <I> = 7T as a function of U and the filling. We note that, 
close to half filling, there is a region in the (U, nc) plane 
where the width is zero; in other words, the level crossing 
mentioned above does not happen at all, whereas for 
large U and away from half filling the level crossing 
occurs somewhere near ~ of the flux quantum. 

D. Nc =4n with n integer 

The ground state should have Ns=2n. According to 
(2.4), all the Ij's must be integers and all the Ja's must be 
half odd integers. We have 

A. ( m o d i ) and Z > = 0 ( m o d l ) . (4.17) 

For <I> around 0, the ground state should have Dc = — | 

and Ds = l. The energy of this state is 

<D = - + c 2 vcf 
(4.15) 

We first discuss the current for * close to the origin. The 
current is diamagnetic and is proportional to the flux. Its 
magnitude is particularly easy to find in the two limits 
discussed above. In the strongly repulsive case, 
differentiating (4.14) with respect to <1> and using (4.11), 
we find 

•/ = i v s i n ( l 7 7 l c 

41n2 

TTU 
[2ncir

2 + nc ^cosf nnc) 

+ 2sin(irnc)] * . (4.16) 

The first-order term is actually the current of a spinless 
fermion ring with density nc. We see that for low density 
the current is proportional to the electron density, while 
close to half filling the current is proportional to (1 — nc). 
In fact, close to half filling, the current is always propor-
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FIG. 3. Width d of the local minimum centered at <1>=0 for a 
chain with 4« electrons. Close to the top of the graph (close to 
half filling) is a region where the width is zero; this minimum is 
never the real ground state, and the current is paramagnetic. 
As the density is decreased and/or the repulsion gets stronger, 
the width of that local minimum gets bigger. On the lines 
shown in the figure, the width of the minimum is constant. 
From top to bottom: d=0,0.1,0.2,0.3, and 0.4 flux quantum. 
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£ ( * ) - £ ( 0 ) = ——12*2+—-
2trNb N 

(4.18) 

while for * around w, the ground state should have 
Dc = — j and Ds = 0 . The energy of this state is 

£ ( * ) - . E ( 0 ) = — ^ - ^ ( f l — * ) 
2iriVs 

These two energy levels cross at 

* = 7r—<J> , 

(4.19) 

(4.20) 

where * c is given by (4.15). We note that the spectrum is 
same as in Sec. IV C shifted by half a flux quantum. 

E. ATc=4n + l 

In this case we assumed Ns = 2n ( J V S = 2 M + 1 will give 
the same result). Then we have Dc = 0 (mod 1) and Ds =\ 
(mod 1). The ground state for * between zero and TT is 
the state with Dc = 0 and Ds = —\. The energy is 

£ ( * ) - £ ( 0 ) = —^- | - 2(O—ir/2) 
27TiV 47V 

(4.21) 

Extending the above formula to * < 0, we find that level 
crossing occurs at 4> = 0 and <t> = ±7r. Unlike the level 
crossings for chains with even numbers of electrons, these 
level crossings are caused by the electron statistics and 
also occur for free electrons. 

F. Nc=4n+3 

The ground state in this case is Dc = —\ and Ds = \. 
The ground-state energy is the same as in Sec. IV E. 

Let us now summarize our findings concerning the per
sistent current in mesoscopic Hubbard rings. For rings 
with an odd number of electrons, the period of the 
current is a half a flux quantum, independent of the in
teraction strength. The current is paramagnetic around 
$ = 0: 

y =5(77-/2-|*l)sgn(<t>), B=vc£
2/irN (4.22) 

where sgn(x) is the signum function of x. There is a re-
normalization of the magnitude of the current due to the 
interaction, but the periodicity and sign of the current are 
the same as those of rings of odd numbers of free elec
trons. 

For rings with an even numbers of electrons, the 
current is diamagnetic around 0 = 0 [except rings whose 
density is very close to half filling, in which case the 
current may be paramagnetic for a ring whose electron 

number is 0 (mod 4)]. For a chain whose numbers of 
spin-up and -down electrons are both odd, the current 
will become paramagnetic at * c , 7 r / 2 < 4>c < ir, 

; = 
- 5 * , | * | < * c 

- 5 ( 7 7 - 1 * 1 ) . * C < | * | < 7 T , 
(4.23) 

whereas for a chain in which the numbers of spin-up and 
-down electrons are both even, the switch occurs at 
u — * , , 

| * | < 7 T - * C 

| * | ) , 7 T - * C < | * | <7T . 
(4.24) 

An interesting observation is that for chains with strong 
repulsion U»\, the switch occurs at * c = 7 r / 2 . For 
such chains the period of the persistent current of each 
individual ring is half a flux quantum. A comparison 
with the persistent current of free-electron rings shows 
that in this case the current is drastically different from 
the free-electron case. The current for a ring with An 
electrons for small <P is, e.g., changed from a paramag
netic one into a diamagnetic one. 

For rings with not very strong interactions or with a 
density close to half filling, the period of the persistent 
current of an individual ring is still one flux quantum. 
However, just as demonstrated by Loss and Goldbart, 
and by Kusmartsev16 for free-electron rings, the average 
current of a collection of rings with random numbers of 
electrons has a period of half a flux quantum. Assuming 
there are equal numbers of rings with even and odd num
bers of electrons, a simple average of the current yields 

J a v 

5 ( s g n * - 4 * ) , | * | <7r-<t>c 

5 ( 2 7 r s g n * - 4 * ) , 77—*c < | * | < * c (4.25) 

5 (37rsgn* —4*) , * c < | < t > | < 7 r . 

The period of the average current is half a flux quantum, 
and the current is paramagnetic. The periodicity and 
sign of the average current are the same as those of free-
electron rings. 
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II . T H E SUPERSYMMETRIC t-J MODEL 

The (two-dimensional) t-J model was invented by F . C. Zhang and T. M. 

Rice as an effective model for describing the copper-oxide planes in high-Tc 

superconductors1 2 6 . The model describes electrons on a lattice with a hamilto-

nian that includes nearest neighbour hopping (denoted t) and nearest neighbour 

spin exchange and charge interactions («7). The Hilbert space of the model is con

strained to exclude double occupancy of any single site, which corresponds to an 

infinite on-site repulsion. In the limit J <^.t the t-J model can be obtained from a 

large-?/ Hubbard model1 2 7 ; for other values of the couplings the t-J model seems 

to exhibit quite different phenomena like phase separation (for J ^> 2 £ ) 1 2 8 - 1 3 0 . 

A particularly interesting feature of the t-J model in arbitrary dimensions is 

the supersymmetry 1 3 1 - 1 3 4 of the model for the special case J = ±2£ (Ref. 135). Here 

supersymmetry is to be understood as invariance under a graded Lie algebra, tha t 

does not contain the Poincare algebra, and is thus different from the supersymmetry 

encountered in relativistic quantum field theories. Supersymmetry in Solid State 

Physics was first discussed in Ref. 136. 

The history of the exact solution of the supersymmetry t-J model is quite 

complicated and we will a t tempt to give a chronological account of its evolution 

below. 

Surprisingly the exact solution of the t-J model at the integrable point J = 

±2tf in one dimension pre-dates the paper of Zhang and Rice by 14 years. This 

apparent contradiction is due to the equivalence (up to a trivial term in the hamil-

tonian) of the supersymmetric t-J model to a quantum lattice gas of hard-core 

bosons and fermions, which was introduced and solved by means of a nested Bethe 

Ansatzby C. K. Lai in 1974137 (the t-J model is equivalent to the case of one species 

of bosons and two species of fermions). In his seminal 1975 paper B. Sutherland1 3 8 

pointed out a mistake in Lai's results and introduced a more general multicompo-

nent lattice gas, which he then solved by a Bethe Ansatz [repr.ll.l] ( the derivation 

of the Bethe Ansatz Equations (BAE) is based on Sutherland's paper Ref. 139). He 

also determined the ground state and low-lying excitations for a gas of N species 

of fermions. The hamiltonians of these lattice gas models can be written as a sum 

over permutation operators. Due to their different choices of reference states for the 

Bethe Ansatz the form of the Bethe Ansatz equations derived by Sutherland and 

by Lai are quite different. In the literature these two different forms of BAE are 

referred to as Sutherland and Lai representations respectively. A third form of the 

BAE was discovered by F. H. L. Efiler and V. E. Korepin in Ref. 140. 
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In 1987 P. Schlottmann1 4 1 [repr.11.2] investigated the question of integrability 

of the model introduced by Zhang and Rice in one dimension. He discovered the 

solution at J = ± 2 i and derived the Bethe Ansatz equations (in Lai's representa

tion). He discussed the integral equations for the ground state in a magnetic field 

as well as the thermodynamics. He also found the connection with the integrable 

quantum lattice gas of Lai and Sutherland. 

In 1990 and 1991 P. A. Bares, G. Blatter and M. Ogata obtained the 

Bethe Ansatz solution of the t-J hamiltonian in both Sutherland's and Lai's 

representation and gave a detailed account of the excitation spectrum in both 

representa t ions 1 4 2 - 1 4 4 [repr.11.3]. At the same time as Bares et al., S. Sarkar in

dependently discovered the supersymmetry of the model and constructed the Bethe 

Ansatz solution in Sutherland's form. Sarkar derived the integral equations for the 

ground state in a magnetic field. He discussed the ground state and low-lying exci

tations close to half-filling145 [repr.11.4]. He also constructed a basis of supercoherent 

states for the model1 4 6 . The magnetization curves for the model were determined 

by M. Quaisser, A. Schadschneider and J. Zit tar tz1 4 7 . 

The first ones to study the asymptotic behaviour of correlation functions were 

N. Kawakami and S.-K. Yang1 4 8 '1 1 6 [repr.11.5]. Applying the methods of confor-

mal field theory for Bethe Ansatz solvable models, developed by H. Frahm and 

V. E. Korepin for the Hubbard model (see [repr.1.23]), they evaluated the finite-size 

corrections and critical exponents for the supersymmetric t-J model and compared 

their results with the ones for the repulsive Hubbard model. Shortly after the work 

of Kawakami and Yang, who performed their calculations in the Lai representation, 

Bares, Blatter and Ogata performed studies of the conformal properties in Suther

land's representation1 4 3 . A detailed account of the derivation of many of the results 

mentioned above can be found in Bares' thesis1 4 4 . Exact results for the t-J model 

can be obtained by Bethe Ansatz only at the supersymmetric point J = ±2t. To 

obtain exact results for other values of the couplings, one therefore has to use other 

techniques. Pursuing this path , P. Schlottmann succeeded in obtaining an asymp

totically exact solution for regions away from the supersymmetric point J = ±2t 

for small band fillings149. 

The integrability of the model in the sense of the existence of a family of 

commuting transfer matrices and an infinite set of conservation laws was established 

by F. H. L. Efiler and V. E. Korepin1 4 0 , who studied the model in the framework 

of the (Graded) Quantum Inverse Scattering Method (QISM) 1 5 0 ' 1 5 1 . The first to 

apply the QISM to the permutation-type models was P. P. Kulish, who re-derived 

Sutherland's form of the BAE 1 5 0 by a nested Algebraic Bethe A n s a t z 1 5 2 - 1 5 4 . 
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The question of completeness of the Bethe Ansatz states was resolved by 

A. Forster and M. Karowski1 5 5 , 1 5 6 [repr.11.6]. They proved a highest weight theorem 

for the Bethe Ansatz states with respect to the su( l |2 ) supersymmetry of the t-J 

model and showed completeness of the set of states obtained by acting with the 

5u(l |2) raising operators on the Bethe Ansatz states. Quantum deformations of 

the supersymmetric t-J model were found by A. Kliimper, A. Schadschneider and 

J. Zi t tar tz1 5 7 , R. Z. Bariev1 5 8 '1 5 9 , and A. Foerster and M. Karowski1 6 0 . R. Z. Bariev 

also studied the correlation functions of such an anisotropic t-J model1 6 1 . 

The transport properties of the model in an external magnetic field were stud

ied in the framework of the Landau-Luttinger approach by P. A. Bares, J. M. P. 

Carmelo, J . Ferrer and P. Horsch162 . 
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In a recent paper, Lai introduced a lattice-gas model. In this paper we generalize Lai's model, making 
application to various systems such as dilute Heisenberg magnets, higher-spin systems, and a lattice of SU(3) 
triplets. By a careful consideration of general thermodynamic stability, and by variational arguments, we 
demonstrate Lai's solution to be incorrect, and in turn produce the correct solution in this case and in other 
cases including higher-dimensional models. The remaining cases we treat in one dimension by Bethe's ansatz, 
reducing the problem to coupled integral equations. We locate the singularities of the ground-state energy in 
the phase plane; and we explicitly calculate the absolute-ground-state energy, excitations above the absolute 
ground state, and the first correction to the absolute ground state for small concentrations of impurities. 

I. INTRODUCTION 

In a recent p a p e r , l Lai introduced a model for 
a quantum lattice gas and presented a solution in 
the case of one dimension. However, his solution 
is incorrec t for his most interesting example 
A = - 1 (our example BZF), and thus his conclusion 
that two phases will coexist for some fixed con
centrat ion is invalid. This can be seen by noting 
that upon expanding the ground-state energy E/L 
as a function of M/L for fixed N/L, both of La i ' s 
equations (15) and (20) give a positive correct ion. 
However, E/L for fixed N/L must be symmetr ic 
in M/L about N/2L and by the requirement of 
thermodynamic stability, must be concave upward. 
Thus the f irs t correc t ion must be negative or ze ro . 

The reason for Lai not obtaining the t rue ground 
s ta te appears to be that neither of his assumptions 
for the distribution of quasimomentum in Bethe 's 
ansatz corresponds to the ground-state d is t r ibu
tion. In fact, it is unclear in what sense Bethe 's 
ansatz i s a solution in this case . 

We have avoided this problem in the present 
paper by instead using general arguments of 
thermodynamic stability coupled with lower bounds 
on the ground-state energy from the variational 
principle. This method has a definite advantage 
over an explicit solution for the wave function and, 
in fact, gives resu l t s in higher dimension as well. 

The other situation that Lai considered, his case 
A = + 1 , corresponds to our BFz

t and in this in
stance our equations agree . 

Although our p r imary purpose is to discuss La i ' s 
solution, we have in addition considerably genera l 
ized and rephrased the original problem. For in
stance, our Eq. (1) would be a natural choice for a 
prototypical Hamiltonian to exhibit the phenomena 
of mixing in a multicomponent sys tem. In this 
formulation, we no longer have the a rb i t ra ry r e 
s t r ic t ion of a coupling constant to par t icular va l 
ues , i . e . , A = ± l . Finally, numerous applications 
a r e made to various branches of physics in which 

multicomponent sys tems a r e of in teres t . 
The final portion of our paper is devoted to ex

plicit calculation of proper t ies of in teres t and the 
demonstrat ion of their dependence on the number of 
components. 

II. STATEMENT OF THE PROBLEM 

Consider a periodic one-dimensional lattice of 
JV s i t e s . P lace N objects, or par t ic les , on this 
latt ice exactly one to a s i te . Let the operator P]tk 

permute whatever objects occupy s i tes j and k. We 
then wish to compute the eigenvalues and eigenfunc-
tions of the Hamiltonian H, 

N 

The problem is obviously invariant under the p e r m u 
tation group Ss We shall also have occasion to 
consider the corresponding problem on a square or 
cubic lat t ice. 

We must further specify the nature of the N ob
jec ts . We assume P species , or components, de 
noted A, B, ... , P. Objects of a given species A 
a re identical, but may ei ther be bosons A- + \, or 
fermions A = - 1. This specification of species 
s ta t is t ics we designate as type {P} ={A, B, . . . , p}. 
Fur ther , if x of the species a re bosons and y a re 
fermions, x+y = P, then we shall often wri te the 
type {P} a s B*F\ 

Let us define NA as the number of objects of 
species A. The JVA a r e constants of motion, for 
the permutation opera tors do not c rea te or annihi
late par t i c les . If we further define NAB as the num
ber of neares t -neighbor pa i r s of species A and B, 
then we have the following relat ionships: 

£ NA=N, 

ZE NAB=N, 

(2a) 

(2b) 

12 3795 
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NA = NAA + -
B(*A) 

N. 

| ( ^ A A + Z ^ A B ) . (2c) 

Corresponding quantities normalized to the total 
s i te number JVwe denote by lower case n, i . e . , 
nA = NA/N, n-\. 

It is useful to define a res t r ic ted Hamiltonian 
H({p}) which will be equivalent to H if we only con
s ider s ta tes of type {P}, 

H({P}) - ./V ± I l_, ANAA + HT,<PAB). (3) 

The operator <pAB pe rmutes only neares t neighbors 
of species A and B, otherwise it gives ze ro . This 
res t r i c ted Hamiltonian is invariant under SN® • • • 
® S „ p , not S„. 

If two opera to rs a re related by a unitary t r a n s 
formation, they have the same spect rum. In prepa
ration for l a te r discussion, we catalogue here the 
following unitary t ransformations, and their effect 
on H and {p}: 

(a) Let us multiply al l wave functions by the 
wave function completely ant isymmetr ic in all ob
jec ts . This operation we denote by L, and 

LHL = -H, L{P}={-P}. (4) 

We see that the ± sign in the original expression for 
H is unnecessary, if we vary the type. We hence
forth choose the minus sign. 

(b) Consider the following operat ions, denoted by 
JA: Proceed around the lattice (JVeven) and at 
each even numbered s i te , multiply the wave func
tion by +1 if no par t ic le of species A is present , 
- 1 if there is a par t ic le of species A present . 
This operator then t ransforms H by 

JAHJA =H+2 E JA{P}={P}. (5) 

Thus JA on H changes the sign of <t>AB, all B*A. 
(c) The previous operations may be applied to 

higher dimension, as well as to the one-dimensional 
problem. However, there exists a t ransforma
tion—the Jordan-Wigner transformation—applicable 
only to one dimension. This transformation may be 
used to change bosons into fermions and vice ve r sa . 

We first note the well-known la t t ice-gas analogy 
between hard-core bosons on a latt ice, and two-
component spins on a lat t ice: If S, = - s , there i s 
no boson; i f S 2 = + l , there is one boson. Then, in 
t e rms of the Pauli spin opera to rs , the Jordan-
Wigner transformation to fermion creat ion and an
nihilation opera tors C f , C is 

c, "a]Ual- (6) 

We denote such a Jordan-Wigner transformation 
on the species A by KA. Then the effect of KA is 

KAHKA=H+WAA, KA{A, B, . . . , P} 

={-A,B,...,P}. (7) 

That i s , the transformation changes the sign of 
'PAA- On the other hand, if we vary the signs of 
all the t e rms <pAA in H, we need not vary the type 
{P} at all . 

The res t r ic ted Hamiltonian is invariant under 
KA, but since the type of any wave function does 
change, we conclude that the eigenvalues of the 
res t r ic ted Hamiltonian a r e independent of the type. 

(d) We define K = XlAKA, and thus 

iffflf = E * A A - E E 4>AB, K{P}={-P}. (8) 
A A>B 

(e) Finally, if we multiply K and L to give a 
transformation J s KL, then 

JHJ= - E <PAA + E I * A B ) J{P} ={P). (9) 

III. GENERALITIES 

In this paper we shall consider the ground-state 
energy E0, or € = E0/N, for the Hamiltonian of 
Eq. (1) with the minus s ign.2 F i r s t , we shall de 
rive some general p roper t ies of € ( { P } ; nA, • • • , 
nP). 

It i s easy to verify the stability property that 
€({p}; nA) considered as a function of the concen
trat ions nA is concave upwards: To derive an up
per bound on € at a concentration 

nA=an\ + (l-a)n\ ( 0 < u < l ) , (10) 

we divide the system into two fractions; aN and 
(1 -a)N. In the f irs t portion, we take as a t r ial 
wave function the ground state at a concentration 
n\, and in the second, the ground state at a con
centration r?A . Then by the variational principle, 

€ ( n A ) « a e ( n A ) + ( l - a ) e ( n A ) . (11) 

This is precise ly the s tatement that e(nA) con
caves upwards as a function of nA. 

Suppose we have two species A and B which a re 
both bosons; i . e . , A = B = + 1. Let us consider the 
reduced Hamiltonian, 

H({P}) = -(NAA + NBB + <PAB) 

- L, (<PAC+<PBC)-12 X- <PCD- (12) 
C(*A,B) C*D 

(*A,fl) 

The minimum of the operator - tpAB is equal to 
-NAB. Thus, if we let the label S represen t ei ther 
A or B, 

H{{P})>-NSS- E Ncs-Y^L'hD- (13) 
Ct.*S) C»D 



\2 M O D E L F O R A M U L T I C O M P O N E N T Q U A N T U M S Y S T E M 3797 

If we consider eigenstates of H{{P'} of type {P1}, 
where 

{P'}={S = 1, C,D,...,P}, (14) 

then these s ta tes will serve as acceptable s ta tes 
for H({P}). We then choose the ground state 
Mip'}) t o minimize the right-hand side of Eq. (13) 
with the ground-state energy t({P'}; ns, nc, . . . , 
nP). We finally conclude 

e({l, 1, C, ... , P}; an, (I - a)n, tie, ... , n„) 

*€({1, C, . . . , P};n, nc, ... , np) ( 0 5 a < l ) . 
(15) 

But by the concavity property, the r eve r se must 
also be true, and hence we have an equality, 

€ ( { l , l , c , ••• , P}; an, (l-a)n, «c, . . . , nP) 

= €({1, C, ... , P}; n,nc, ... ,nP) ( 0 £ a = = l ) . 
(16) 

In words: If two components of a P-component 
sys tem are bosons, then the ground-state energy 
is identical to a (P- l )-component system. 

Before res t r ic t ing ourselves entirely to one d i 
mension, we briefly summar ize the few solutions 
to Eq. (1) which a r e known exactly in three d i 
mensions . F i r s t , the one-component sys tems a r e 
obviously t r ivial . Second, by Sec. II, the ground-
state energy for B*F* is equivalent to BF". Thus 
for B", € = - 1 . 

Third, let us consider BF. We use a r ep resen ta 
tion where bosons a r e represented by vacancies on 
the latt ice and the fermions hop about. Then the 
corresponding reduced Hamiltonian is 

H = NFF -NBB -<PFB 

= NF-NB-<pFBi (17) 

Thus all eigenfunctions a r e given by the familiar 
expression 

*(Xi, . . . , X„F) = det[exp(*KJ -X , ) ] , (18) 

where 

K) =2inJoi/N
l/3, nJa a r e integers , 

j = l, ... , NF; a = 1,2, 3 . (19) 

Then the energies a re 

2 
- ^ c o s i f , . (20) 

.., ..„ N 

For the ground state in one dimension, 

£0 = 2 ^ - 1 - ( 2 / i r ) s i n ( ™ r ) . (21) 

Lastly, Eq. (20) or (21) also gives the ground-
state energy for B'F. 

IV. EXAMPLES 

In the remainder of this paper, we will consider 
only the case of one dimension. Before presenting 

the exact solution, we will f i rs t give a few ex
amples of sys tems to which the Hamiltonian of Eq. 
(1) would apply. Fo r the case of two species P = 2 , 
it is natural to use the language of spin-1/2 s y s 
tems . The reduced Hamiltonian is 

H=-{ANAA + BNBB)-<I>AB. (22) 

We consider each site as a spin | , with species A 
given by spin-up, species B given by spin-down. 
Then, in t e rms of the Pauli spin mat r ices ax, <J„ 
CTJ, we have a representat ion of 

<t>AB = Z ! i fa iTi + ffjtfJ), (23a) 

and 

- £ i ( l + *,»;), BB 
nn 

ANAA + BNBB=( - X ^ U + o X ) , FF 
nn 

± T,a" FB 

(23b) 

The expression £„„ represen t s a summation over 
nearest-neighbor pa i r s . 

Since %ct is a constant of the motion, equal to 
NA -NB, which may be fixed at will, we find the 
following ca se s : 
(a) BB, 

#=4E( 1 + 5 -^ ' ) - (24) 

Thus this type corresponds to a Heisenberg fer-
romagnet. 
(b) FF, 

H = +~YJ (1 + V . ' - o i a J - o v r J ) . (25) 

Let us transform this Hamiltonian by the operator 
J of Eq. (9), which changes the sign of 4>AB. Then 
the transformed H is 

# = + ? Z (1+5-?') . (26) 

This type corresponds to the Heisenberg ant i fer ro-
magnet. 
(c) FB, 

•ff=-p" X) (crX+cr»a'y):':£0*- (27) 

This type corresponds to the X- Y model. 
Exact solutions have been found for all of these 

cases , and we will make use of these resu l t s in our 
la ter analysis of the three-component sys tem. Lat
t ice-gas interpretat ions for the above sys tems a re 
also familiar in the l i t e ra ture . 

We now consider the case of three components 
P = 3. There a r e four distinct choices for the p a r -
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t i d e s ta t i s t i cs . We d iscuss each in turn, again 
using the language of spin | : P lace M spins on a 
latt ice of N s i t e s , one to a site—thus M-&N. We 
then call an empty s i te , or vacancy, species A; 
spin-up species B; spin-down species C. In an 
obvious notation, A = 0, £ = •, C = \. 
(a) BBB, A = B=C = l. 

We write the Hamiltonian as 

H= - W>0,+ <*>„,) -iV00 - (N„ + N„ + </>„). (28) 

The f i r s t - t e rm "hops" spins to nearby vacancies 
and thus r ep resen t s the kinetic energy of the spins . 
We denote it by T. The last te rm may be writ ten 
with Pauli ma t r i ce s as 

•(N„ + Nt, + Nu) = -Yl i ( l + 5 . f f ' ) . (29) 

The symbol £s.p. r ep resen t s a summation over 
nearest-neighbor spin pa i r s only. 

Using the relat ionships between the various N's 
given in Eq. (2), we may rewri te N00 as 

Nm = NQ-N,-N, +N„ +N„ +N„ 

= N-2M+^2 1 . (30) 

The f irst two t e r m s a re constants of motion, which 
may be fixed. The last t e rm is the number of spin 
pa i r s . If we combine this with Eq. (29), we obtain 
an interaction V between nearest-neighbor spins of 
the form 

V=-T, i(3 + a°?') (3D 

Thus, if energies a r e measured with respect to 
separated spins, we find that spin pa i r s in a singlet 
state have zero energy, while spin pa i r s in a t r i p 
let state have energy - 2. 

The final form for our Hamiltonian is 

H=T+V-(N-2M). (32) 

The obvious interpretat ion is as a dilute Heisenberg 
ferromagnet which prefers to form bound pa i r s . 

The discussion of the other three types proceeds 
s imilar ly , and we will present them with less de
tail, 
(b) FBB, -A = B=C = l. 

We find the Hamiltonian to be 

H=T+ V+N-2M. (33) 

where T is the kinetic energy as before, but now 
the interaction energy 7 between spins is 

V = Y1 i(l-ff-ff'). (34) 

Again the interpretat ion is as a dilute Heisenberg 
ferromagnet, but this time there is no preference 
to form bound pa i r s over separated spins, 
(c) BFF, A = -B = -C = l. 

We find the Hamiltonian to be 

H=T-(N-2M) 

- r X) (1 -o,o', + Ox<Tx + OyO'y) • (35) 
* s .p. 

We now apply a unitary transformation JJA from 
Eqs . (5) and (9) which has the effect of changing 
the sign of <p,,. Thus the final form for the t r a n s 
formed H is 

H=T+V-{N-2M), 

with 

V=-\ £ (1-5-5 ') . 
* a.ti„ 

(36) 

(37) 

The system is now a dilute Heisenberg ant i fer ro-
magnet, inclined to form bound pa i rs of spins, 
(d) FFF, A = B=C=-1. 

Again we apply the transformation JJA to give a 
Hamiltonian 

H=T+ V+N-2M. 

with 

V=\ E (3 + 5-5'). 
* s .p. 

(38) 

(39) 

This is the case of a dilute Heisenberg ant i fer ro-
magnet, now with no preference for bound spin 
pa i r s . 

Thus our original Hamiltonian of Eq. (1) contains 
a wealth of par t icular models . For the examples 
just given, that of dilute magnets, we may expect 
both magnetic and electr ic behavior, with the pos 
sibility of singular behavior in the ground s ta te . 

Other interpretat ions a re possible for t h ree -
component sys tems . The f irst that comes to mind 
might be a spin-1 system, with Se = + 1 , 0, - 1. But 
this is not the most natural , and we delay d i scus 
sion for the moment. Instead, we re turn to the two-
component system and note the Heisenberg mag
nets, 

H = ± ! > ? ' • (40) 

We may consider the three Pauli spin mat r ices 
aa (a = 1, 2, 3) as the genera tors of SU(2); H is 
s imi lar in form to the Casimir operator . From 
this viewpoint, a natural generalization of Eq. 40 
to the three-component case would be a Hamiltonian 

H=±2YJ Jl F«FL (41) 

where Fa (a = 1, . . . , 8) a re the genera tors of 
SU(3). 

The equivalence of Eq. (1) and (42) is most easily 
seen by using instead of Fa's, the nine t r ace l e s s 
3 x 3 mat r ices A,,"'. 
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Then the Cas imi r operator is 

We note the relationships 

nn 

(ji* v; no sum over n, v), and 

nn 

Thus, 

(42) 

(43) 

(44) 

(45) 

(46) 

In fact, due to the extensive symmetry of the 
original problem, we may actually solve the more 
general problem of either a chain 

.{3}{3}{3}{3}... , 

...{3}{3}{3}{3}. 

(47a) 

(47b) 

{3} and {3} a r e the two nonequivalent contragradient 
t r iplet representat ions of SU(3), often called quark 
and antiquark. 

In the same way that Eq. (40) is invariant under 
the totalSU(2) group, Eq. (41) is invariant under 
the total SU(3) group. The conserved q u a n t i t i e s -
total third component of isospin and total hyper-
charge—are l inear combinations of the part icle 
numbers NA. 

Finally, we r e m a r k that a s imi lar cor respon
dence exists between the P-component system and 
an SU(P)-invariant interaction. 

We now re turn to consider a spin-1 r ep resen ta 
tion for our sys tem. This is most easily done by 
writing the SU(3) genera tors in t e rms of the three 
spin opera tors S„ (fi = 1, 2, 3) and the six tensor 
opera tors Tu„ = SllSi, + Si,Su. The six tensor opera
to rs a re not independent, however, for 

T»li=2SliSll=4I. (48) 

Then we have the identity, 

A^K = 2^2 (S^Sl + ^T^T'^) -^16N. (49) 
nn nn 

Thus 

E <f>*v=Y.&S»&+T»»Tlv)-™. (50) 
u,v nn 

Considered as a model of a spin-1 magnet, we have 
not simply dipole interactions but also tensor inter
actions. Again, there are some nonequivalent 
choices of sign for the various terms in Eq. (50). 
The total spin components are individually con
served. 

V. SOLUTION OF THE PROBLEM 

We now present the exact solution of the one-
dimensional problem. F i r s t , we r e s t r i c t our 
se lves to types of ei ther Fp or BFP. If we have 
these solutions, then by the arguments of Sec. VII, 
we have the ground-state energy for all types. This 
is not to say the other types a r e not interest ing, 
for we do not have the excited s ta tes . However, 
until the excited s ta tes of the Heisenberg f e r r o -
magnet a re understood, we can not expect to p ro 
ceed with the multicomponent ca se s . 

We now order the species so that the f irst P 
species a r e fermions with A7t >NZ> • • • > NP. We 
define the par t ia l sums, 

M, = £ > , = # - £ N,. (51) 

We now consider the fermions of species 1 as a 
background through which the other Ml objects 
move. We write the Hamiltonian as 

H = Nn + T-^2' <pAB. (52) 

However, we may use the relation 

Nn=N-2M1 + Y, NAB (53) 

to write 

H = N-2M1 + T-TI (<t>AB~NAB). (54) 

We seek solutions to this Hamiltonian as a wave 
function *(X 1 ( • • • , X„), where Xt, . . . , XM a re 
the locations of the M = Mt objects, of the form 
known as Bethe 's ansatz, 

*Q = HMQ, P)exp i YJ XJKP (55) 

Here P is one of the Ml permutations of the i t ' s 
(not to be confused with the number of species of 
fermions), Q is one of the M\ permutations of the 
objects, and the X's a re ordered so that X± < Xz 

< • • • < Xa. We may easily determine the eigen
values of H, provided that such a wave function 
exis ts , by considering the par t ic les to be separated. 
Then the final term of Eq. (54) gives zero , and we 
have 

E = N-2M-2^2 cosKj. (56) 

As is familiar in such verifications of Bethe 's 
ansatz , we ar range the M\ coefficients A(Q, P), for 
fixed P, as a column vector | p . Then we find that 
the boundary conditions at Xi = X5-l can be s a t i s 
fied provided 

« - . . # - - - = ir}f « • • • . ; * . . . , (57) 

where 
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Y?t = {Xii + Pals)/(\-Xls). (58) 

Here P a S interchanges Qa and QB, and 

(59) 1 eiKi-elKi 
Xtj (l + eiKi)(l + etKj) 

We now make a change of variables, 

aJ{KJ)=itnn(iKJ), (60) 

so that 

^ ^ / ( a , - ^ ) . (61) 

However, this is precise ly the form treated by 
Yang3 and more generally by Sutherland.4 Thus 
we immediately have that the Eqs. (57) a r e cons i s 
tent, and that requir ing the problem to be periodic 
imposes the following coupled algebraic equations 
on the I t ' s : 

n(|efs)=n(^||)n(f^|i) „ , 

n(tffy-)=n(|5feff). *> 
(62£) 

1, BFP. 

Equation (62£) presents the two alternate choices 
for the final equation, the f irs t corresponding to 
Fp and the second to B F P . All intermediate equa
tions have the form of Eq. (62/3). In all, there are 
P - 1 equations for M^ var iables a, M2 var iables 
0, . . . , Mp< var iables £ if Fp; or P equations for 
My var iables a, .. ., Mp variables t if BFP. 

We now take the logarithm of these equations, 

NK(a) = 2nJa-^2 6(a-a) + J^6{2a-2/3), (63a) 

£ > ( / 3 - £') = 277JS+X>(2/3 - 2a) + X > ( 2 0 - 2>0 > 

X > ( £ - £ ' ) = 27T.7t + X > ( 2 £ - 2 5 ) , FF 

0 = 277Je + X ] 9 (2£-26) , BFF 

(630 

(63£) 

Here 8(x) = -2tan"1(«), and J,,,, Jv..., J t a re in
tegers (half odd integers) which a r i se from the lo
gar i thm of + 1 ( - 1) and serve as quantum numbers . 

Finally, we consider the ground state where the 
the J's a re dense about the origin and the var iables 

are smoothly distributed with densit ies Rj(a) be 
tween l imits ±Bjm These densit ies are normalized 
so that 

M, 
Rj(a)da = 277-^ =2mnj (64) 

Then the Eqs. (63) become integral equations for the 
densities Rj(a). If we arrange the densit ies Rt(a) 
as the elements of a column vector R, then the in
tegral equations may be put in the concise matr ix 
form 

| = : R + i t B f i . 

Here, 

dK 4 
Wi = *,l da 1 +4a' T°n> 

0, l a I >Bj 

(65) 

(66) 

(67) 

and F£ is a matr ix whose elements [K]u a re integral 
opera tors . Let us define K„ as the integral opera
tor 

^ f l ) ,s£*ufe^- (68) 

It has eigenvalues given by the Four ier t ransform 
K„(k) 

Kn{k) = e-[kUn. 

We note the relation 

We may now write out the matr ix K for the two 
cases: If Fp, R is of dimension P - 1, and 

[ * ] „ = B , A - ( 6 « , i . i + 8«. j - i ) *a . 

If BFP, R is of dimension P, and 

[K\l, = $i,,-f>iP?>,p)K1-$i,Jn + ?>ltJ.l)Kt. (72) 

We may wri te the ground-state energy per p a r 
ticle e also in matr ix form as 

(69) 

(70) 

(71) 

e = l - - ^ r s i ? 
2JT 

= 1-
dK_ 
da 

Finally, let us rewri te Eqs . (64) as matr ix equa
tions. 

1 r \ 

t us r 

m = — TJ* B R , 
— 277 ' 

re 

WBR\=( 'daRjia) 
J-B, 

da , (56') 

— 2TT 

where 

(64') 

(73) 
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To summar ize , we collect in the very concise 
matr ix form our basic Eqs . (65), (56'), and (64'): 

2Trm = r?B_R_, 

€ = l-VBR/2ir. 

(65) 

(56') 

(64') 

We a re to solve for .R in t e r m s of B, calculate €, 
m as functions of B, and then el iminate B to find 
€ ( m ) . ~~' 

If all l imits a re finite, then Eq. (65) is a non-
singular matr ix Fredholm equation, and the solu
tion is an analytic function of the l imits Bt. Thus, 
in turn, the ground-sta te energy must be an analytic 
function of the concentrat ions. Thus the region 
0 < B j < + ° ° we call the fundamental domain, and we 
now determine the region of concentrations to 
which it cor responds . 

F i r s t , if Bs = 0, then mi = 0, and we conclude 

Bl = 0~nl! = 0, k>j. (74) 

Second, suppose Bs = °°; then we integrate the equa
tion for Rj from -<*> to +°° and find 

^i1 = 2mJ-mjn-mj_v j<P 

Bj = +°°~nj. i<P. 

The P equation, however, gives 

Bp = + °°~nv = 0. 

(75) 

(76) 

In this case, the problem is reduced from FPB to 
FP^B. 

We finally conclude that the fundamental domain 
corresponds to 

>«2 : • >np (77) 

and s ingular i t ies occur only at the boundaries . By 
permuting the fermion concentrations, the funda
mental domain is mapped onto the entire physical 
region of concentrations, and the ground-state en
ergy obeys this permutation symmetry Sp. Figure 
1 i l lus t ra tes the surfaces of s ingulari t ies in the 
phase plane for the two three-component sys tems 
F3 and BFZ; the shaded region is the fundamental 
domain. 

We note also, that if we are constrained to a s u r 
face of s ingulari t ies , Bj = +X, then the corresponding 
Rj may be eliminated so that the result ing equations 
a re again a nonsingular matr ix Friedholm equation. 
We then conclude that res t r ic ted to a singular s u r 
face, s ingulari t ies occur only at the intersect ion 
with another singular surface. 

VI. ABSOLUTE GROUND STATE OF THE FF PROBLEM 

As an example, we may explicitly calculate the 
energy per par t ic le e(P) for the absolute ground 

FIG. 1. We show the l ines of s ingular i t ies in the phase 
plane tor the two three-component sys tems BF2 and F 3 . 
The shaded region is the fundamental domain, and the 
ground-s ta te energy is analytic within this region. The 
l imi ts of the integral equations a r e here correlated with 
the boundaries of the fundamental domain. 

state of the .F problem. The l imits a re all +°°, 
the concentrations are all equal, and thus if we 
Four ier t ransform, we obtain a matr ix equation. 
The Four ie r t ransform of K_ is a (P - 1) x (P - 1) 
matrix, 

[7 +K]ij = 6U(1 +XZ) - (5 i i > + 1 + 6 , ^ . ^ (78) 

where X = e'ik,n. The Four ie r t ransform of the 
resolvent (I + J ) is the inverse of this matr ix and 
may be calculated by f irst finding the eigenvectors, 

MJ) = (2/p)U! sin(mj/P) (n = l, . . . , P - 1 ) , 
(79) 

and eigenvalues 

\„ = 2Xcosh^k-cos(m/P). (80) 

Then we have 

[7+J] ',*?MMlVi). (81) 
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We then may use this expression to solve for the 
Fourier t ransform of the densi t ies . 

5 . . . 27T £ 4 sin(irjn/P)sin(ira/P) 
i{ ) = P fa cosh(ife) - cos(7m/P) (82) 

To sum this s e r i e s , we Four ie r t ransform back and 
obtain 

Rj(a) = 
4TT 1 
P sinh27ra 

x £ sin(7rjn/P) stnh[27ra(l - n/P)] . (83) 

The summation now is simply four finite geomet
r ic se r i e s , and we have 

R , , 2TT s infa ' /P) 
jKa} P cosh(27ra/P) - COS(TT?/P) ' 

The Fourier t ransform of this expression is 

sinh|fe(P - j) 

(84) 

Rj{k) = 2ir-
sinhiPk 

(85) 

A simple check is to calculate the concentrations 
ntj by 

mJ = (l/27r)flJ.(0) = ( P - j ) / P . (86) 

Thus all n, = l / P . 
Using the evaluation of Eq. (85), we may re turn 

and evaluate the Four ier t ransform of the r e s o l 
vent, a symmetr ic matrix, 

[/+£]„ i K | / 2 s inh j K(P - j) sinhg Kl 
sinhsP/Csinhl if 

(87) 
The energy is given as 

4da 

•w-i-hCi + 4a' 
R^a) 

- l - T d K e - ™ * * ! 1 ' ^ " . (88) 
J . . sinhffeP 

Let us define a new variable, 

We may rewri te e(P) as 

2 r i y 1 / p - 1 - l 
«(P) = 1- d dy~ 

(89) 

(90) 

Such an integral may be rewri t ten in t e r m s of 
Eu le r ' s digamma function, 

< M * ) ^ l n r ( * ) . (91) 

We find 

c(p) = i - ( 2 / P ) [ i K l ) - ! K i / P ) ] 

= - l + (2/P)[ !/ )(l + l / P ) - ! / . ( l ) ] . (92) 

Typical values a r e 

0(1) = - C = - 0.577 2 1 5 . . . , (93) 

where C is Euler ' s constant, which cancels out in 
the explicit express ions 

iMD-!Ki) = 21n2, 

WD -Mi) = 7 7 / 2 / 3 + 3 ^ 1 , (93a) 

!/)(!) - Wi) = TT/2 + 3 ln2. 

Finally, an expression useful for large P is 

•CP)- i + a £b^(*) . 
6=2 ^ 

Here f (fe) is Riemann's zeta function, 
BO 4 

(94) 

(95) 

The behavior of e(P) i s shown in Fig. 2. 
As for any problem which is solved by Bethe' s 

ansatz, the low-lying excited s ta tes a re obtained 
from the original algebraic equations by making 
al ternate choices for the quantum numbers . Thus, 
we select one quantum number from any of the P 
- 1 equations, and change it; the removal c rea te s 
a hole and the new choice c rea tes a par t ic le . The 
necessary manipulations of the integral equations 
are by now familiar and lead to the following exp re s 
sions for the energy &€ and momentum Afe: 

e(P) 

FIG. 2. Absolute ground-state energy per particle for 
the P-component system Fp is shown as a function of the 
number of components. 
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Afe=;r;J 'da^^a,). 
(96) 

The variables B{ a re to be eliminated between the 
two equations. 

Let us consider the low-lying excited s ta tes about 
the absolute ground s ta te . Then Rt(a) a re given by 
Eq. (96). We decompose Ac and Afe as a sum over 
single excitation dispersion curves and calculate 
each to be 

217 sin(-nj/P) 
1 P cosh{2irB/P) - cos(vj/P)' 

kj = 2tan~1[cot(7T7'/2P) tanh(2^B/P) ] - (77 - nj/P). 
(97) 

Eliminating B, we obtain 

2n 
£,(*)> 

sin(v/P) 
[cOs(lTJ/P - I k\ ) - COS(lrj/P)] 

(98) 
for I k\ < 2vj/P. The function is periodic with period 
2TJJ/P. 

We see that, in general , there a re P - 1 distinct 
b ranches . However, atfe = 0, all branches have a 
common slope, with 

e,(*)«£l*| 

and thus a common velocity of sound. In Fig. 3 
we show the cases of P = 3 and P = 4. 

Suppose we have a system Fp which is at the 
absolute ground state and replace some of the p a r 
t ic les with 6w« 1 impur i t ies . Then the equations 
for the P - 1 original densi t ies become 

! + ! ' = (/ +K)R, (100) 

where 

[ ! ' ] , = 6 , P - 1 6 « 4 / ( l + 4 a 2 ) . (101) 

Therefore our solution is given by 

R=R°+R', (102) 

where R° i s the previous solution, and the Four ier 
t ransform of R' is 

(99) 

- , . , . „ sinhjjfe -

Then we verify that 

ms = (P-i)/P + bnj/P, 

or 

« , = ( 1 - 6 H ) / P 0 = 1, . . . , P ) . 

We then calculate the energy as 

€~t( ]~2* L l + 4 a 2 

(103) 

(104) 

(105) 

e(K) 

-2TT/3 27T/3 

FIG. 3. P — l dispersion curves for the tow-lying ex
citations above the absolute ground state of the Fp sys
tem are shown for the cases P = 4 and P = 3. 

Ae = • 6 w 
1 . sinhiPife-

(106) 

Again, we define a variable as in Eq. (89) and 
write 

Ae = 
25w 

" P r y - i / 2 _ v - i / 2 + 1 / p 

1 - y (107) 

This may be written in t e r m s of the digamma func
tion as 

Ae = 
25M 

' P 4HH©]-
We have the special values 

• 4, P = 1 

• 2 ln2, P = 2 

ln2, P = 4. 

dl= ) 
rfn <, — £ U16, 

( - 4 7T + I ] 

(108) 

(109) 

In Fig. 4 we show the general curve. We note the 
limiting form 

d€ __ /£ \ 2 

rfK ~ " \ P / ' (110) 

We r emark that this is the co r rec t form no mat ter 
what the nature of the impuri t ies—fermions, bo
sons, or mixed. 
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- 3 •• 

dn 

- 2 -

>P=I 

<P=2 

'P=3 

0.2 

'P=4 

-+-0.4 -+-0.6 
— I — 
0.8 

— I — 
1.0 l/P 

FIG. 4. We show the first correction to the absolute 
ground-state energy of the Fp system as a small number 
of particles are replaced by impurities. The correction 
is shown by the first derivative of the ground-state en
ergy with respect to impurity concentration at zero-im
purity concentration, as a function of the number of com
ponents P. 

In the previous discussion, we have assumed 
that the point B, = °° or n, = l / P is the absolute ground 
state of the Fp sys tem. This is certainly r ea son 
able, and we may indeed verify the claim by ex
amining the correct ion to the ground-state energy 
in the vicinity of B, = °°. We f i rs t t ransform the in
tegral equations over the domain B_ to equations 
over the domain (I_-B) by multiplying our basic 
Eq. (65) by the resolvent of Eq. (87) to give 

= R+J{I_-B)R. ( I l l ) 

We may then wri te Eqs . (74) and (73) as 

A « s € - (l-?R°/2Tr) 

= (l/2Tr)R°t(l-B)R, (112) 

and 

- [(/ +X)](0) Am = - [(/ + £ ) „ , ] (r - rfR°/2Tr) 

= rf{I_-B)R/2it. (113) 

We note that the components on the left-hand side 
are 

2T!(nj-nj,l)=[rf(I_-B)R\j 

= ( A n J - A n > t l ) 2 i T > 0 . (114) 

If al l B's a r e large—that is, we a r e in the vicinity 

of nd = l /P—then we may approximate the inhomo-
geneous te rm R° of Eq. ( I l l ) , as given in Eq. (84), 
by expanding 

R%a)K4T!sw(Trj/P)e-*""p/P . 

We see that to this order , 

(115) 

Ri(a) = RP.i(a). (116) 

Further , we see by looking at the explicit formula 
for the resolvent I +J given in Eq. (87) that 

(117) U_+A), I=[I_+J\P-),P-I-

Thus to the lowest o rde r in An,, 

e ( l / P + Anj, 1/P+Anj, . . . , 1 /P+An p ) 

= e ( l / P - A«p, . . . , l / P - An;,, l / P - An^ . 
(118) 

But since the energy is symmetr ic in permutat ions 
of the P par t ic les , we have 

€(1/P + An1( 1/P + An2, . . . , l / P + A n p ) 

= e ( l / P - An1; l / P - A ^ , • • •, l / P - *np). 
(119) 

Thus we conclude that the ground-state energy is , 
to the lowest o rder in njt symmetr ic about the point 
n, = l / P . 

However, by the basic concavity property of Eq. 
(11), we conclude then that An, = 0 is a local minimum 
of the ground-state energy, and hence, the absolute 
ground state (with no res t r ic t ion on the concentra
tions). 

We note that this symmetry requi res that for low-
lying s ta tes , conjugate representa t ions of SU(P) 
must be degenerate . 

We have been unable to calculate explicitly the 
f i r s t -o rder correct ion to the absolute ground-state 
energy for general variat ions of concentration ns. 
However, in two instances we may make a calcula
tion: 

(a) If all B/s a re equal, 

R° = 2ir(2/P)in e4'*'p e*"'p ijijj). (120) 

We have defined a new variable <x by a =B + o. If 
we also define 

£ = ( 2 / P ) l / 2 e - 2 , s / p , (121) 

then we approximate Eq. ( I l l ) by 

2nie-ZT"/p^ 

= S(a)+f drJ{a-T)S{T). (122) 

Let us make an eigenvector decomposition of S, 

S=Esn(o)l„ (123) 

We then find S„ = 0, n*l, and 
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S^v) + f" dr J , (a - T) St(T) = 2TT£ e - a r o / i ' , 
-'o 

with 

/ + J „ + r 
ae 

1*1 

\ ~ 2[coshffe - cos im/P] 

This i s a Wiener-Hopf equation, and as in 
we have 

A e = [ ( 2 J T / P ) A ? ] 2 (1 - C O S T T / P ) , 

with 

A 9 = - ; . 1) , 

We have the res t r ic t ion on i » ! j of 

Am, 
vj\ 2Aq 

(b) In the second case, suppose that all B,= 
cept Bs = B. In this case we define 

^ = ( 2 / P ) s i n ( 7 r j / P ) e - a ' s / p 

The equation we a re to solve is 

2ir£, e<'a/ p = S,(CT) + f" rfr Jj}{fj - T) S / T ) . 

(124) 

(125) 

Ref. 2, 

(126) 

(127) 

(128) 

°, ex -

(129) 

(130) 

Again, it i s a Wiener-Hopf equation, and we find 

Ae = (7rA«) 2 j (P- j ) /P 2 , (131) 

where 

An, 

An, 

l*j (132) 

We finally r e m a r k that all of these examples a re 
consistent with 

A«=TT5>«,>». 
i=l 

(133) 

and conjecture that this is in fact the exact form. 
And thus, as a consequence, we conjecture that all 
second derivat ives of the ground-state energy with 
respec t to the concentrations are continuous within 
the whole phase space. 
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A lattice model consisting of a single narrow band is introduced to describe some aspects of 
heavy electrons. The model excludes double occupancy of the sites and electrons on nearest-
neighbor sites interact via a charge interaction and spin exchange. The model is integrable in one 
dimension for some special values of the coupling constants. These cases are related to the SU(3) 
invariance. The Bethe-ansatz equations are obtained and ground-state and thermodynamic prop
erties are discussed and solved in some limiting cases. 

I. INTRODUCTION 

Heavy-electron meta l s 1 - 3 have received a large 
amount of attention in recent years, in particular be
cause of their unusual low-temperature properties. 
Characteristic to heavy fermions is a very large electron
ic specific heat at low temperatures, C = yT, where y 
corresponds to a very high density of states at the Fermi 
level, or, equivalently, to an effective electron mass of 
102-103 times that of the free-electron mass. As a 
consequence of the large density of states, these systems 
typically have a large Pauli susceptibility or order anti-
ferromagnetically. The temperature dependence of C 
and X can be explained in terms of narrow resonant lev
els or a narrow band with a typical width of a few meV 
or less. The narrow peak in the density of states has 
been attributed to a Kondo resonance2 '3 arising from the 
screening of the magnetic moment of the quasilocalized 
/ electrons by the conduction electrons. Heavy-fermion 
behavior occurs in a variety of Ce-, U-, and Yb-based al
loys and compounds. 

The resistivity of stoichiometric heavy-fermion com
pounds initially increases as one lowers T (which can be 
attributed to the Kondo effect), then goes through a 
large maximum and shows a sharp decrease at very low 
T. Both features, the existence of a maximum and the 
high resistivity at the maximum, are uncommon to nor
mal metals. The rapid decrease of p(T) at low T is 
caused by a transition from incoherent to coherent 
scattering of the conduction electrons by the rare-earth 
(actinide) ions . 1 - 3 

Compounds may become antiferromagnetic or super
conducting at low T as a consequence of the coherence 
of the low-energy excitation spectrum. Anomalous su
perconductivity has been discovered in some U com
pounds with highly unusual properties which may be 
due to triplet pairing.4,5 The parameters of interactions 
determining the low-T phase, i.e., superconducting, mag
netically ordered, or a Pauli paramagnet, are still to be 
understood. 

The systems are usually described within the frame
work of the Kondo and Anderson lattices. Numerous 
approximate treatments have been applied to these mod
els, which have been extensively reviewed in Refs. 2, 3, 
6, and 7. In particular, the \/N approaches (diagram
matic8 '9 and functional integral method1 0 - 1 3) , variational 

methods, 1 4 - 1 6 and local Fermi-liquid theories1 7 - 1 9 gave 
rise to important results and contributed to a prelimi
nary understanding of heavy-fermion compounds. In a 
stoichiometric compound at low T, the Kondo reso
nances of the different rare-earth (actinide) sites superim
pose coherently and form a narrow band at the Fermi 
level of width TK. The low-temperature properties of 
the system, and in particular the coherence effects, are 
governed by the low-energy excitations of this narrow 
band. 

Exact results, even for a simplified model which does 
not have all the features of the Anderson on Kondo lat
tices, are always useful and provide a testing ground for 
approaches intended for the full problem. The condition 
of exact diagonalization imposes limitations on the 
choice of the Hamiltonian. First, the integrability by 
means of a Bethe ansatz, i.e., the existence of an exact 
solution, restricts the model to one space dimension. 
The integrability requires further that in a scattering 
process the momenta of the outgoing particles are the 
same as those of the incoming particles. This restricts 
the model to have only one bandwidth or Fermi velocity. 
Second, since the Kondo resonance in a lattice consists 
of a narrow band at the Fermi level and its width is a 
fundamental energy scale, we describe the dynamics of 
the electrons by a nearest-neighbor tight-binding hop
ping model. A continuum model with a parabolic or 
linear dispersion would not provide a natural bandwidth 
parameter. Third, since / electrons are highly correlat
ed, and, in particular, Ce compounds have only one / 
electron per Ce ion, it is reasonable to exclude the multi
ple occupancy of the sites. Fourth, since the / electrons 
are spin compensated at low temperatures, in part by the 
conduction electrons but possibly mainly by antiferro
magnetic correlations among the rare-earth moments 
themselves, it is necessary to assume that the scattering 
is different if the two electrons involved form a singlet or 
a triplet state. The model is then considerably different 
from the traditional Hubbard model.20 

The rest of the paper is organized as follows. In Sec. 
II we explicitly introduce the model, derive the two-
particle scattering matrix, obtain the conditions for the 
integrability, and state the discrete Bethe-ansatz equa
tions. In Sec. I l l we obtain the ground-state integral 
equations for the most important case, i.e., when two 
electrons in the singlet state are scattered, but they are 

36 5177 © 1987 The American Physical Society 
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not scattered if in a triplet state. Some ground-state 
properties are derived in Sec. IV. The thermodynamics 
of the model is obtained in Sec. V. A summary and dis
cussion follows in Sec. VI. 

II. MODEL, SCATTERING MATRIX, 
AND CONDITIONS FOR INTEGRABILITY 

A. The model 

where cia is the annihilation operator for an electron 
with spin a at the site i and S ^ ' represents the S = \ 
spin matrices. The hopping matrix element has been set 
equal to — 1, such that the bandwidth is 2. 

The above model is not integrable for arbitrary values 
of J and V. We next derive the two-electron scattering 
matrix to obtain the conditions for the integrability of 
the model. 

We consider electrons with spin j on a one-
dimensional lattice with nearest-neighbor hopping. We 
assume a large on-site Coulomb repulsion that excludes 
the double-occupancy of every site. In other words each 
lattice site is constrained to have either one electron 
(with spin up or down) or none. Two types of interac
tions are considered between electrons on nearest-
neighbor sites: A charge interaction independent of the 
spin of strength V and a spin exchange interaction J. 
The Hamiltonian is then given by 

H = ~'2t(c}act + -[a+c}Jriacia) 
i,a 

+ •' i , cia^da'cia''ci + \a'^a'(TCi+la 

+ V 2 clciac}+wci + w , (2.1) 

B. Two-electron scattering matrix 

Consider the linear chain described by (2.1) with only 
two electrons. Let | 0 ) be the empty-lattice state, i.e., 
without electrons, then the two-particle wave function 
can be written in the following form: 

*<r,a2= 2 ["W2"n2)C 'UC 'Ul0> 

+ fla2a1(ni,«2)c„t
1a2C„V,|0>]. (2.2) 

If <7] = C72 the two terms are identical. The wave func
tion obeys Schrodinger's equation H*„ ai=E^a , giv
ing rise to the following relations for the coefficients 
aala2(ni,n2): 

-aola2(n, + l,n2)-aaia2(ni-l,n2)-aaia2(nl,n2 + l)-aa[l,i{nun2-l) 

+ aa,a^nx,n2)^-aaj0i(nun2) ^n^\,ni=Eaaiai(nx,n2) (2.3) 

The solution of this recursion relation is of the form 

aviv2(nun2) = Cl1]
ilTiexp{iklnl+ik2n2) 

+ C^a2exp(ik2nl+ikln2) (2.4) 

with 

E=—2coskl—2cosk2 , (2.5) 

where kx and k2 are the momenta of the particles. The 
coefficients C^a are not all independent but related by 

<c£» +c«> )/(c< - C ^ 1 ) = « p ( - 2 i * i 1 * 2 ) . 

(2.6a) 

( C m - C ( 2 ) ) / (C ( 1 ) - C ( = <ap(-2/*i l t l) 

where *£j/c2 is given by 

COtjfc2" •COtj/C! 
CoWi'v = X,S 

*' 2 ( l - x ' ^ c o t - ^ c o t i f c j - U + x ' ' 1 

(2.6b) 

(2.7) 

with x'=(V/2)+J/S and xs=(V/2)-3J/8. If the 
pair of electrons forms a singlet state, then * ' = 0 and 
conversely if they are in a triplet state, * s = 0. The ex
pression (2.7) for the phases * is analogous to the one 
for the anisotropic spin-j Heisenberg chain,21 where x is 
the anisotropy parameter. Taking into account the an
tisymmetry of a fermion wave function we obtain the 
following two-particle scattering matrix 

S(kl,k2)=-\[exp(-2i¥kik2)-exp(-2in,k1)]T 

-\[exp<.-2Wklkl) + ejq?i-2Milk2)]P , 

(2.8) 

where / is the identity matrix and P permutes the spin 
indices. 

C. Condition for integrability 

Let us now consider TV electrons in the lattice ar
ranged such that n{<n2< • • • <nN. The wave func
tion can then be written in the form 

2 
nl <n2 <«3 < 

2 a f f p i , < 7 p 2 , ...,apN(n\>n2> • • • >nN)cnl(7piCn2ap • C » U J ° > (2.9) 
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where P = (Pl, . . . ,PN) is a permutation of the integers 
1, . . . ,N. There are AH such permutations. Other ar
rangements than ni<n2< • • • <nN follow from the an
tisymmetry of the wave function with respect to the per
mutation of two particles. 

In analogy to the two-particle problem, the coefficients 
in (2.9) are not all independent, but related by a scatter
ing matrix. The condition for the applicability of 
Bethe's hypothesis is that the scattering matrix can be 
factorized into a product of two-particle scattering ma
trices. The single-valuedness of the wave function is en
sured by Yang's triangular relation,22,23 which is a 
sufficient condition for the integrability of the model, 

s"l'''}(kl,k2)s'7yi(kl,ki)s'7rhk2,ki) 

=S 2a?(k2,ki)S"}a},(kuk})S
ul"l(kuk2) (2.10) 

The two-particle scattering matrix, (2.8), however, 
does not satisfy the triangular relation but for special 
values of the couplings / and V. These special cases are 
as follows: 

( a ) x ' = 0 , xs= + \ or equivalently F = ± { and . / = + 2 , 
(b) xs = 0, x'=±\ or equivalently V = ±\ and J = ±2, 

and 
(c) xs=x', i.e., J — 0 and Kis arbitrary (or 7 ^ - ± o o ). 
Below we discuss the scattering matrices for the spe

cial cases (a) and (b) and by imposing periodic boundary 
conditions to the system we obtain the discrete Bethe-
ansatz equations. Case (c) can be mapped onto the XXZ 
Heisenberg chain. 

D. Two-particle scattering matrix for the integrable cases 

ditional constant term to the entropy given by the num
ber of electrons times ln2. 

E. Bethe-Ansatz equations 

The integrable cases (a) and (b) discussed above can 
now be solved by a standard procedure. Impos
ing periodic boundary conditions the problem reduces to 
the simultaneous solution of N eigenvalue equations. 
For N-M electrons with spin up, and M electrons with 
spin down we obtain by means of a second Bethe Ansatz 
the following set of coupled algebraic equations (Na is 
the number of lattice sites and assumed to be even). For 
case (a), 

Pj+i/2 

Pj-i/2 

M p 

0=1 Pj 

- i / 2 

- i / 2 

" Aa-Pj+i/2 

j}iK-Pj-i/2" 

For case (b), 

M 

n 
3=1 

A„ —Aa 

= 1, 

a = l , . 

,N 

(2.13) 

,M 

-i/2 

Pj- -i/2 
Pj-Pi+' 

= (-1)^11 
; " Pj -Pi

ll 
Pj- V/T -i/2 

! pj-Afj+i/2 

j = l,...,N 
(2.14) 

nA Pj+i/2 __M Aa-Ap+i 
a = l, , M 

j = i K-Pj-i/2 p = , A a-Afj-

Here A a are rapidities related to the spin degrees of free
dom. The total energy of the system is, in both cases, 
given by 

In the special case (a), electrons forming a triplet state 
are not scattered. On the other hand, if their spins are 
in a singlet state the scattering depends on their crystal 
momenta kt and k2. The scattering matrix (2.8) reduces 
to 

S(kuk2) 
P\-Pi 

•/ + - ±; 
P\-Pi±i P\-Pi±' 

(2.11) 

where ± refers to the sign of xs and p=\col\k if 
xs= + \ a n d p = | t a n { A : i f xs—-\. 

In the special case (b), on the other hand, electrons in 
a triplet state scatter, while they do not scatter if their 
spins form a singlet state. The scattering matrix for this 
case is 

~ P\—Pi .. 
s{k1,k2)=- ; _ , , . / + -

± i 
px-p2±i P\+p2±i 

(2.12) 

where ± refers to the sign of x' and p=\cotj/c if 
x ' = + l a n d p = j t a n j f c i f x ' = - l . 

In case (c) when / = 0, the scattering is independent of 
the spin. The model then basically reduces to the aniso
tropic S = y (XXZ) Heisenberg chain,21 where the total 
number of electrons plays the role of the magnetization 
and the chemical potential is the magnetic field. The 
spin degree of freedom of the electrons introduces an ad-

E=T2N+2 2 
i Pt + T 

(2.15) 

where the + refers to the sign of xs or x', respectively. 
Since in a Kondo system the spins are compensated 

into a singlet state, case (a), i.e., when electrons paired in 
a singlet state are scattered, is the physically more 
relevant situation. In the remaining sections we restrict 
ourselves to derive the properties of case (a). Note that 
the Bethe-ansatz equations for this case, (2.13), are close
ly related to those of the SU(3(-invariant S= 1 Heisen
berg chain with ferromagnetic and antiferromagnetic 
coupling, respectively (see Sec. VI). 

III. GROUND-STATE INTEGRAL EQUATIONS 

In order to obtain the ground-state properties in the 
case of singlet scattering only [case (a)] we have to find 
the solution to Eqs. (2.13). The sets of rapidities [pj] 
and (A a j have real and complex solutions. Complex 
solutions for the A a corresponds to excited states and 
are discussed in Sec. V. The rapidities Pj may be real or 
complex. 

Consider (2.13) for large A^. Ifpj has a positive imag
inary part, there exists A^ such that to order exp( — Na ) 

Pj=Ap+i/2 . (3.1a) 
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Similarly, if pj has a negative imaginary part, there ex
ists A^ such that to order exp( — Na) 

Pj=A'e-i/2 (3.1b) 

Since the energy must be real, it follows that the set {pj} 
consists of real pj values (unpaired charge modes) and 
pairs of complex conjugated p , values (spin-paired elec
trons). Depending on the sign of Xs spin-paired elec
trons are energetically favorable compared to unpaired 
particles or vice versa. 

The set \pj} consists of N-2M real rapidities and M 
pairs of complex conjugated p ;-values related to the real 
A a b y 

pl=Aa±i/2. 

Inserting (2.2) into (2.13) we obtain 

1JV. Pj + i/2 

Pj-i/i 

Aa + i 

Aa-i 

"< 

M p.-Ap+i/2 

e=lPj-A0 - i ' /2 ' = 1,. 

N-2MAa-Pj+i/2 

Aa-pj-i/2 

M Aa-Af,+i 

xU-,—r—> 

(3.2) 

,N-2M 

(3.3) 

=- n 
a = l , . ,M 

and the energy and the spin are given by 

N-IM 1 M . 

*-?-«• 
(3.4) 

(3.5) 

The sign of the energy refers to x s = + l. 
Logarithmizing Eqs. (3.3) and in the thermodynamic 

limit W„—•<» with M/Na and N/Na being fixed) we 
obtain the following integral equations 

-~—=a'h(A) + c7'(A) 
TT A 2 + l 

+ — f dA'a'iA') 

f dp pip) 

1 

( A - A T + 1 

( A - p ) 2 + i 
(3.6) 

n P +i 
=ph(p)+p(p)+- f dAa'(A) 

( p - A ) 2 + I 

(3.7) 
where pip) and IT'(A) are the distribution density func
tions for the p and A rapidities and pi,ip) and a'hiA) are 
the respective hole distribution functions. The intervals 
in which p and a are nonvanishing depend on the total 
number of particles, the total spin and the energy 

S2/Na=\fdppip), 

N/Na = f dpp(p) + 2 f dAa'iA) , 

_1_ 

E /Na = T 2N /Na ±2 f dp pip) 

±2 f dAa'iA) 
1 

P2 + i 

A 2 + l 

(3.8) 

(3.9) 

(3.10) 

These equations are solved in Sec. IV for some situa
tions. 

IV. GROUND-STATE PROPERTIES 

A. Filled-band solution 

We assume that there is one electron per lattice site, 
i.e., N/Na = \. Fourier transforming (3.6) and using 
(3.9) it follows that the hole-distribution function cr'h(A) 
vanishes identically. Equation (3.7) then becomes 

p*(£)+p(£>-/dr/><r>Gi<!-r>=G!o(£>. a n 
where 

G , ( £ ) = y - / ~ doe-'**-
2-rr 

e-</ /2) |H 

2cosh(&>/2) 
(4.2) 

The solution of this integral equation depends on the 
magnetization of the system. In the absence of an exter
nal magnetic field two solutions are of interest: the non
magnetic and the ferromagnetic states. 

If the state is nonmagnetic p(£) = 0 and the solution of 
(3.6) is CT'(A) = G ) ( A ) . The energy of the system is 
straightforwardly obtained, E /Na = + 2 ln2. For the fer
romagnetic state, on the other hand, we have a'iA)=0 
and ph i | ) = 0, such that 

P(D = 
1 

i rga + J 
(4.3) 

In this case the spins of all the electrons are parallel and 
the total energy of the system is zero. 

Hence, if xs= + l the ground state is nonmagnetic, 
while if xs = — 1 the ground state is the ferromagnetic 
state. For xs— + l the states with lowest energy corre
spond to large | A | and | p \ values (long-wavelength 
states), such that cr'(A) is nonzero only in the intervals 
| A | >Q and pip) in the intervals \p \ >B. a'hiA) and 

Phip) are complementary functions. For xs= — 1 we 
have that states with small | A | and | p \ values have 
lowest energy (again long-wavelength states), such that 
(T ' (A) and pip) are nonvanishing in the intervals 
| A | < Q and \p \ <B. The interval limits are deter

mined from the total number of particles and the magne
tization. 

B. Magnetic susceptibility (x*= +1) 

For x s = + 1 the magnetization vanishes in the absence 
of an external magnetic field. If we apply an arbitrarily 
small magnetic field the integration limit B can be made 
much larger than any given Q. By Fourier transforma
tion of Eqs. (3.6) and (3.7) we obtain the following in
tegral equation for p: 

Phi ( | )+P(D- f / / + r W p ( r ) G i ( f 

=60(D+/_ «/r^(rw?0(i-

• r ) 

(4.4) 

Since B »Q it is convenient to define y(g) 
such that 

=PH+B), 
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yki§)+y{§)- / o " dZ'y(Z')Gl(Z-?)=G0{£+B)+ fQ d£'cr'h(?)G0(£+B-£')+ J" dgyigW^+g+ 2B) 

(4.5) 

where for the last term we have assumed that p ( | ) is an 
even function. This integral equation can be solved by 
iteration,25 by writing y=yi+y2+ • • • w r t n Vi a n d yi 
satisfying 

ylh(£)+yi(£)- f™ d§'y1(?)Gl(Z-i')=RG0(£+B) , 

(4.6a) 

yuW+yiW-f~ dfytfrGid-?) 

= f°°d?yi{?)G1(£+£' + 2B). (4.6b) 

Here we used B »Q such that for | > 0 

/ffl<*$v;<r)Go<i+*-r> 

and 

R = l + fQ d| 'ai( | ' )exp(ir | ' ) . (4.7) 

fd£y2(£)-- 1 i? exp(--n-fi) 
w (27re)1/2 

ln2B 

25 

X 1 - -
2-n-S 

(4.11) 

such that the low-field magnetization is given by 
12 

sz = -
2R 

(2ne ,1/2- 1 + 4 ^ f l - 2 
4-n-B 

ln2B + 

(4.12) 
Since / ? is proportional to exp(— irB) we have that the 
susceptibility has logarithmic corrections, in analogy to 
the isotropic SU(2) Heisenberg antiferromagnet.25,27 The 
leading-order relation between the field H and B will be 
given at the end of Sec. V. 

C. Charge fluctuations (x '= + 1 ) 

Since the magnetization vanishes in the absence of an 
external magnetic field, the integral equation to be 
solved in this case is 

1 
In (4.6), y\(£) is the leading contribution to y(g) if the 
field is small. Since Gx(£) falls off like l / £ 2 for large §, a' («• ) + a>(f:)+— f °° dg'a'ig') 
j>2(|) is the next leading correction. Higher-order con- v ~" ( S - f ' r + i 
tributions can be obtained in a similar way. Both, (4.6a) 
and (4.6b), are standard integral equations of the 
Wiener-Hopf type;25,26 the solution foryx(£) is 

1 1 (4.13) 

J-il 
ifx 

^ - i b / ' ^ T T T T T / . 
rfy Re~tyB 

g + (x) J - ° ° 2ir>> — x— io 

X g (.y)2cosht-

(4.8) 

and the leading contribution to the magnetization is 
given by 

/ rf|j»i(|) = [2JS /(lire )1/2]exp( —wB) 

+ 0(exp(-2ir5)) . (4.9) 

Here the magnetic field is proportional to exp( — irB) 
and 

VU/2ir) 

g + U ) = g - ( - x ) = (27T)-

where a'(|') vanishes for 1£1 <Q and cr'h(£) is the com
plementary function. This integral equation has a simple 
solution only if the band is almost half-filled or almost 
empty. 

If the band is almost half-filled Q is small and (4.13) is 
more conveniently written as 

a'{£)+a'h(§)- J^Qd§'al
h(§')Gi^-£')=Gl^) . 

(4.14) 

This equation can now be solved by iteration by writing 
(T'{p = a'0(§) + <r[(£)+ • •• , where a{,(|) and o\(£) 
satisfy 

a'o(£)+a'0h(£)=Gl(i)=~Rt 1 + , | 

xr 

-1/2 

1 
2 

— I X + 0 

2we 

. X 
(4.10) 

with o being a positive infinitesimal and T the gamma 
function. 

In order to solve (4.6b) we insert yj(£) , (4.8), into the 
driving term. After some algebra we obtain to leading 
order in the field 

1 -I — +'*-2 2 

(4.15) 

*',(£)+*',*(£)= /e
e drffo*(r)G,(i-r) • w-i« 

Here i/> is the digamma function. To first order in Q we 
obtain 

<r'(|) 
1 + 2 2 ^ 

o, I I ! <Q 

G,(£), I I I > Q 
(4.17) 
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and the occupation of the band is given by 

Jn2 
IT 

N/Na=2f°° d£a'(£)=l-2Q- (4.18) 

On the other hand, if the band is almost empty Q is 
very large and a similar procedure as for the spin suscep
tibility can be used. Since cr'(£) is nonvanishing only for 
I I I > Q, we define y(£) = cr'{(i+Q), such that (assuming 

that <r'(f) is an even function) 

n TT
 J n 

1 

f '» 

1 

( l - l ' ) 2 + l 

TT (£+Q)2+l 

IT •> n 

l 

(i+r+2o2+i 
(4.19) 

This equation is solved by iteration; we write 
^ ( | ) = ^ i ( | ) + ^ 2 . ( | ) + " " " . w h e r e y ^ ) andj>2(f) obey 

yu(i)+y,(i)+- f'di'y^) 
TT *> n 

l 

(f-r>2+i 
i i 

TT ( £ + g 2 ) + l 

^2/,( | )+>'2( | )+-/0 Or f |>2(| ' ) -

IT J n 

l 

| - | ' ) 2 + i 

l 

( f + f ' + 2 Q ) 2 + l 

(4.20a) 

(4.20b) 

Both equations are of the Wiener-Hopf type2 and can 
straightforwardly by solved. We obtain for_y,(f) 

yl(i) = ~ f dxe-'fg+U) 
2m 

xf 
dy e -iyQ-\y\ 

-g-(y) (4.21) 
2TT y — x —iO ' 

and the leading contribution to the occupation number 
is given by 

12 

'o " ' ~ TTU 2 
N/N„=2f'dgy1(i) = -^r-

1 
TTQ 

l n g -

(4.22) 

Note that the leading contribution of y 2 ( | ) is °f t n e o r " 
der of (1 /TTQ )2. The relation between Q and the Fermi 
energy is obtained at the end of Sec. V. Similarly, it is 
possible to obtain the number of particles for the fer
romagnetic case, i.e., for xs= — 1, if the band is nearly 
empty or nearly full. 

V. THERMODYNAMIC EQUATIONS 

Below we derive the thermodynamic Bethe-ansatz 
equations for case (a) (xs = ±l), i.e., when electrons in a 
singlet state are scattered. 

A. Excitations 

The excitations of the system are given by the solu
tions of (2.13). The structure of the solutions is similar 

as for the fermion gas with attractive 8-function poten
tial, solved by Lai28 and Takahashi,29 and for the j = \ 
Anderson impurity in the U-* oo limit.30 The rapidities 
can be classified according to (i) (N-2M') real charge ra
pidities, which correspond to unpaired propagating elec
trons; (ii) 2M' complex charge rapidities, which corre
spond to bound or paired electron states, of the form 

p±=A'a+i/2, (5.1) 

where A'a is a real spin rapidity, a = l , . . . ,M'; (iii) Mn 

strings of complex spin rapidities of length n, 
n = \, . . . , oo which correspond to bound spin states 
and are of the form 

A S , „ = A a , „ + i ^ , 

/ i = _ ( „ _ l ) , _ ( n - 3 ) , . . . , ( n - 3 ) , ( n - l ) 

where A a „ is a real parameter. 
The integers M' and Mn satisfy the relation 

M'+ 2 nM„=M . 

n = l 

The magnetization and the energy are given by 

N 

1 B = l 

N-2M' 

E=+2N±2 2 — ±2 E -^— 
i pr+i a =i A a

2 + i 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The above rapidities are inserted into Eqs. (2.13) and 
the resulting coupled equations for pj, A'a, and A a „ are 
logarithmized. We define the usual distribution func
tions for the rapidities as pip) for the real p's, <r'( A) for 
the A ,̂ and CT„(A) for the A a „ . In the thermodynamic 
limit we obtain a set of linearly coupled integral equa
tions for the distribution functions. Introducing the cor
responding "hole"-distribution functions and Fourier-
transforming the equations, we have, after some algebra, 

&m + l,k(°>'> + &n (CO) 

= 2cosh—[&m(co) + &mh(ai)], m>2 

&2th(co)+p{(o) = 2cosh — [&x((o) + dhh(co)] , 

&hh(o)) + &'h(co)+l = 2coshY[pio})+p„[co)] 

(5.6) 

, - ( 1 / 2 ) 1 0 . 1 & 'h(a>)—p{(o) + e - U / 2 ) | < o | 

= 2cosh-~[&'{co) + d'h(a)] , 

where the caret denotes a Fourier transform. These 
equations differ only by the driving terms (independent 
terms) from the corresponding ones for the one-
dimensional fermion gas with attractive 8-function in
teraction28,29 and the j — \ Anderson impurity in the 
U^ oo limit.30 
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B. Minimization of the free energy 

The distribution functions, p, <J', and an are actually 
determined by minimizing the free-energy functional, 
F=E-TS, where 

E/Na = T2f" dpp(p) + 4f° dAa'(A) 
— oo — oo 

1 

± 2 / ™ dp pip) 
P2 + i 

±2 f °° dAo'(A)—r— , (5.7) 

T is the temperature, and S is the distribution entropy, 
which, e.g., for p(p) is given by 
Sp= I dP[(p+PhKn(p+ph)-plnp-ph\nph] . (5.8) 

The minimization must be carried out subject to the con
straints (5.6) and the conservation of electrons and the 
total spin, i.e., 

N/Na = f° dpp(p) + 2f° dAa'(A), (5.9) 

St/Na=\f dpp{p)-J1n f°° dAan(A) . (5.10) 
n = l 

The corresponding Lagrange multipliers are the chemi
cal potential (Fermi-energy) and the magnetic field. 

Introducing the following functions 

pk/p = exp(E/T), CTi/<T'=exp(*/D , 

<7n,h/<7n=eM<Pn/T) , 

obtain, 
functions, 

E=+2irG0(^) + rG 0 *ln[ ( l+e* / r ) / ( l+e ' P l / : r ) ] , 

<P= :f2-^±27rG1(^) + rGo*ln(l + e-e/7 ') 

+ TGx*M\+e*/T) , (5.12) 

(p1 = rG 0 * ln [ ( l+ e - e / : r ) ( l+e ' ' 2 / r ) ] , 

<p„=rG0*ln[(l+e*"- l / 7Kl+< ; '
, ' ' + l / r ) ] > n>2 

where G\ is defined by (4.2) and * denotes convolution. 
Here A is the chemical potential and A'=A±2 is the 
energy from the bottom and top of the band, respective
ly. The field boundary condition is given by 

lim =H . (5.13) 

It is convenient to replace +2irG;(£) in (5.12) by 
2i7XsG/(£). Differentiating (5.12) with respect to x\ we 
obtain from similarity with Eqs. (5.6) that 

1 ^ /M , - ? » / 7 \ 

" = i ^ / ( 1 + e E / r ) > (5-14) 

and similarly the complementary functions. 
The free energy of the system is given by 

F=-mO)-2A^2 . (5.15) 

(5.11) 
If, on the other hand, we consider an, p, and o' as in

dependent functions and eliminate all the "hole"-
distribution functions by means of (5.6), we obtain 

we obtain, if we consider a„ h, p, and a), as independent another set of integral equations, which is equivalent to 
(5.12), 

*=T2±2irrT-T-A+Tl* r+ i » f + i 
-*ln(l+e" -r 2 

1 n/2 

* = = F 4 ± 2 -
£ 2 +l 

--2A+T-

*r+i 
-*ln(l+e" ) + T-

, . , « ? + (n/2) 

1 1 
77 £ 2 +l 

-*ln(l+e" 

-*ln(l+e 
-<p„ /T 

<pn=nH-T\n(l+e *'"/T) + Tl n/2 
n £2 + (n/2)' 

- * l n ( l + e - e / r ) + r 2 em ,„( | )*ln( l+e 
-<Pm/T 

(5.16) 

where 

e„..(|)=/^-'f-cothifJ-

y, L - ( \a>\/l)\m-n\ _ g - ( | o) |/2)(m+n) 

(5.17) 

Rewriting 

± 2 -
1/2 

'f + (l/2)2 >2xs 1/2 
|-2 + (//2)2 

I 
in the first two equations of (5.16) for / = 1 and 2, respec
tively, and differentiating with respect to xs, we obtain, 
after some algebra and making use of (5.14), the original 
set of relations (5.6). 

An alternative expression for the free energy is 

F/Na = -— f " rf|ln(l + e- •c/Ty 

- — / " rf^lnd+e" t/T-

!2 + l 

'ST (5.18) 
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The equivalence between (5.15) and (5.18) is straightfor- „2E/r. 
wardly shown via the second equation of (5.16). 

C. Special limits 

In this subsection we discuss the high temperature and 
T—*0 limits of the thermodynamic equations. If the 
temperature is much larger than the bandwidth, i.e., 
T»2, we can neglect the independent terms in (5.12). 
In the absence of driving terms the potentials e, *, and 
<pn do not depend on £ and (5.23) can be reduced to an 
algebraic system of equations, similar to the one dis
cussed by Takakashi29 for the fermion gas with attrac
tive 8-function potential, where 

I 

= ( l+e* / r ) / ( l+ e * ' / r ) 

e 2 ( * + ^ ) / r = ( 1 + e - E / r ) ( 1 + e * / r ) 

e
2 * / r = ( l + e - « ' r ) < l + e * / r ) , 

i ' r ) ( l + e * " - ' / r ) , e^/T=(l+e' 

The general solution is given by 

1+e* sinh 
nH 
IT +M /sinh 

n > 2 : 

H 
IT 

(5.19) 

,H/T \ 1+exp H 
IT' T I 1+exp H_ 

IT' 
A_ 
T 

1/2 

and the free energy is the one corresponding to three de
grees of freedom per site 

F/Na = -T In e ^ / 7 2 c o s h ^ ; + l 
2T 

(5.20) 

Let us now analyze the thermodynamic equations in 
the limit T—>0. From the last two equations it follows 
that q>„ > 0 for n = 1, . . . , oo, such that an =0 for all « 
as T—>0. The functions e and *, on the other hand, 
change sign as a function of J\ As T->0 the first two 
equations of (5.16) yield 

I 

£(|)=+2+2xs H 
? + } 2 

iTj? 
¥(|)=+4+2x 

- '" (£-f>2 + j 
1 

*"(£') . 

(5.21) 

f+l 
-2A 

1 
» ( j - - f )2+i 

(£-r>2+i 
•e-<r) 

where * = * + + * " and E = E + + E~ with * + , e + > 0 , 
and * _ , E ~ < 0 . Differentiating with respect to xs and 
using (5.14) we recover the ground-state equations. 

D. Integration limits B(H) and Q(A). 

Equations (5.21) can be used to determine the integra
tion limits B (H) and Q (A) introduced in Sec. IV A. In 
(4.12) we expressed the magnetization for small fields as 
a function of B and in (4.22) the number of particles as a 
function of Q for xs= + 1 . 

We Fourier transform (5.21) and express Hf~ as a 
function of e~ and *P+ in the second equation and insert 
it into the first equation. We obtain after Fourier trans-

I 
forming back 

B+(i)+e-(i)- [/_"*+//• ]di'E-a')G,a-i' 

= / 2 df*+(r)Go<£-r) + 27rG0(£)-y . (5.22) 

Equation (5.22) is a linear integral equation for E. It is 
convenient to separate £ ± = E* + EJ with 

e+dj+E.-^)-/" <*re.-(f)Gi(!-r) 
— OO 

= / e dr*+(r)Go(£-r)+2irG0(!), 

,+(f)+E6-(f)-/" rfre»-(r)Gid-r)=-:7 e? 

Comparing with (4.4) we have that t^(^) = 2irph{^) and 
e-(|)=2wp(|:), as well as y+($)=2irc7h(£). The pro
cedure to obtain zb is to rewrite the integral equation in 
the Wiener-Hopf from and solve it iteratively for large 
B, in analogy to Sec. IV B. To leading order in the field 
we obtain 

ef(g+B)=-i 
. H I' 4 z - ^ [ « + ^ ) ] - ' • (5.23) V\ J-oo 2ir a + iO 

The condition E ( 5 ) = 0 determines B. Using that 

E ~ ( B ) = lim E _ ( | + J J ) = - lim ico£-(co)=0 

we obtain 

B = - -ln H/2TTR 
2-rr 

1/2 

(5.24) 

Using (5.24) in (4.12) the susceptibility is straightfor
wardly obtained. 

Similarly, Q{ A) can be obtained. In the absence of a 
field E " S 0 , such that 

*+(&>) + *-(&>)( l+e~l< 

= 2-rre~ -4ir( A +2)8(o)) . (5.25) 
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We assume the band is almost empty (Q is very large) 
and write * = * , + * 2 with 

$ ,+ (<o) + $ f ( « ) ( l + e - | < u 1 ) = 27re"-|<1'1 , 

$2
+(a)) + $ 2 - ( ( a ) ( l + e - i ' B | ) = - 4 i r M + 2 ) 8 ( < u ) . 

In comparison with (4.13) we have that 1?i~(g) = 2ir<j'(.g). 
The integral equation for V2 is P u t m t 0 t n e Wiener-Hopf 
form and solved iteratively. Q is then obtained from 
*(Q) = 0 

e = u + 2 r 1 / 2 . (5.26) 

Hence A > — 2, i.e., the Fermi level must be above the 
bottom of the band, and Q diverges With a square root 
singularity as expected for a one-dimensional system. 

VI. CONCLUDING REMARKS 

We have introduced a narrow-band model which in
cludes some of the main features of heavy-fermion com
pounds. We considered a one-dimensional lattice of 
spin-j electrons hopping between nearest-neighbor sites. 
Double occupancy of every site has been excluded and 
nearest-neighbor electrons interact via a charge interac
tion and a spin exchange. The integrability of the model 
imposes restrictions on the dimensionality and the in
teraction parameters. We obtain the Bethe-ansatz solu
tion for the integrable cases. Of particular interest is the 
case of singlet scattering, since, in heavy-fermion sys
tems, the /-electron spins are compensated in part by 
the conduction electrons and in part by antiferromagnet-
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Using the Betht-Ansatz technique, we diagonalize exactly the one-dimensional t-J Hamiltonian for 
the supersymmetric case T—J, In this limit it is identical with models considered previously by Suther
land and by Schlottmann. The ground state is a liquid of singlet pairs of varying spatial separation for 
all band fillings. We find two types of gapless excitations with effective Fermi surfaces at 2kp and kr 
which we identify with the holon and the spinon excitations near half filling. 

PACS numbers: 75.10.Jm, 05.50.+q, 71.28.+d, 74.65.+n 

The discovery of high-temperature superconductors 
has greatly stimulated the interest in strongly correlated 
systems. In particular, Anderson has suggested that the 
t-J model is an appropriate starting model.' ,2 The t-J 
model is characterized by a lattice Hamiltonian fi which 
describes fermions with hard-core repulsion, nearest-
neighbor hopping (/), and spin exchange (J). Con
sidered in its own right, the model can be studied for any 
dimension and for all values of the ratio Jit. In this 
Letter, we consider one dimension and study the exact 
solution at t"J>0. We emphasize that the model we 
solve is not identical to the large-t/ limit of the repulsive 
Hubbard model,3,4 which maps onto the limit 7<Ki. 

Using the Bcthe-Ansatz method, this model was first 
solved by Sutherland5 in a study of a multicomponent 
lattice gas. In particular, he derived the Bclhe-Ansatz 
equations for the case of two fermions and one boson 
which reduces to the t-J model. A different form of 
the Bethe-/l/wafz equations was discovered by Schlott
mann,6 who solved them for the ground state and dis
cussed the thermodynamic properties of the model, ap
plying the results to heavy-fermion systems. In addition, 
numerical calculations on finite clusters have been re
cently performed by Imada and Hatsugai7 and by von 
Szczepanski et a/.8 In this Letter, we present for the 
first time a detailed analysis of the ground state and of 
the elementary-excitation spectrum at arbitrary filling.9 

We interpret the spectra in terms of solitonlike excita
tions which we identify as holons and spinons10 near half 
filling. We show that doping the system with holes natu
rally leads to the separation of the spin and charge de
grees of freedom.I0 

In the following we solve the Bethe equations for the 
ground state by means of a two-string Ansatz for the 
electron rapidities. The solution can be interpreted as a 
liquid of bound singlet pairs of varying spatial separation 
and binding energy. We solve for the elementary excita
tions of the model and show how the two branches in
volving charge and spin excitations can be interpreted as 
holons and spinons, respectively. 

Consider a one-dimensional lattice of N„ sites with N 
electrons where each site is capable of accommodating at 

most one fermion. 
Hamiltonian 

The dynamics is described by the t-J 

M--tP £ c?acja'P+j'Z(SrSj-n,nj/4), 

where the projector P — H O — i/i«/ |) restricts the Hil-
bert space by the constraint of no double occupancy. 
The symmetries of this Hamiltonian are U ( l ) gauge, 
SU(2) spin, and lattice translational invariance. In addi
tion, the model becomes supersymmetric at t— J. " '1 2 

The short-range nature of the interaction motivates the 
following Ansatz13 for the amplitudes 

V°, vUCl, . . . ,X/v) 

in the sector x e , < XQ2 < • • • < XQN: 

V<T, • <7„(*1,. • • , X / v ) - £ ( - l ) ' / l a 
"e* (QP) 

xexp X kpjXj 

P and Q denote permutations of 1 , . . . ,N, ( - 1 ) r is the 
sign of the permutation P, and we choose x^x, whenev
er i*j. The condition that | *> be an eigenstate of H 
establishes a linear relation between the amplitudes 
A„Q^ „Qij(QP). The multiparticle scattering matrix 
defined by these relations factorizes into a product of 
two-particle scattering matrices provided the Yang-
Baxter equations are fulfilled.13 Also, the Yang-Baxter 
equations represent the conditions for the consistency of 
the Bethe Ansatz M and require that t — \ J \. Applying 
the quantum inverse-scattering method15 we obtain a set 
of coupled algebraic equations6 '16 for the electron rapidi
ties {vj}, j — l,...,N, and the spin rapidities {AJ, 
a~ 1 , . . . ,M (M is the "number of down spins" in the 
solution): 

" Vj-\„ + i/2 _ " A „ - A „ + / 

j - \ Vj—A„ — i/2 fi-\ Ap — Aa — i ' 

Vj+i/2 

vj ~ ill 

N. 
(1) 

•A0+i/2 

t-\ vj-Ap-i/2 -n 
© 1990 The American Physical Society 2567 
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FIG. 1. Electron rapidities in the complex plane: Crosses 
denote the quantum numbers vi describing kinetic degrees of 
freedom, and solid squares denote the quantum numbers A« as
sociated with spin degrees of freedom, (a) Ground state: Elec
tron rapidities occur in complex pairs, v'm ™A'e±i/2, describing 
singlet pairs of range 2/ln(l +Ai~2). The parameter c deter
mines the filling factor N/Na. (b) Holon-antiholon (h-h *) ex
citation: A string at A| is transferred to a higher-energy state 
at A£«. (c) Triplet (s-s) excitation: A string is broken up into 
two real rapidities »,, and v$2$ each of which is describing a spi-
non. The two spinons combine into a triplet excitation as one 
of the spin rapidities Al has been removed, (d) Real-particle 
(s'h) excitation: Removing one electron leaves the system in 
an excited state with one holon at A| and one spinon at i?,. The 
holon and the spinon -account for the charge and spin degrees 
of freedom, respectively, of the many-body state. 

where 2vj ~cot(kj/2) -for f ~ / . For even N the low-
energy states are parametrized by a sea of two-strings in 
the complex plane with v'a

 m Ai ± i/2+Oie a ) . Taking 
the logarithm of Eq. (1) we introduce the bare quantum 
numbers /«, a ™ l , . . . ,M™JV/2, which specify the roots 
of the equation. The /« are integers or half-odd integers 
and restricted to the interval 11« | < I'mm ™ (Na —M 
—1)/2. For arbitrary filling the number of available 
quantum numbers Va exceeds the number of actual two-
strings, so there is freedom in the choice of the set {/«} to 
be occupied. 

For the ground state, the /« ™/c?, are chosen symmetri
cally with respect to zero, 0 < V^m < | /«' | < Vmmi. The 
corresponding distribution of two-strings in the complex 
plane is shown in Fig. 1 (a). In the thermodynamic limit 
(Na~* ©», N/Na "const) we obtain an integral equation 
of Fredholm type for the distribution of the roots Ai. At 
half filling, this integral can be solved in closed form and 
the ground-state energy of the Heisenberg chain, 
E/Naa—2tlm2$ is recovered.6,17 Away from half filling, 
the integral equation has to be solved numerically: The 
corresponding ground-state energy is shown in Fig. 2. 
For all fillings N/Na the ground state is a liquid of sin
glet bound pairs, where each singlet can be associated 
with a two-string at A'a. The coherence length { of a 
particular pair depends on the position A'a of the associ
ated rapidity, ^™2/ln(l+Ai~"2). In particular, the 
ground state involves pairs of arbitrarily weak binding 
energy ( |A i |—•») resulting in a gapless excitation 

0.2 0.4 0.8 0.8 
particles per site N/Na 

FIG. 2. Energy per particle E/2tN vs filling factor N/Na. 
The ground state is a liquid of singlet pairs of varying range 
described by complex pairs of rapidities; see Fig. 1(a). The 
highest accessible state is the ferromagnetic state with real ra
pidities Pa and no spin rapidities A'a. The dashed line denotes 
the lowest singlet state with real rapidities vi. This state is 
forced into a state with finite magnetization for a filling 
N/Na > 2/3 (dotted line). The overall width in energy de
creases from the free-electron value At per particle for 
N/Na~*0 to 2lln2 in the Heisenberg limit N/Na-~^ 1. 

spectrum. As in the attractive Hubbard model18,19 the 
ground state of the t-J model is parametrized by com
plex pairs of rapidities. However, the physics is more 
like that of the repulsive Hubbard model. There is no 
jump in the chemical potential for adding one or two 
particles and we do not observe any transition as a func
tion of filling N/Na. Note that the repulsive Hubbard 
model involves real electron and spin rapidities. For the 
t-J model, real rapidities lead to an excited state as 
shown in Fig. 2. 

There are two types of elementary excitations, which 
do not change particle number, involving (i) charge and 
(ii) spin degrees of freedom: (i) Charge excitations 
away from half filling involve the transfer of a particular 
bare quantum number U € {/<?'} to a previously unoccu
pied state //[• above the pseudo Fermi surface at /£,«. 
This excitation transfers a charge e (not 2e) into a 
higher-energy state but differs from the usual particle-
hole excitation in a Fermi liquid as no spin is involved. 
According to Anderson's terminology for the strongly 
correlated Hubbard model,10 we identify this excitation 
with a holon (kink of charge 1) and the corresponding 
spectrum with the holon-antiholon branch. The spec
trum is obtained by solving the Bethe equations for the 
rapidities Ai to order \/Na. A shown in Fig. 1(b) the 
electron rapidities v„ and the spin rapidities A'a remain 
aligned. The holon-antiholon spectrum- is shown in Fig. 
3. N/Na ™2/3 marks the special filling (of high symme
try) above which a gap in momentum occurs, excluding 
excitations with momenta • between 2ir —3^F and 3k F 
(kFm^N/2Na). Keeping the antiholon fixed (e.g., 
Aj> * ™c) and moving the holon over the allowed parame
ter range, we obtain the holon excitation spectrum with 
an effective Fermi surface spanning 4kp, With respect 

2568 

http://XX.XX.XX


309 

VOLUME 64, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 21 MAY 1990 

1.0 

0.5 

0.0 

0.5 

0.0 

0.5 

0.0 

0.5 
0.0 

h 

- J 

^ 0 

y 

-h* y ^ 

^ l l f P ^ 

^J 

•pP^ 
27T-4kF 

/ 

i -^ N/Na -» 0 

N^ 

_ N / N , = 6.32 
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FIG. 3. Holon-antiholon (h~h*) excitation spectrum for 
several values of the filling factor N/Na. Starting with 
AA™A^»™C [see Fig. 1(b)!, branch a is obtained by moving 
AjJ* to — c, branch 0 is due to moving A* out to «, y corre
sponds to moving AjJ* back to c, and 5 completes the loop as M 
is moved back to c. The branches S and & make up the holon 
excitation spectrum spanning a Fermi surface of range 4kf 
(kF~xN/2Na). Note that a gap appears in momentum for 
illing N/Na < 2/3, where the Hilbert space starts to shrink 
rapidly due to the constraint of no double occupancy. 

to Fig. 1(b) we identify the boundaries ±c with the 
pseudo Fermi surface for the holons. 

(ii) The' spin excitations, on the other hand, involve 
the breaking of a pair with (triplet) or without (singlet) 
spin iip. Here we restrict ourselves to the triplet excita
tions for the case of an even number of particles. The 
excitation consists in transferring a pair of complex roots 
onto the real axis and simultaneously removing the spin 
rapidity associated with the pair. As a consequence the 
remaining spin rapidities Ai shift with respect to the 
electron rapidities D« as shown in Fig. 1(c). Again the 
excitation is two-parametric. At half illing the real ra
pidities vSt and vS2 describe kinks of spin y which com
bine into a triplet (or singlet) excitation as shown by 
Faddeev and Takhtajan20 for the Heisenberg chain. The 
excitation spectrum shown in Fig. 4 is gapless for all 
fillings. This is due to the presence of asymptotically un
bound pairs, i.e., pairs of arbitrarily weak binding ener
gy. Real rapidities \vs\ >c embedded in the sea of 
singlet pairs are identified with spinons as the corre
sponding excitation carries spin and no charge. On the 
other hand, isolated rapidities with | vs | < c are associat
ed with real-particle excitations (carrying both spin and 
charge). Upon decreasing the filling N/Na, the spinon 
excitation spectrum gradually transforms into a real-
particle excitation spectrum as shown in Fig. 4. We find 
that the effective Fermi surface for the spinons is at kf 
[corresponding to the points vs ~ ±oo in Fig. 1 (c)L 

Finally, the real-particle excitation spectrum involving 
a change in particle number is shown in Fig. 5. Remov
ing a real particle near half filling leaves the system in an 

4.0 

2.0 

0.0 

2.0 

0.0 

2.0 

0.0 

2.0 
0.0 

2v 

s~s 

^ N/N. - 0 ^ ^ . — 

J^^L^ 
N/N9 = 0.32 

0.75 

-4k,. 2k„ 27r-2k p 4kP j 0 

y .,^mm^mm^. 

^ ^ ^ 7 * \ 
27T~2kF 

0 7T 2TT 

momentum p 

FIG. 4. Triplet (spinon-spinon, s-s) excitation spectrum for 
several values of the filling factor N/Na. According to Rcf. 16 
a triplet excitation is two-parametric, one parameter describing 
a kink of spin j or spinon. For N/Na~* 1 the spectrum of the 
Heisenberg model is recovered: The branches a, ft and y are 
obtained by starting with P S | ™P, 2

M » and moving »,,—*• — oo 
(a), t)s2—* ~" °° (j3)5 and finally taking uSl ™i>j, together back to 
oo (y); see Fig. 1(c). The branch a is the spinon excitation 
spectrum spanning a Fermi surface of lkw. The lowest (gap-
less) excitation is obtained by breaking a singlet pair at 
A« *• ± oo, where the binding energy goes to zero. As 
N/Na—*0 the free-particle triplet excitation spectrum is 
recovered. 

excited state fsee Fig. 1 (c)l: The hole splits into two sol-
itonlike excitations, a spin-y kink (spinon) and a spin-
less kink of charge e (holon). As in the strongly corre
lated Hubbard model, the -excitation spectrum goes 
linearly to zero at | k | ™^F and at | k | ra3tr. 

In conclusion, we have determined the ground state 

momentum p 

FIG. 5. Single-particle (s-h) excitation, spectrum. Remov
ing a particle leaves the system back in an excited state charac
terized by a spinon s and a holon h; see Fig. 1 (d). Top: holon 
and spinon excitation spectra with Fermi surfaces at 2kp and 
at kff respectively. Bottom: combination of the s and h exci
tation spectra into a real-particle (s-h) excitation spectrum. 
The state at kF (3A:F) is a combination of a 2kf holon and a 
— kp (kp) spinon. The spectrum has been folded back into the 
first Brillouin zone. 
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and the elementary-excitation spectrum of the t-J model 
for arbitrary filling N/Na< 1. We find that the repul
sive on-site interaction dominates the attractive spin in
teraction / . We believe that the model belongs to the 
same universality class as the repulsive Hubbard model. 
Therefore we do not expect a phase transition in the in
terval 0 < Jit < 1. This is consistent with the renormal-
ized mean-field theory in one dimension by Zhang el 
a/.21 The gapless excitations at 2kf- (spin) and Akp 
(charge) produce long-range incommensurate spin and 
charge correlations in the t-J model.22 Schulz has re
cently shown how to determine the asymptotic form of 
the correlation functions using results of the Bethe-
Ansatz solution.23 
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luminating discussions and for his continuous encourage
ment during this work. We wish to thank G. Felder, M. 
Karowski, M. Luchini, M. Ogata, W. Puttika, J. 
Rhyner, P. Schlottmann, and P. Wiegmann for helpful 
discussions and correspondence. 
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Abstract. The I —J model (related to the strong-correlation limit of the Hubbard model) 
is shown to be soluble in one dimension using the Bethe ansatz. The solution holds only 
when the Hamiltonian is.supersymmetric. The ground state in the presence of holes is 
found to be gapless, and to have no magnetization. 

1. Introduction 

There is a strong belief (Anderson 1988, Fukuyama et al 1989) that electron correlations 
are important in distinguishing the new high-temperature superconductors from con
ventional ones. The existence of antiferromagnetism in the absence of doping for the 
new materials is evidence for this. Hubbard (1963) was very influential in the study 
of such correlations. He proposed a lattice Hamiltonian, 

H = T. tc)„cja + — I niafr,_a (1) 
<•/> 2 

as an example of a system which clearly accommodates the atomic (t/ U -» 0) and band 
theory (U/t-*0) limits, i and./' are nearest-neighbour sites and cJa. destroys an electron 
with r-component of spin cr at site j . nia is c]acia, the number operator. Only the 
low-energy states can have any possible relevance to superconductivity. Since we are 
interested in the strong correlation (U/t» 1) limit we may take 

W0 = — I «,>«,,-„ (2) 

for the unperturbed Hamiltonian. For a lattice with N sites and (N -n) electrons the 
ground state of H0 cannot have more than one electron per site. There is a set of 

( * - > -

degenerate ground states of H0. From degenerate perturbation theory (Lindgren and 
Morrison 1986, Pike et al 1991) we can construct an effective Hamiltonian He(T which 
operates on this set but has the same low energy spectrum as H. Since the Hilbert 
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space of Heff is much smaller than that for H this 'effective' description is very 
economical. The resultant Hcff is 

He(r=p(t I &CJ. + J I (SrSj-fonj 

- : I (c]CT«fc_(rc;o. + cI_(,cki_„ci0.Cj0.))P (3) 

where P is the projection operator onto the set of ground states of H0, J = 2t2/ U(« t), 
St is a spin operator and site k is a nearest neighbour to sites i and j . The connection 
of H and Heff with the copper oxide-based high-temperature superconductors is not 
obvious. Indeed it is generally accepted that there is substantial overlap of the electron 
orbitals on copper and oxygen. This would naturally lead to an H also involving 
creation and annihilation operators for oxygen orbitals. Zhang and Rice (1988) nonethe
less showed that an effective model similar to (3) can emerge where J=sr. Further 
support for the validity of this model with parameter values as large as J ~ 1.53f has 
been given recently (Jefferson 1990). 

For n/ N«l the three-site terms in Hefr are small compared with the other terms 
and-are often ignored. The resulting Hcfr is called for obvious reasons the t — J 
Hamiltonian (H,_j). In a recent letter (Sarkar 1990a) the method of solution for this 
model in one dimension where J/2t = 1 has been indicated. At this point in parameter 
space Heff is invariant under the group of transformations of a supergroup U(l/2) 
(Wiegmann 1988, Cornwell 1989, Sarkar 1990b). Details of this solution which uses 
the Bethe ansatz (Bethe 1931) will now be given. In particular we will find the ground 
state and excited state energies as a function of concentration near half filling. This 
solution is not a simple consequence of the Bethe ansatz solution of the Hubbard 
model (Lieb and Wu 1968) for two, reasons. Firstly the large U/t limit of the Hubbard 
model has three-site terms and secondly J is not very much less than /. 

2. Supersymmetry 

H,_j operates on a Hilbert space which is spanned by states of the form 

i 

where ® denotes a direct product and \a,) is |0), | | ) or |f). \i) and |f) represent Wannier 
states with spin down and spin up respectively. |0) is a hole state. With the basis |a() 
it is natural to associate operators 

x f ^ k X f t l . (4) 

Now X?T has a fermionic nature since it destroys an up-spin electron whereas X}1 is 
bosonic. This leads naturally to an operator algebra involving both commutators and 
anticommutators, the latter occurring only if both operators are fermionic. The resulting 
so-called superalgebra is 

[xf, x;'"']± = a,, W V±x f '%. j (5) 
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where [,]+ is an anticommutator and [,]_ is a commutator. It is standard (Bars and 
Gunaydin 1983) to represent these operators in terms of a bosonic and two fermionic 
harmonic oscillators, e.g. 

XT=f7b] XT'=fff7' XT = b]b, (6) 

where 

urjjn+=s^-s, [/r,^]+=[/r,/;'+]+=o (7) 
and 

[&„&;]_ = 8„ [bhbj]. = [blb]]. = 0. (8) 

This representation will be useful later. 
Using the X-operators it is possible to rewrite H,_, without the formal use of 

projection operators P. Since we are dealing with spin-5 we can write 

J{SrSj-k)=l(<rr<rj-l) (9) 

where a, are the Pauli spin matrices at site i. This can be further rewritten as 

where 

P(,=|(aVO>+l). (10) 

It is easy to verify that 

PiMk% = k'>,K (11) 

so that Pij is a permutation on spin labels. In terms of the X-operators: 

Pn+i= i xr'xrx. (12) 
(T,tr' 

We need to write S„,i5„.+I, (where n, = n,t + /i,t) in terms of X-operators as well. We 
first note that 

H 8„,o = £ 8n.oSn.+io + 2£ (5B|oS„(+1i + 5n(,5n(+l0) (13) 

l(S„l0+Snil) = N (14) 
i 

and 

I (*n l O*« l + 1 0+fin l | f i B ( + 1 l + «B lofi- I + 1 l + fin,lSnI + 1o) = N ( 1 5 ) 
i 

where N is the number of lattice sites. The validity of (13) and (15) is best established 
by examining examples. From (13) and (15) we have 

2 1 (S«,o-*»(o*-l+Io) + I S - A ^ i + I S„,o5n/+l0= N (16) 

I i i 

and on using (14) we deduce 

£ S„iS„ t = £ 8n.05n(+|0-Z 8„,o + X S„.i. (17) 
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Since 

X 5„.o5n,+1o = Z X , X 1 + i (18) 
i i 

(and 2j 5„(0 and 2j Sn., are constants) we can write 

J~l ( P „ + , " 1) = J~1 Xr'xt"~l XfXf+, (19) 
Li Li Li 

up to an additive constant. (A summation convention is understood.) A Hamiltonian 
H' which is more general than H,-j may then be written as 

H'=g i (xfxi:,+xr+°i A T )+g' i xr'xri"+g-x x°°x?2, (20) 
t i i 

g, g' and g" being constants. 
H,-j is obtained when 

g = ~< g' = ^ = " g " (21) 

(provided we make the canonical transformation bj-»(-l)'fc, in (6)). 
The generators X°" ( = 2 X0*), X"° ( = 2 Xf) and X™' ( = 1 x r ' ) form a superal

gebra isomorphic to the single site superalgebra. The bosonic generators X"" commute 
with the Hamiltonian for arbitrary g, g' and g". For H' to be supersymmetric (with 
respect to this superalgebra), it remains to check that the condition 

flXf,//'! =0 (22) 

is satisfied. Now 

[x *r> 8X (XfX^ + X^X?"')] 

= g X (x°°x°;'t+xf'x°ri + x°? ,x?"+x;v;x?"') (23) 
i 

[x * r , g' x xr'""xr;r'] = g' x ( *?" '*m+xr x°;-, > (24) 

and 

[x^g-'XArfx?^ =-g"X(xrx™l + xrxl/;1) (25) 

and so 

[x x?, H'] = (g - g") x (x°°Xm+x^x''")+(g+g') x ( * r x?;, + x r x;v;). 
(26) 

For (22) to hold we require 

g = g"=-g' (27) 

which we will call the supersymmetric t-J model. In the next section we will show 
how the resulting Hamiltonian can be interpreted as a generalized permutation operator. 
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Owing to the predominance of supersymmetry applications in a particle physics 
context it is often assumed that the supersymmetric algebra contains the Poincare 
algebra as a subalgebra (Cornwell 1989, p 79). Consequently the Hamiltonians can be 
expressed in terms of bilinears in the fermionic generators (e.g. see de Crombrugghe 
and Rittenberg 1983). The t—J Hamiltonian is not of this kind and the supersymmetry 
is of a kinematic type. Our use of the term 'supersymmetry' is similar to that adopted 
quite commonly in, for example, nuclear physics (Iachello 1985). 

3. Generalized permutation operator 

In terms of the harmonic oscillator representation the hopping term in H,_y is 

<Z(ft,*J+./rt/r+.+ft/+.fr!/;+./r). 
i 

As a consequence each site of the lattice is occupied by the boson or a fermion (either 
an up or down fermion). The constraint on the Hilbert space of no double occupancy 
is 

6 J t ,+/•£/* = 0. (28) 

A generalized permutation operator will interchange fermions and bosons (as well as 
interchange just fermions) with the same amplitude. The relevance of such operators 
will now be discussed. The permutation aspect of the Heisenberg term has already 
been discussed and was in fact noticed by Bethe (1931). The hopping term is also a 
permutation operator but now between bosons and fermions. We will examine this 
aspect through an example. A lattice with (N-4) up spins, two down spins and two 
hole has a state |i/>) of the form 

|*>= I a(i,j,k,D...b]...b)...fl\..f\\..\Q) (29) 

where . . . denote creation operators for up spins. For definiteness we consider the part 
of|<A> 

a(i, i + 1 , k, k+1)... b*,blxf%2 • • Jl-ifl'Aliftlz • • • |0> 

and operate on it with 

t( "i+\ "i+2J i+ if i+2 + "1+2" i+ \fi+2ji+\) 

a part of H,-j. Now 

... bi+xb]+2fr+xfi2b]b]+xf}i2... io>=.. . bi+lb]+2b]b]+j}Ufi2fr+2... io> (30) 
and 

fi+\fi+2ji+2=fi+l\l ~fi+2ji+2)- (31) 

The last term in (31) when pulled through in (30) gives zero. Consequently (30) becomes 

. . . bi+lbUb]bUf}lx • • • |0) = . . . b]+2b]f)U • • • |0) = . . . b\fV+xb]+2... |0>. (32) 

The hole at (i +1) and the up spin at (i + 2) have thus been swapped. This is just the 
effect of a permutation operator which will be denoted by PJ+f'j+2. The same result is 
found by examining other cases. H,_j can then be written as 

H,_, = 11 P ^ + h (P l l + 1 - Pit0!) (33) 
i. (j- ^ i 
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with 

P^\(...bf
iblx...)\0) = (---blib]...)\0)- (34) 

The arguments above easily generalize to a situation when there are more 'flavours' 
of fermions. 

The permutation symmetry of the ground state can be determined without a detailed 
calculation of energies for different Young tableau representations. The argument has 
been essentially given by Lai and Yang (1971) who restricted themselves to two flavours 
but their reasoning applies also to the case of more flavours. If there is an odd number 
N' of fermions of flavour i (i = 1 , . . . , m) and N° bosons (with 2, N' + N°= N) then 
the permutation symmetry of the ground state is given by the Young tableau 

(m + N°, mN--\ (m - 1 ) N - - - N - , (m - 2 ) N — ~ N — , . . . , i"V*>>). (35) 

The precise nature of the Hamiltonian played no role in the discussion of Lai and 
Yang. They dealt with a continuum and allowed double occupation at a site. The 
continuum aspect was not relevant to their argument while the amplitude for double 
occupation can be made arbitrarily small by adding an energy penalty term to their 
Hamiltonian. Consequently the result of (35) is implied by Lai and Yang also for our 
case. It will be convenient to work with the conjugate Young tableau representation 
(Andrei et al 1983) which is equivalent to a canonical transformation on the variables 
(Sarkar 1990a). 

4. Bethe ansatz 

As an example of a simple case away from half-filling let us consider a lattice with 
(N-2) up spins, one down spin and one hole. Any state |^) of this lattice has the form 

l*> = I «(*., x2)fVfV .. JlUfilflU --bl.. ./Jv |0>. (36) 

The down spin and hole are located at x, and x2 respectively. We now demand that 
\ip) is an energy eigenstate and so 

H|*> = E|*>. (37) 

For x, and x2 far apart 

-J 
£ a ( x 1 , x 2 ) = y ( a ( x 1 + l,x2) + a ( x , - l , x 2 ) ) + / ( a ( x 1 , x 2 - l ) + a ( x , , x 2 + l ) ) . (38) 

The Bethe ansatz is 

a(xux2) = aQ(xl,x2) 

= Al(Q) exp(i(/c,x01 + fc2Xc.2)) + A2(Q) exp(i(fc2x0i + fci*o2)) (39) 

where Q is an element of S2 the permutation group on two objects and defines a sector 
*c?i < *Q2 • F ° r brevity 
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will be denoted by 1 and 

Q -G 9 
by 2. v4i(<?), A2(Q), kt, and fc2 are constants which need to be determined. 

Equation (37) implies that 

£(,4,(1) exp[i(fc,x, + k2x2)] + A2(l) exp[i(fc2Xi + fc,x2)]) 

= - - 04,(1) exp{i[fc,(*i + 1) + k2x2]} + A2(l) exp{i[M*i +1) + fe,x2]} 

+ Al(l)exp{i[k1(x,-l) + k2x2]} + A2(l)exp{\[k2(xl-l) + ktx2]}) 

+ r(/V,(l)exp{i[fe,x1 + fc2(^-l)]} + ^2(l)exp{i[/c2x1 + fc1(x2-l)]} 

+ Al(l)ap{i[klxl + k2(x2+l)]} + A2(l)exp{i[k2xl + kl(x2+l)]}) 

= 21 — c o s fc, + f cos fc21/4,(1) exp[i(fc,x, + fc2x2)] 

+ 2 ( — c o s k 2+rcos fc1]A2(l)exp[i(/c2x, + /c,x2)]. (40) 

(In (40) we have ignored an overall constant energy shift.) Hence a necessary condition 
for an energy eigenstate is 

- T " = l - (41) 
It 

This is also the supersymmetric condition (27). Henceforth we will choose units and 
phases so that t = - 1 and also require (41) to hold. For the term in (36) proportional 
to 

the energy eigenstate condition gives 

(2(cos Jt, +cos k2)+ l ) a (x , , x, +1) 

= a(x, + 1 , x,) + a (x , , x, + 2) + a(x, - 1, x, + 1) (42) 

and 

(2(cos fc,+cos fc2)+l)a(X| + l ,x ,) 

= a (x , , x, +1) + a(x, + 1 , x, - 1 ) + a(x, + 2, x,). (43) 

These two equations lead to 

A , ( 2 ) = M , 2 A 2 (2 ) + « , 2 A 2 ( 1 ) A , ( 1 ) = M , 2 A 2 ( 1 ) + V , 2 A 2 ( 2 ) (44) 

where 

,2 ( l W ' H l + e^) 
u
 e'

(*>+*2> + 2e '* '+ l 

and 
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We need, of course, to be also able to consider situations other than that of (29). If 
there are Nl down spins at x , , . . . , xN* and N° holes at xNi+u ..., xNi+N<> then the 
Bethe ansatz is 

a(x1,...,xNi+N«)= Y. AP(Q) expli £ fc„xQji) 6(xQ) (47) 
P.Q \ j"i I 

e S N i + N o 

where 6(xQ) denotes the region XQ, < xQ2 < . . . < Xp^i+^y 
For the Bethe ansatz solution to work, entities such as w12 and v12 have to satisfy 

some identities. However we will not explicitly check these consistency conditions 
since we have shown elsewhere (Sarkar 1990a) that the supersymmetric t — J model 
can be mapped onto a model of Lai (1974). The latter model has been shown by Lai 
to be soluble by the Bethe ansatz. 

In order to proceed further, periodic boundary conditions have to be imposed on 
the wavefunction. This is by now a standard although somewhat complicated procedure 
(Yang 1967, Sutherland 1975, Lai and Yang 1971) and is known as the generalized 
Bethe hypothesis. It is discussed in detail by Andrei et al (1983) and so we will just 
give the results of the procedure. Apart from the fcs involved in the Bethe ansatz, some 
auxiliary variables A appear which are related to a proper description of the permutation 
symmetry of AP(Q). The equations that emerge are 

=•>.-=ff(?^z^rr^^ m 
y=i \ i (A y -ar , - ) -2/ * = i i ( a , - a j - l 

and 

N*+N° 

""'(w^h <«> 
,-=i \\(As-aj)-2/ 

where atj =|tanjfc,. It is customary to take the logarithm of these equations. If 
0(x) = - 2 t a n ~ ' x (50) 

then 

ei9 = ̂ . (51) 
1 + ix 

On taking logarithms of both sides of (51) we get 

0 = -\\og(j^)+2irJ (52) 

where / is an integer. Using these elementary facts, (48) and (49) give 

Nkj = 2irJj- I 0(aj-ak)+Z 0(2aj-2Ay) (53) 
k=l y = l 

I e(2A'y-2aj) + 2irJ'y = 0. (54) 

These equations readily generalize to the m fermion flavour case alluded to earlier. In 
the generalized Bethe hypothesis if there are m fermion flavours then there are (m - 1 ) 
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flavours of A. The resulting equations are 
/v-rv1 N - N ' - N 2 

NkJ = 2nJi- I 0(aj-ak)+ £ 6(2ctj-2Al
y) 

(c = l y = l 

I © ( A ^ - A ' y ' ) 
Y ' = I 

= 2nJr
y~' + I 0 ( 2 A 7 ' - 2 A y 2 ) 

N-X;:JN' r _ (55) 

+ I 0 ( 2 A ; " ' - 2 A ; . ) (2=sr=£m-l ) 
i> = i 

I e ( 2 A r " ' - 2 A ^ - 2 ) + 27ryr^ '=0. 
T = l 

The r on Ar is the flavour index and the range of y is 1=£ y=s(N — XJ*j N J). 
We will leave further discussion of the in flavour case for elsewhere. For any lattice 

of macroscopic size, (53) and (54) are too complicated. Consequently we will follow 
the customary practice and convert to a set of coupled integral equations. The reasonable 
assumption is made that 

(56) 

and 

«7+1-«,~o(£) 
and 

A y + 1 - A r ~ o ( ^ ) . 

From (53) 
N - N ' 

2ir(Jj+l-Jj)= X (0(ocj+i-ak)-d(aj-ak)) 

N-N'-N2 

- 1 (e(2aJ+l-2A,
y)-6(2aj--2Ay)) 

+ 2N[tan~1(2a ; + 1)- tan" l(2a /)] . (57) 

The general experience with the Bethe ansatz shows that for the ground state JJ+, — Jj = 1. 
Excited states appear when there a r e / such that Jr+X-Jr = 2. / ' is called a hole. Hence 

2 ^ 1 - 1 5 ^ + 2 ^ 2 1 5 ^ 

N-Nl- N - N ' - N 2 

= I e'(aj-ak){aJ+l-aj) I 0'(2aj-2Ay)2(aJ+1-aj) 
(c = l y = l 

+ 2N—±—22(aJ+i-ai). (58) 
1 + 4 O J 

If Nh is the number of holes then 
N h 1 N-N, 9 N-N'-N2 4 

I 5 ( a - a , h ) + p , ( a ) = - I 0 ' ( a - « k ) - - I 0'(2a - 2 A T ) + — — 5 (59) 
J = i JV k = i /V y =i l + 4 a 

where 

, , 27T 1 
P.(«,) = T 7 7 y (60) 
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In the TV -» oo limit px is a distribution and the sums on the right-hand side of (59) 
become integrals, and consequently 

P.(«) + T 7 l 8(a-a*) 

!Ji+4(c!-v^-(Al)dA,+i^ + - I . . „ , . . , M P2(A') dA' + 7 - ^ 2 - (61> 

These integrals will have limits which we will take to be [-aQ, a0] and [-Ao, A0] and 
we will see how these are determined by the concentrations of down spins and holes. 
Similarly from (54) 

2ir(J,
y+l-J\) = -NZ (0 (2A; + 1 -2a , ) -0 (2A; -2« , . ) ) . (62) 

If A^h are the hole values of A1, then 

P2(A') + ̂  I 8(A>-A;h) = - P da P y (63) 
TV r = , T ir J-a0 1+4(A - a ) 

where p2(A') is the continuum limit of (2ir/7V)[l/(AiJ,+,-A^)]. 
We recall that the index j in a, lies in the interval [1, TV —TV1], and the index y in 

A}, lies in the interval [1, TV-TV1-TV2]. Hence 

I""" A < \ y v r ,2TT 1 27KTV-TV1) 
d a p 1 ( a ) = l i m E ( a J + 1 - « j ) - : r = - (64) 

J-«0
 N-°°> N (aj+l-aj) TV 

and 

I " d A V , ( A ^ i i m i ( A ; . , - A ^ — • - W - ^ - W ) . 
A£ N ' % W A 7 + , - A y TV 

The energy 75 is 

£ = 2 ( 2 N ' + TV 2)-2N-2XcosA 7 . (66) 

Since 

then 

1 - tan 2 !^ l - 4 a 2 

l | f c /
_ l + 4 a 2 cosfc = r f r = 2 (67) 

J l+tanMfc, l + 4 a 2 v ; 

TV irJ-Ai 27rJ_„() l + 4 a ' 

From (64) and (65) it is clear that 

Ao = 0 and a0
 = 0° (69) 

corresponds to the half-filling case where the model reduces to the Heisenberg model. 
In general the integral equations (61) and (63) need to be solved numerically or through 
approximate application of Wiener-Hopf techniques (Andrei et al 1983). We will give 
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an analytic treatment valid near half-filling, i.e. a0 very large and Ai very small. This 
will enable us to obtain limited information such as the gaplessness of the ground 
state. Let us first check what sort of half-filling is implied by (69). Equation (61) becomes 

2ir J-oo l + (a-a ) l + 4 a 2 

On writing 

p , ( a ) = f ^ e " " p , ( p ) (71) 

and on noting that 

- T r 7 = T f ^ e " - e - ' " (72) 
a + 1 J 277 

it is found that 

e -d /2) lp l 
P , ( P ) = 2TT _, , = - r - r . (73) 

1 + e IPI cosh^pl 

Since 

(N-N') f°° 
2 T T V

 N
 ; = j p I ( a ) d a = p1(0)=«- (74) 

Nl/N = $ (75) 

and so there are an equal number of up and down spins. 
We shall consider the effect of introducing a small macroscopic number of real 

holes (as opposed to Bethe ansatz holes). Consequently Al
0 will be small. Let us write 

Pl(a) = p\°\a) + p\l\a) + ... (76) 

and 

P2(A,) = pi0)(AI) + p^,»(AI) + . . . (77) 

p?W=-\ d a ' ; • " > (78) 
ir J-oo 1+4(A -a ) 

where p\l)(a) and P2U(A') are small corrections due to doping. 
From (61) in the absence of Bethe ansatz holes we obtain 

p i V ) - 1 | " d « ' , , / ,,2P?\a') + - P d « ' l p?\a') 
•"•Ja0 l + ( a - a ) irj-co l + ( a - a ) 

- 1 f'° da' 1
 p n» ( a 0 + l A . p ( O ) ( o ) ^ _ ^ ( 79 ) 

7rJ_„0 l + ( a - a ) 7T l + 4 a 

(p[u(a) actually also depends implicitly on a0 and Ai and more properly should be 
written as p\l\a, a0, Al

0).) 
Since p\l\a') is small it is a good approximation to write 
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(Similarly from (63) for completeness we note 

( 1 ) a n 2 f- P(,0)(*) 2 |—• 1 

p2 (A)— - J a o
d « 1 + 4 ( A . _ a ) 2 - - L d« l+4(A'-a)2 

f00 . P ( , V ) rjm 
da ——: -r (81) 

J_„ l+4(A'-a)2 

2 
+ — 

although we will not need the explicit form of p^'^A1) for our first-order calculation.) 
On solving (79) by Fourier transformation we find 

(82) p?\a)-l*-2- {, ,, 1 »,+ . . , \ J + ^ Pf (0) - - ^ . 7T \ l + ( a 0 - a ) l + ( a 0 + a ) / 7r l + 4 a 

The magnetization M is 

M = ±(N1-N2) = ±(N-2(N-N,) + (N-N*-N2)) (83) 

and on using (82) we have 

MJ (^1 (3+J_\+±c-~. A Jp<°>(0)). (84) 
N 2 \ TT \ TTOLJ TT ) 

However a0 is a function of A0, i.e. given a certain doping level the spins align 
themselves in such a way so as to minimize the energy. We therefore need to calculate 
the energy. From (68) we have 

_E 2 (0 1 [•-• 4p\°\a) 1 f". 4p\l\a) 
e = — = 2 P2 ( O ) A o - — d a 2 - — da 2 (85) 

N TT 2TT J_„„ l + 4 a 27T J l + 4 a 
and so 

da0 

(86) 

IT-V l + 4 a 2 / 

2 fa° 1 <9 
- d a — ^ f - p « " ( « ) a 0 , A i ) . 

TTj-ao l + 4 a da„ 
After a certain amount of analysis it is possible to show that 

^~ = — 1 ~ ( *" , + - e ' 2 - " ( / (0 ) +/(2a0))4- A^p2°'(0)) 
da0 7ra \cosn(27ra0) TT / 

--c-2m'(-2ng(a0) + g'(a0)) (87) 
TT 

where 

/ ( « ) = ? I ( - l ) r + , - r ^ (88) 

and 

r + ^ 
g(«) = i l ( - i r ' r - T t r — 5 - (89) 

,= i (r + 2) + a 
Using asymptotic estimates for / and g we can deduce 

^ < 0 (90) 
da0 
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and so the minimum of energy is found for a0 = co. Equation (84) then implies that 

M = 0 (91) 

in the ground state. 
In order to consider excited states we have to examine the effect of Bethe ansatz 

holes (Andrei et al 1983). Now we let 

p , ( a ) ^ p , ( a ) + Ap,(a) (92) 

and 

p2(A
,) + p2(A

,) + Ap2(A
l) (93) 

where Ap,(a) and Ap2(A") are changes in p, and p2 due to the presence of Bethe 
ansatz holes. Clearly from (61) and (63) 

Ap,(a) + ^ I 8(a-a1) 

1 p Ap.(a') 2 (< Ap2(A') 

" L l + («-«<)2 d a +^J_A i l+4(«-A')^d A (94) 

and 

Ap2(A>) + ^ ? 5 ( A ' - A - ) = ^ f" d« **<«> (95) 
N-,,=1 irJ_co 1+4(A -a) 

These equations can be solved by Fourier transforming. We obtain 

t Al
oAp2(0) iTT-L^e-** 

cosh \p N 1 + e AP.(/>)= ; „ : , r - ^ ^ ^ s r <96> 
where Ap, is the Fourier transform of Ap,. Similarly 

Ap-2(p) = e- ( , /2>""Ap-,(p)-% I e-"Aih. (97) 

Consequently, since 

Ap2(0)= I ^Ap" 2 (p ) (98) 

we have 

Ap2(0) = ~ Z — - l — f - - ^ ^ S ( A ; h ) ( l - - ( l o g 2 ) A i ) . (99) 
N J = i cosh(27ra7) N >=i \ -IT / 

We can now calculate the change in energy AE due to the Bethe ansatz holes. From 
(68), (85) and (96) we have 

f .^[(^A i + 1) £ _ " +?i^A; »]_iA .4 f t<o, (1oo, 
N N L\ ir / j=iCOsh(2iraj) IT y=t N } IT 

The change in the magnetization AM by definition is 

AM = ^-2A(N-Nl) + A(N-N'-N2)) (101) 
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which on using 

and 

gives 

and 

^ A ( / V - J V ' ) = | Ap, (a)da (102) 
JV J-CO 

^ A ( N - N , - N 2 ) = 2AiAp2(0) (103) 

AM = |JVh (104) 

A(N-N') = - i N h - A i ( l / „ + I *(AV)Y (105) 
Y,=i cosh(2iraj) r = ] / 

The gap above the ground state in (100) is zero since [cosh(2ira^)]_1 can be chosen 
to be arbitrarily small (or a) arbitrarily large) and Ah taken to be non-zero. For these 
same conditions A(7V- JV1) is -jNh which has to be an integer. Consequently the least 
complicated zero-energy excitation that has been constructed has angular momentum 
1. We have thus obtained valuable information from (61) and (63) with our simple 
approximation. Our analysis of the t — J model bears throughout a strong resemblance 
to that for the Heisenberg model. Many generalizations of the latter are possible but 
for both physical and mathematical reasons the supersymmetric generalization that 
we have considered is a particularly non-trivial one. 
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Abstract An exact description is given of the long-distance behaviour of the one-
dimensional t-J model at ( = J. We employ the Bethe ansatz method and the 
finite-size scaling technique in conformal field theory. The charge and spin degrees of 
freedom are separated, and described by two independent c = 1 conformal theories. 
The critical exponents for the charge, spin, electron and superconducting correlation 
functions are obtained for arbitrary band filling. We then make detailed comparison of 
the t-J model with the repulsive Hubbard model with emphasis on their Luttinger liquid 
properties. Analysing the electron filling dependence we observe the enhancement of 
the superconducting correlations compared with the highly correlated Hubbard model. 
The effect of the external magnetic field at and near half-filling is also discussed. 

1. Introduction 

Almost ten years ago Haldane introduced the concept of Luttinger liquids that is 
valid in understanding the low-energy behaviour of a large class of one-dimensional 
(ID) conducting fermion systems [1,2]. The universal role of Fermi liquids in higher 
dimensions is thus replaced by Luttinger liquids in one dimension. These two types 
of quantum fluids have quite distinct features. Among others, in ordinary Fermi 
liquid theory, well-defined propagation of electron quasiparticles implies a finite jump 
discontinuity in the momentum distribution function at the Fermi momentum. This 
should be contrasted with the power-law singularity near the Fermi point in Luttinger 
liquids, which corresponds to the soliton-like excitation instead of the quasiparticle 
excitation [3]. 

Recent studies of high-Tc superconductivity have renewed interest in low-
dimensional electron systems. In superconducting compounds the quantum fluctu
ation inherent in low dimensions is believed to play a crucial role in addition to the 
strong correlation effect near the insulating phase [4]. lb find an appropriate model 
of high-Tc superconductors it is of particular importance to clarify if non-Fermi liquid 
behaviour appears in the normal state of low-dimensional highly correlated systems. 
A fundamental model Hamiltonian to study such correlated systems may be pro
vided by the Hubbard model, or more simplified t-J model. In one dimension 
these systems are the simplest examples which have been expected to possess a non-
Fermi liquid nature. Very recently numerical computations to resolve this issue in 
the highly correlated Hubbard chain have been done by Sorella et al [5,6], Imada 
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and Hatsugai [7], and Ogata and Shiba [8]. Their works motivated us to find exact 
correlation exponents in ID correlated systems and to clarify their Luttinger liquid 
nature. 

In this paper we will describe exactly the long-distance behaviour of various cor
relation functions in the ID t-J model at t = J. In addition to a full exposition of 
the results announced in a previous communication [9] an analysis of the magnetic 
field effect is also reported. The results will be compared in detail with the proper
ties of the ID Hubbard model whose correlation exponents have also been obtained 
quite recently by Schulz [10], Kawakami and Yang [11], and Frahm and Korepin [12]. 
bosonization formulae for the Hubbard model are given by Affleck [13,14]. These 
models have been known to be exactly solved by the Bethe ansatz for arbitrary elec
tron filling [IS, 16]. In the Bethe ansatz approach it is a formidable task to deal with 
correlation functions. However, recent developments in two-dimensional conformal 
field theory have made it possible to calculate the correlation exponents [17]. The 
point is that under a conformal mapping the scaling operators and the eigenstates of 
the transfer matrix on a finite periodic strip have a one-to-one correspondence [18]. 
Consequently the critical exponents are obtained if one knows the gap due to the 
finite-size effect in the spectrum of the Hamiltonian at criticality. On the other hand, 
computation of the energy gap is the most tractable problem in the Bethe ansatz, 
and hence we are able to compute exactly various correlation exponents based on the 
finite-size scaling analysis [19-23]. 

Interacting ID quantum systems may carry several low-energy excitations with 
linear dispersion relations, but with different Fermi velocities. Hence the systems 
will not be Lorentz invariant. When the motions of these excitations are decoupled, 
however, we can still apply the conformal theory technique [22,23]. This is indeed the 
case for the ID t-J model and the Hubbard model, where the charge and spin degrees 
of freedom are separated in the continuum limit, as will be seen. Consequently 
the charge fluctuation is described by a c = 1 conformal theory with continuously 
varying exponents as functions of the electron filling. Here c is the central charge 
of the Virasoro algebra. The spin fluctuation belongs to the universality class of the 
antiferromagnetic spin-§ Heisenberg chain irrespective of the electron filling. This 
class is a well known c = 1 SU(2) Kac-Moody theory. 

In section 2 we recapitulate the Bethe ansatz solutions to the ID t-J model at t = 
J and compute the finite-size corrections in the energy spectrum. The long-distance 
properties of the charge, spin, electron and superconducting correlation functions for 
arbitrary band filling are described in section 3. The magnetic field dependence of 
correlation exponents at and near half-filling is also studied. In section 4 we first 
review the properties of Luttinger liquids in the light of our result for the t-J model, 
and then make the comparison with the Hubbard model. The relationship between 
the critical exponents and the bulk quantities is also discussed. The final section is 
devoted to our conclusions. In appendices A and B we summarize some technical 
details. 

2. Finite-size scaling behaviour of the energy spectrum 

The ID t-J model consists of spin-£ electrons hopping around nearest-neighbour 
lattice sites with the hopping matrix element —t < 0. We assume there is no double-
occupancy of every site, reflecting a large on-site Coulomb repulsion. Furthermore the 
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motion of highly correlated electrons (or holes) is supposed to be strongly affected by 
the spin fluctuation through the antiferromagnetic coupling J > 0. The Hamiltonian 
is then given by [4] 

-H = -«5>kc.-+i« + ct+lac,J + 2J£(S, . • Si+1 - ^nini+1) 
i,<r i 

i t 

where clcr (er = | or J) is the spin-cr electron annihilation operator at the ith 
site, St = c J ^ S ^ c ^ , with the spin-§ matrix S, the number operator ni(r = 

xa to n.- = n ,T + n, | , and // and / / are the chemical potential and the ex
ternal magnetic field, respectively. 

As is well known, this Hamiltonian is formally obtained by the canonical transfor
mation from the Hubbard model, but with the limitation J < t. In (2.1), however, 
one can regard t and J as free parameters. Therefore the model we shall treat here 
(t = J) has an extremely large exchange coupling compared with the strong corre
lation limit of the Hubbard model. The relevance of such a model to the high-Tc 

superconductivity was first demonstrated by Zhang and Rice [24]. Subsequendy many 
attempts have been made to clarify the nature of the t-J model, in particular laying 
stress upon the competition between magnetism and superconductivity. 

Schlottmann found that the ID t-J model (2.1) can be solved by the Bethe ansatz 
for the special case of t = J [15]. At this integrable point the model is mapped 
onto the multicomponent quantum lattice gas whose exact solution was obtained by 
Sutherland [25]. The diagonalization is performed in two steps. First we seek for 
the wave function as a superposition of the plane waves characterized by the electron 
momenta p ; (j = 1 ~ ./V,.). Here we consider a ID lattice of even N sites with 
Nc electrons among which M electrons are spin down. The complete integrability is 
then ensured by the factorization of the multiparticle scattering matrix (Yang-Baxter 
relation). On applying periodic boundary conditions we reduce the problem to the 
ancillary one in spin space. This problem can be solved by the generalized Bethe 
ansatz by introducing the spin rapidity Aa (a = 1 ~ M) related to the internal 
degrees of freedom. The resulting Bethe-Yang transcendental equations are written 
in terms of the rapidities kj = icot(p ; /2) and AQ [25,15] 

Uy-i/2 7 Mkj-Ap-i/2 j = l,...,Nc 

(2.2) 

/ s s
1

1 A 0 - f c j - . / 2 1 1 A O - A / , - I 

For convenience we will set t — J = 1 from this point on. 
The set of rapidities {kj} contains complex k* of spin paired electrons (a = 

1 ~ M), where fcj are determined by real (down-) spin rapidities Aa through 
^t = ha ± i/2 [15]. At first sight the complex solutions k* seem to generate the 
charge excitation gap as in the attractive Hubbard model. It turns out, however, that 
they describe the massless charge excitation except for the half-filled band, where 
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Nc = N [26]. We note that similar observation was first made in the singlet ground 
state of the Anderson model for the Kondo problem [27]. The real solutions kj 
describe the spin excitation at zero temperature. Other string solutions for excited 
states are not necessary for the present investigation. 

Substituting the complex solution into (2.2) and taking the logarithm we ob
tain [15] 

M 

2iVtan"1(2fcy) = 2nlj + 2 ^ tan-1(2(fcJ- - A^)) j = 1 , . . . , Nc - 2M 
0=1 

NC-2M 

2Nta.n-1(Aa) = 2nJa+2 £ tan-1(2(A„ - *,.)) 
i = i 

M 

where 

2 2 
The energy and the momentum are given by 

N, 

It is convenient to introduce 
M 

(2.3) 

+ 2 £ t a n - 1 ( A Q _ A / J ) a = l , . . . , M (2.4) 

Ij = — mod 1 Ja = —c-— mod 1. (2.5) 

E = - 2 £ cos Pj - MNc + H ( M - ^ j 

NC-2M . 

- -™< + > E ^ 

£L 1 / N \ 

'-Eft—£( E ', + E 4 <"> 
; = 1 X j=l a=l ' 

(2.6) 

*.,*(*) = \ \ (2tan-1(2fc) - ^ £ 2tan~1(2(fc - A„))) (2.8) 

^,7v(A) = ^ ( 2 t a n - 1 ( A ) - - ^ £ 2tan~1(2(A - fc,-)) 
i = i 

/9=1 J 

P»,Ar(fc) = ^ PC,N(A) = ^ (2.10) 
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so that 

Inspecting (2.11) one finds that the real solutions {kj} and {Aa} distribute over 
the regions k < B~ and k > B+, A < Q~ and A > Q+, respectively. Corre
spondingly the distributions of the quantum numbers I- and Ja become I < I~ and 
I > I+, J < J- and J > J+, where 

z.iN(B*) = £ zCtN(Q±) = ^- (2.12) 

and 

1+ - I- = N - N, 1+ + 1- = 2D, 
(2.13) 

J+ - J- = N - Nc J+ + J- = 2DC . 

Here Nt = 7VC - M is the number of up spins and £>, (or Dc) denotes the number 
of particles which transfer from a Fermi level of the spinon (or holon) to the other 
Fermi level. 

2.1. Corrections to the ground-state energy 

We now take the large-AT limit while keeping the terms which scale as 1/A1 in the 
energy spectrum [19]. First from (2.10) we get 

M 

1 f 1 NC-2M M x 

PcM
A)=2^{TcM)-Jf £ Tct(A-kj)--'£

Tcc(*-*0)) (2-15) 

where 

T.e(«) = Tc>(x) = - j - i ^ Tcc(x) = ^ T T„(x) = 0. (2.16) 

Using the Euler-Maclaurin formula 

(2.17) 

we obtain from (2.14) and (2.15) 

P . . N ( A J - ^ ( A J + 24]V5 1 - I 2*p„tA,(,+ ) " 2*P/>tN(,j) ) 

" E / ^ ^ ( A a - A ' ) P ^ , N ( A ' ) a = c,s (2.18) 
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where we have introduced the notation Ac = A, Xt = k, qf = Q*, qf = B±, 
«,(*) = Tc,(x) » &

c(x) = Tcc{x) and the integral 

/ - r+r 
J±B Jot J-oo 

The solution to (2.18) may be written as 

p«,w(\») = P«(K\<I ) + ^7m Ls l ^Z—i^+T " ^ — T ^ T ) ( Z 1 9 ) 

24AM *-f \2npptN(qJ) ^^Pp,N^qp)J 

where 

P.(Aal9*) = j^K(K) - Y.J ^T°e{K ~ X'W^ <2-20> 

O A a l « * ) = ^ ( A Q - q$) - £ / ^ T a 7 ( A « - W 7 V A V ) • (2-21) 

Notice that pa(Aa |q
±) in (2.20) are the rapidity distribution functions in the 

thermodynamic limit N —• oo with Nc/N = nc and A /̂Af = ns being kept fixed. 
In this limit the electron density nc and the magnetization M are obviously given by 

nc= [ dkp,(k) + 2 f dAPc(A) 
J±3 J±C 

M = n t - ^ = ^J dkp,(k). (2.22) 

For the ground state the rapidity distribution is symmetric, q± = ±qa. In the absence 
of the external magnetic field the ground state turns out to be singlet, M = 0 [15]. 

To calculate the energy we first apply the formula (2.17) to (2.6). Then, using 
(2.19) and (2.21), we have 

* - »«*) - £ E j ^ y ( - tf <o - E/„,„ £'**>*(*>) 
+ 0(AT2) (2.23) 

where 

£(9±) = E / dAi&AJp^AI^) (2.24) 

€a°(A) = -(2 + / x ) - f + Tej(A) e°(A) = -2(2 + M) + Tcc(A). (2.25) 

Since the second term in (2.23) is of order AT-1 we have replaced pa(A|q±) by 
P«(A) = li 

m?±_>±?(jpa(A|q±) which is the solution to (2.20) with q^ being replaced 
by ±qp. Likewise f+0(Xa) = Hm,±^± /^ (AJg*) . 

file:///2npp
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Let us introduce the dressed energy functions 

ea(A|9
±) = - € ° ( A ) - ^ ^ ^ „ ( A V ) 2 > a ( V - A ) (2.26) 

with the condition 

ta(ii\q
±) = o- (2-27) 

We iterate (2.26) and take the derivative. The result is compared with the expression 
obtained by inserting the iteration solution f+fi of (2.21) into (2.23). One finds 

= -tZ'ila) - E / £^(A)#.(A) <2-28) 
A=?a 0 •'|A|>9^ 

where ea(A) = lim,±_±, c
Q(A|q±). On the other hand, the Fermi velocities of the 

low-lying excitations are determined from 

Therefore it can be seen that 

E = *«„(,*) ~ f^f " S f + 0(iV2) • (2.30) 

Consequently we find that the ground-state energy scales as 

E° = N£°-WN-TN+°(N~2) < 2 - 3 1 ) 

where the bulk energy density e0 = efg*)^*. .^ = e(±q)-

2.2. Corrections due to the excitations 

Our next task is to compute the energy gap E- E0 due to the elementary excitations. 
There exist two types of excitations: the excitations which cause the change of the 
symmetric Fermi level ±B and ±Q of the ground state to the asymmetric ones B± 

and Q*, thereby with large momentum transfer, and the particle-hole excitations 
with small momentum transfer near the Fermi levels. 

In order to calculate the contribution of the excitations with large momentum 
transfer, it is convenient to convert the integrals /± into fq2. This can be performed 
by Fourier transform. The integral equation (2.20) for the rapidity distribution then 
turns out to be 

P«(A|«*) = ^Z*M + £ / ' ' ^Kap{\ - AOP^AV) (2.32) 
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where Kct(x) = K,c(x) = T,c{x), K„(x) = -T c c (x) , Kcc(x) = 0, and a,(x) = 
K,c(x), ac(x) = 0. For the dressed energy (2.26) we obtain 

0 J1fi 

where c2(«) = H - KC3(x), e°(x) = 2 + ^ - H/2. The energy takes the form 

«(«*) = M ~ T + E / ' " d A elWPcWf) • (2-34) 

The integrations of the rapidity distributions over the closed intervals yield 

,Q+ ,B+ 
/ dAP c(A) = l - n c / d*p.(fc) = l - n , (2.35) 

. /Q- JB-

which are the number of holes and the number of 'holes' with respect to up spins, 
respectively. Notice that these are quite consistent with (2.13). 

We turn now to the derivation of the explicit form of e(q±). We first minimize 
e(q±) with respect to the electron number and the magnetization. This condition 
is equivalent to demanding de(q±)/dq* = 0, which is realized by virtue of the 
condition (2.27) for the dressed energy, ea(9a !<?*) = 0. See appendix A. Let us next 
expand e(q±) about the ground-state energy density e0 = e(±q) 

^ ± ) = £o + |E{(a^)2 £K^-9J2+(^r)2
£ | (C+9J2} (2-36) 

where the vertical bar stands for setting q* = ±qa. There is no cross derivative due 
to (2.27). We now wish to express the variations dq* = q* ^ qa in terms of the 
change of the numbers of electrons and up spins. The details of this calculation are 
left to appendix A. The result reads 

=(«*) " £o = % Q l ' t Z - ^ V Z " 1 / + D'ZVZ'I?) + 0(iV-2) (2.37) 

where V = diag(uc , vs). Here we have introduced the 2x2 dressed charge matrix 
Z [22,23,28] whose elements Za0 = ^a/3(q/a) are given by the solutions to the 
integral equations 

tcfi(*fi) = *«„ + E f" ^ayWKy^X - Xfi) • (2.38) 

Here 

»-(£) ' - © - C M ) -> 
with n° being the ground-state value of nQ,a = c,s. As pointed out in [28,29] 
n°, n° and N should meet certain commensuration conditions to be consistent with 
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the conformal limit. Ic and It are then non-negative integers, implying that we are 
counting the hole number and the number of 'holes' with respect to the up spins, 
respectively. 

It is straightforward to include the particle-hole excitations. Their contributions 
are specified by the set of non-negative integers 7V± and Nf. The final expression 
for the energy gap is thus obtained as 

E- E0 = *g*xe + ^ x , + CK*-2) (2.40) 

C<= = ( ^ d e t z " 7 ' ) 2 + (Zcc°c + Z>cD>? + N* + Nc~ 

C> = ( ^ ^ d e t z " 7 ' ) 2 + (Zc*Dc + Z"D')2 + "* + K 

(2.41) 

The momentum takes the form 

N 
P-P0 = (2n-2kn-2kFl)Dc + (2n-2kn)D,+ 2£ £ (IaDa + N+ - N~) 

(2.42) 

where PQ is the ground-state momentum and the Fermi momentum fcFT (kFi) for 
the up- (down)-spin electrons is given by 

kFm = ±n(nc±2M). (2.43) 

Equation (2.42) is easily checked if one notes to rewrite (2.7) as 

P = - ^ f Y21! +Y1 Ja) + (T±> J± independent term) (2.44) 

where the sums are taken over /• € [/", / + ] and Ja e [J~, J+]. 
This completes our derivation of the finite-size corrections in the energy spectrum. 

Now, conformal invariance of ID quantum critical systems dictates that the ground-
state energy scales like [30] 

E0 = e0N-^v + O(N-1) (2.45) 

where v is the Fermi velocity and c is the central charge of the Virasoro algebra. 
The energy gaps of the excited states are related to the scaling dimensions xn of the 
scaling operators of the theory [18] 

^ n - ^ 0 = ^ ^ + O(^V-1). (2.46) 

Thus our expressions (2.31) and (2.40) indicate that the critical behaviour of the t-J 
model is described by two independent c = 1 conformal theories. They are associated 
with the massless excitations, the holon and spinon, which are characterized by the 
Fermi velocities u„ and v.. 
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3. Correlation functions 

One of the remarkable observations in two-dimensional conformal field theory is that 
the critical exponents of the scaling operators are read off from the energy gaps as 
described in (2.46). lb write down explicitly the correlation functions at long distance 
let us rewrite (2.40) and (2.42) as 

E(I,D)-E0 = ?£ J2 vJAt + A-J + CKN-1) (3.1) 
a=c,t 

P(I,D) -P0 = (2ir - 2kn - 2kFl)Dc + (2TT - 2kn)D, + ^ £ (A+ - A ; ) 
a=c,» 

(3.2) 

where A* are the left and right conformal weights in the sector a; a = c (holon), 
a = s (spinon). Here xa = A+ + A~ and we have 

Af(I,D) = \{zccDc + ZSCDS ±
 Z"I

2
C~J{'1'^ + N? (3-3) 

Af (I,D) = \[zcaDc + ZSSD3 ± Z c c ^ d e t z
a c / C ) + N* ' (3"4) 

The two-point correlation functions of the scaling fields <pA±(x,t) with conformal 
weights A* then take the form 

<4.A±(x,<)<^±(0,0)> = G(A±( / ,D) |x ,<) 

exp(i(2?r - 2fcFT - 2kFi)Dcx) exp(i(27r - 2kn)Dax) 

~ (x - \vct)
2&t(x + \vct)

2*° (x - ivst)
2At(x + ivst)

2As 
(3.5) 

We consider the following correlation functions, 

(i) Electron correlator 

0 , ( 1 , 0 = < 4 0 M K ( 0 , 0 ) ) < r = T o r J . (3.6) 

(ii) Charge density correlator 

N(x,t) = (n(x,t)n(0,0)) n(x,t) = nT(x, t) + n^x,^. (3.7) 

(iii) Spin correlator 

X(x,t) = {S,(x,t)Sz(0,0)) S2(x,t) = i ( n T ( x , f ) - n i ( x , < ) ) . (3.8) 

(iv) Singlet and triplet pair superconducting correlators 

Ps(x,t) = (c\(x + l,t)c\(x,t)c^l,0)Ci(0,0)) 

Pt(x,t) = (cf
T(x + l,t)cj(x,OcT(l ,0)cT(0,0)>. 

(3.9) 
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Generically the field operators we have introduced will renormalize to a certain linear 
combination of the scaling operators at long distance. The correlation functions (3.6)-
(3.9) are thus expressed as 

^A(J ,£> , iV ± )G(A ± ( I , r> ) | a ; , f ) (3.10) 

where A(I,D,N*) are constant coefficients and we have neglected possible loga
rithmic corrections. 

In order to determine the scaling dimensions we now have to assign the quantum 
numbers (J^DjiV*) to the field operators, as has been done for the Hubbard 
mode [12]. Notice that these quantum numbers are subject to the restrictions 

£>c = ^ A m o d l D . s ^ m o d l (3.11) 

which can be checked from (2.5). Upon inspecting the explicit form of the field 
operators in (3.6)-(3.9) one finds the assignment 

Gt(«,i):(/e = i,/, = i ,D eez,fl lez+i) 
G j ( x ) i ) : ( / e = l ) / , = 0 , D e 6 Z + | ) D ( 6 Z + l ) 
N(x,<) : (/c = 0 , / , = 0, Dc £Z,D,e Z) 

X(x,t) : (Ic = 0 , / , = 0,DC EZ,D,e Z) 
P.(x,t) : (Ic = 2 , / , = l , D e 6 Z + J , D 1 € Z) 
Pt(x,t) : (Ic = 2, It = 2, Dc € Z, D, G Z). 

(3.12) 

In the following we first study the correlation functions for zero magnetic field and 
then the effect of the external magnetic field at and near half-filling is discussed. 

3.1. Zero magnetic field 

It is readily seen that B —• +oo for zero magnetic field. Using the Fourier transform 
technique we obtain the simple form of the dressed charge matrix Z 

where Zts = l / \ /2 is derived with the aid of the Wiener-Hopf method [28]. Here 
fc(A) is the solution to the equation 

*e(A) = l + / dA'/*(A-A')* e(A') (3.14) 
J-Q -Q 

with the kernel being 

y_oo 2TT 1 + exp u> 
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The conformal weights (3.3) and (3.4) are reduced to 

A? (I,D) + N? 
(3.16) 

Let us first consider the charge density correlation function. From (3.12) we write 
down the asymptotic form of the equal-time correlator 

N(r,0) ~ constant +A 0 r " 2 + A2r~a' cos(2fcFr) + A4r~ac cos(4fcFr) (3.17) 

where kF^ = kF^ = kF since M = 0 for zero field. The 4fcF piece arises 
from the excitation of (IC,IS, DC,DS) = (0,0,±1,0) , while the 2fcF piece from 
(IC,I,,DC,D,) = ( 0 , 0 , ± 1 , T 1 ) and (0,0,0,±1). The non-oscillating part is due 
to the lowest particle-hole excitation. We thus find 

« c = 2£C(Q)2 a , = l + " c / 4 (3.18) 

Notice that both the holon and spinon excitations are responsible for the 2kF os
cillation part. On the other hand the 4fcF piece is dominated by the holon exci
tation alone. The same observation holds for the Hubbard model [10-12] and the 
Tbmonaga-Luttinger model [3]. The spin correlation function x(*%°) has the same 
form as (3.17) except that the 4fcF part is absent. The critical exponent for the 2fcF 

part is equal to a, of the charge density correlation. 

0.25 

Figure 1. The dressed charge £C(Q) of the holon as 
a function of thi 
for half-filling). 
a function of the electron concentration v (y = | 

Figure 2. The charge density 4JbF exponent ac as 
a function of v. 

The dressed charge £C(Q) of the holon is shown in figure 1, where v = n°/2 
and v = \ corresponds to the half-filled band. The 4fcF exponent ac then behaves 
as depicted in figure 2. Near half-filling we obtain ac ~ 2 + 8 ( | - v) as shown 
in appendix B. Note that in the low-density limit ac = 4, i.e. the value for the 
non-interacting model. 

The long-distance behaviour of the electron correlation function is governed by 
the excitation specified by (/c , / , , Dc, Da) = (1, l , 0 , ± | ) . We thus obtain 

G t ( r ,0) ~ r - " cos(fcFr) TJ = (a c + 4)2 / (16a c) , (3.19) 
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G i(r ,0) follows the same behaviour, but with the excitation (1 ,0 ,±5,^5)- Conse
quently the momentum distribution function close to k¥ has the form 

( n t ) = (n*F) - constant \k - fcF|*sgn(fc - kF) (3.20) 

which is the typical power-law singularity of the Luttinger liquid [3] and we find 

0 = 7 , - l = ( a c - 4 ) 2 / ( 1 6 a c ) (3.21) 

From figure 3 we see that as u deviates from half-filling 6 decreases monotonically 
from g to zero, and hence the momentum distribution in the low-density regime 
exhibits an abrupt change around kF. 

0.1 

0.05 

0 0.25 
V 

' -

0.5 

1/8 

Figure 3. The exponent 6 for the momentum dis
tribution as a function of v. 

Figure 4. The superconducting correlation expo
nents as a function of v. /J3 and /3t are for the 
singlet and triplet pair, respectively. 

We now turn to the superconducting correlation functions. The excitations rele
vant to the singlet and triplet pair correlations are specified by (IC,IS,DC,DS) = 
( 2 , 1 , ± | , 0 ) and (2,2,0,0), respectively. We then obtain for the singlet pair 

Pt(r,0) ~ r-Ps cos(2fcFr) 0, = 4 / a c + a c / 4 . 

The triplet pair has the leading uniform term 

P < ( r , 0 )~ r - / ? l /3t = l + 4 / a e . 

(3.22) 

(3.23) 

Notice that the singlet pair correlation also has the uniform piece with the same 
exponent /3t. The exponents /38 and 0t are plotted in figure 4, from which we 
observe that the superconducting correlations get more enhanced as holes are doped 
into the half-filled band [9,31]. It is interesting to notice that even in the t-J model 
the superconducting correlations never overwhelm the spin correlation since /3t and 
/3„ are always larger than as for arbitrary electron filling. 

3.2. Magnetic field dependence 

Let us investigate how the correlation exponents behave when we turn on the external 
magnetic field. For simplicity we consider two typical cases: just at half-filling and near 
half-filling, on the basis of which we will be able to clarify the essential properties of 
the field dependence. At half-filling there is no massless excitation associated with the 
charge fluctuation since the strong correlation effect opens the very large Hubbard 
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Figure 5. The 2lcF exponent a, in the spin correlator as a function of H at half-filling. 

gap. The spin excitation remains massless, which can be described by the c = 1 
SU(2) Kac-Moody theory. The long-distance behaviour of the spin correlator is thus 
equivalent to that for the antiferromagnetic Heisenberg model in [32] 

X(r,0) ~ M2 + B0r - 2 + B2r~ "• cos(2fcFjr) (3.24) 

where M is the magnetization. We plot in figure 5 the magnetic field dependence of 
the 2kF spin exponent at = 2£a(B)2, where £S(B) is given in (3.26) below. 

In the metallic phase away from half-filling, the holon becomes massless as in zero 
field. An essential difference from zero-field case is that the holon is no longer treated 
as a spinless hole because it acquires the effective spin induced by the magnetic field. 
Similarly the spinon may get electrically charged. 

These effective spin and charge are computed by creating the holon and spinon 
excitations in magnetic fields [33]. We then observe that they are nothing but the 
elements of the dressed charge matrix introduced in section 2. The physical meaning 
of each element is that Zcc and ( | - Zsc) are the effective charge and spin of the 
holon, and Z>s and Zcs are the effective spin and charge of the spinon. Approaching 
half-filling (Q —• 0), the effective charge of the holon is independent of field and 
becomes unity. The spinon is not charged even in the metallic phase, i.e. Zcs = 0. 
Furthermore the field dependence of the effective spin of the spinon is given by that 
for the Heisenberg model (corresponding to half-filling). The dressed charge matrix 
thus turns out to be 

Zcc Zc 

) \±-sk(B) £a(B)) 
(3.25) 

where £S(B) is equal to the dressed charge (or effective spin) for the spin-| Heisen
berg chain obeying 

«.(*) = £ + / dk'R(k-k')£,(k') 
1 J\k'\>B 

(3.26) 

with the kernel R(x) given in (3.15) and the effective spin of the holon is 

sh(B)=l f dfcsech(7rfc)£,(fc). (3.27) 
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For comparison let us quote the zero-field dressed charge matrix near half-filing 

(3.28) 1 0 \ 
h 1/V2) 

It is not difficult to verify (3.25) from (2.38) if one applies Fourier transform. The 
field dependence of t,(B) and sh(B) are depicted in figures 6 and 7, respectively. 
We note in figures 5 and 6 that the weak-field behaviour of a, and £, exhibit the 
logarithmic singularity whose origin is the same as for the spin susceptibility of the 
Heisenberg chain [12,34]. 

Sh 

Figure 6. The dressed charge £,(B) of the spinon Figure 7. The effective spin sh(B) of the holon 
as a function of the external magnetic field H at as a function of H near half-filling, 
and near half-filling. 

We next discuss the field dependence of critical exponents close to half-filling. The 
exponent of the 4A:F( = 2fcFT + 2k F^) oscillation piece in the charge correlator takes 
the value ac = 2 irrespective of magnetic fields owing to the fact that it is controlled 
by charge excitation alone. Since the charge density operator n(r) = n^r) - l -n^r) 
the 2kF part splits into two pieces with the momentum 2kF^ and 2kF^, the exponents 
of which are given by aai = 2Zj„+2(l-Zsc)

2 and asT = 2Z2
as+2Z]c, respectively. 

Note that these exponents have the magnetic-field dependence only through the 
effective spins of the spinon and holon. The values of (aa^,a^) are increased from 
(§., §) to (4,2) as the field increases. 

The singlet pairing exponent has the form 

5 l / l - 2 Z , c y (3.29) 

while the triplet one reads 

0t = 2 + 2 
1 - Z . (3.30) 

With the increase of the magnetic field, the values of (/38, /3t ) are monotonically in
creased from (§,3) to (3,4), respectively. Therefore the superconducting correlation 
is suppressed in the presence of the magnetic field, as might be expected. 
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The Luttinger anomaly exponent for the momentum distribution is given by 

, 2 l 

- 1 + Z\c + Z), + ( i ^ £ ) ] for fcFT 

- 1 + (1 - Ztcf + Z\, + ( | ^ ) ] for kFi 

(3.31) 

Both of the exponents 6hl increase up to § with the increase of magnetic fields. The 
momentum distribution around the Fermi momentum is therefore smoothed by the 
magnetic field. 

We mention that Ogata et al analysed numerical data on the magnetic field 
dependence in the U -* oo limit of the Hubbard model [35] comparing with the 
analytic result obtained by Frahm and Korepin [12]. Our present results for the 
magnetic field effect in the t-J model are essentially the same as theirs in the metallic 
system very close to half-filling. It is worth noting that in this regime the effective 
spin of the holon defined here is nothing but the magnetization M (2.22) of the 
system. The magnetization in this limit is of course equal to that in the Heisenberg 
model calculated by Griffiths [34]. We point out, however, that this relation holds 
only for highly correlated systems. In generic cases they are not equivalent. This will 
be seen explicitly in subsection 4.1, where the effect of the finite Coulomb interaction 
is discussed using the Hubbard model. 

4. Luttinger liquid properties 

According to Haldane, the idea of Luttinger liquids applies to the low-energy excita
tions in a variety of ID metallic systems [1,2]. His demonstration is mainly based on 
the systems containing the one-component massless excitation, such as the Heisen
berg model, the bose gas model etc. The low-energy spectrum of Luttinger liquids 
contains the three spectral parameters, vF, vj and vN. These are all velocities asso
ciated with the excitations of particle-hole pairs (vF), of the 2A:F momentum transfer 
(vj), and of the particle number change (vN). Here vF is the usual sound velocity. 
The crucial point is that these velocities are not mutually independent but connected 
through the universal relation vF — (vjvNy/2. Hence one can write 

vj = exp(2V>)vF vN = exp(-2V>)uF (4.1) 

where the parameter exp(2i/>) is non-universal and depends on the details of the 
interactions of underlying microscopic models. All the correlation exponents are 
essentially determined by this parameter. In short, what Haldane claims is that the 
low-energy massless excitations in ID metallic systems are all solved by the procedure 
of bosonization. 

In the t-J model, as we have seen, there exist two massless degrees of freedom, 
the holon and spinon. These excitations are decoupled and described by two inde
pendent c = 1 conformal theories, i.e. Gaussian theories. Thus the low-energy action 
reads 

5 = \ E V" fdt l " dxWaWc, <4-2) 
1 a=c,5 J J° 
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where free boson fields are periodic <j>a(t,x) = 4>a(t,x+2ir)+2irNQRa with NQ £ 
Z/2. The conformal weights (3.16) are characteristic of the Gaussian theory [36]. 
For the charge sector, therefore, the field periodicity Rc is parametrized as y/nRc = 
£C(Q) - 1 , i.e. it depends continuously on the electron concentration. The spin sector 
has the periodicity i/irR, = Z„ = 1/v^ for any electron density. This implies 
that the spin sector is described by the level-1 SU(2) Kac-Moody theory just like the 
spin-£ antiferromagnetic Heisenberg chain [13]. It is also instructive to compare the 
formula (3.1) for the energy gaps 27rt>a(A+ + A~)/N with Haldane's result (see 
equation (6) of [2]). They are in fact equivalent under the identification e* = £C(Q) 
(or e^ = Zt3 = l / \ /2) for the charge (or spin) sector. In the presence of the 
magnetic field the quantity e^ is generalized to the dressed charge matrix. Hence the 
critical properties of the t-J model nicely fit in with the Luttinger liquid picture. 

In comparison with the Fermi liquid theory the most striking feature of the 
Luttinger liquid is the power-law singularity of the momentum distribution function 
(3.20) near k = fcF. This reflects the fact that the low-energy excitation is not of 
the quasiparticle type, but of the collective type. The power-law anomaly (in view 
of the Fermi liquid theory) was first discovered in the Tbmonaga-Luttinger model 
which essentially describes a weakly correlated electron system [37-39]. As for highly 
correlated systems this behaviour has been established only recently in the repulsive 
Hubbard model [6,8,10-12,40]. We now have shown that the same conclusion holds 
for the t-J model. 

In order for these systems to be classified as Luttinger liquids it has been crucial 
that the charge and spin degrees of freedom are separated and described by two 
independent c = 1 conformal field theories. Universal scaling relations (3.18), (3.21) 
and (3.23) are then valid for these metallic models. Each exponent, however, depends 
on the non-universal microscopic property of the theory due to the existence of the 
marginal operator. To clarify this point we would like to compare the t-J model with 
the repulsive Hubbard model in the next subsection. 

4.1. Comparison with the Hubbard model 

The ID Hubbard chain describes a system of itinerant electrons feeling the on-site 
Coulomb repulsion U. The Hamiltonian takes the form 

ft = - t D c U + i . + c!+1<rO+t/£n<TnU U>0. (4.3) 
»,(T I 

As mentioned before, in the strong correlation limit (U > t) the model reduces to 
the t-J model in the region J ~ 2t2/U < t. 

The finite-size corrections in the Hubbard model have been analysed by Woy-
narovich [28]. For vanishing magnetic field the critical exponents at, 0, /?„ and (3t 

are all expressed in terms of ac just through the same scaling relations (3.18) and 
(3.21)-(3.23) as in the t-J model [10-12]. The 4fcF oscillation exponent ac is de
termined through ac = 2TJC(Q)2 , where the dressed charge function r)c(k) of the 
holon is the solution to the integral equation [11,12] 

Vc(k) = 1 + / dfc' cos(fc')G(sin k - sin k')ric(k') (4.4) 
J-Q 

with the kernel being 

/-r~\- r ° d" exp(-iu>x) 
G{X)-L0o2nl+exp(U\u\/(2t))- ^> 
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3 

2 
t ' 7?r 
0 0.25 0.5 

v 
Figure 8. The charge density 4fcF exponent ac as a function of v in the Hubbard 
model. 

Here the Fermi level Q is fixed by the electron concentration. 
In figure 8 we show the exponent ac. Strong dependence of ac on the Coulomb 

interaction as well as the electron filling is clearly observed. As U —• oo, ac ap
proaches 2 in agreement with the result for the spinless fermion. In the opposite 
limit U —• 0, ac converges to 4 for the electron concentration 0 < v < \, which 
is consistent with the result of the Tbmonaga-Luttinger model. It should be noticed 
that ac takes the value close to 2 near half-filling as long as the Coulomb inter
action exists. Recall that at half-filling the Hubbard model is an insulator for all 
U ^ 0, since the Umklapp interaction becomes relevant, thereby the charge excita
tion possesses the gap. The gap formation strongly affects the properties of the charge 
excitation so that the holon behaves like the spinless fermion, resulting in the ac = 2 
near half-filling. From ac one can evaluate the Luttinger anomaly exponent 6 for 
the momentum distribution and the superconducting correlation exponents through 
(3.21)-(3.23) [10-12]. The results are plotted in figures 9 and 10. 

Let us compare the present result for the t-J model with the large- U behaviour 
of the Hubbard model. In the vicinity of the half-filled band the exponents of the t-J 
model take the values expected in the strong correlation limit of the Hubbard model, 
for instance ac = 2. This is because the exclusion of the double occupation gives 
the most dominant effect near half-filling, which makes the motion of doped holes 
behave like spinless fermions as in the Hubbard model. In the U —• oo Hubbard 
model, as v decreases from half-filling ac ( = 2 ) stays constant, and hence 0 = £ for 
any filling [10-12,41]. On the other hand, in the t-J model the critical exponents 
take the values for the non-interacting system such as ac ( = 4 ) in the low-density 
limit v —• 0. 

This non-interacting behaviour of the t-J model for v —<• 0 seems to be a bit 
peculiar since the model is originally supposed to describe a highly correlated system. 
Our result implies that the hole motion in the t-J model is not like spinless fermions 
for large hole-doping, but is considerably influenced by the spin fluctuation through 
the strong antiferromagnetic coupling J. We think that the large antiferromagnetic 
coupling favours the antiparallel-spin electron pairs to sit on the nearest-neighbour 
sites, which renders the hole motion quite different from spinless particles. In the 
low-density limit this configuration will be so dominant that the exclusion of the 
double occupancy becomes less important. 

Turning to the superconducting correlations we see that the large spin coupling 

U/t = 2 
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Figure 9. The exponent 9 for the momentum dis
tribution as a function of u in the Hubbard model. 

Figure 10. The superconducting correlation expo
nents as a function of v in the Hubbard model. /?3 

and /?t are for the singlet and triplet pair, respec
tively. 

as well as the hole doping in the t-J model play a conspicuous role to enhance the 
superconducting correlation. This is not the case for the strong correlation limit of the 
Hubbard model. Thus the t-J model tends to stabilize the superconducting state. In 
spite of this fact, however, the spin correlation always dominates the superconducting 
correlations for arbitrary electron filling, as pointed out in section 3. 

Figure 11. The 2&F exponent a3 in the spin correlator as a function of H in the 
Hubbard model at half-filling. 

Finally we discuss the magnetic field dependence. In [11,12] the exponent a3 for 
the 2fcF oscillation piece in the spin correlator just at half-filling has been expressed 
as at = 2t]t(B)2, where r)s(B) is the dressed charge explained below. We present 
the field dependence of as in figure 11. In the vicinity of the half-filled band, the 
dressed charge matrices for zero and for non-zero field take the same form as (3.25) 
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and (3.28). The dressed charge function (or effective spin) r?, of the spinon satisfies 
the integral equation (3.26) but with the kernel replaced by G{x) defined in (4.5). 
The effective spin ris(B) of the spinon is plotted in figure 12 for several values of 
U/t. We also depict the effective spin sh of the holon in figure 13. 

Figure 12. The dressed charge (or effective spin) 
1a(B) of the spinon as a function of H in the 
Hubbard model at and near half-filling. 

Sh 
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Figure 13. The effective spin sh(B) of the holon 
as a function of H in the Hubbard model near 
half-filling (In this figure U/t — 2 should read 
U/t = 4). 

All the critical exponents are obtained in terms of the effective spins of the spinon 
and holon. We shall refrain from giving explicit formulae since one can readily check 
the field dependence of exponents using the formulae given in subsection 3.2. 

Let us conclude this section by making a brief comment on the effective spin sh 

of the holon. For U/t > 1 the sh curve closely follows the magnetization curve of 
the Heisenberg chain, as observed in the t-J model. This observation is understood 
in the following way: In the strongly correlated regime near half-filling the spin state 
is almost degenerate, and hence all the band electrons contribute equally to the 
magnetization under non-zero field. Therefore making a hole in the ground-state 
A-distribution amounts to losing magnetization per lattice site. This in turn gives rise 
to the effective spin of the holon. Notice, however, that such a simple situation no 
longer holds as U/t becomes small. Therefore it should be realized that the effective 
spin of the holon has a different field dependence from the magnetization generically. 

4.2. Relations to bulk quantities 

Another interesting aspect of the Luttinger liquids is that the critical exponents can 
be expressed in terms of the bulk quantities. This kind of relation between the 
bulk quantity and the dressed charge was first noticed in [1,32]. We consider the 
three typical bulk quantities, the spin susceptibility x„ the compressibility xc

 a n d t h e 

specific heat coefficient 7, in the t-J model. 
As shown in appendix B, the compressibility and the spin susceptibility are ob

tained as 

Xe = «c(Q)V(f«e) 
£, = l /v/2. 

(4.6) 
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The low-temperature expansion of the free energy gives 

3 \vc vj 

which corresponds to two c = 1 conformal theories [30]. We thus find 

a c = 4 x c / ( 2 7 - X g ) (4.8) 

where we have renormalized the bulk quantities so that 7 = x, = Xc — * m t n e 

non-interacting limit. Note that this formula is also valid for the Hubbard model [10-
12]. In the band bottom all these bulk quantities exhibit the divergent behaviour due 
to the dispersion relation in ID electron systems. Approaching half-filling x„ remains 
finite (a constant value of the Heisenberg model), while \c diverges as 

8(ln2)i x 
X c _ 37r2C(3r2 ' { ' 

due to the diverging density of states (see appendix B) [42], where Q is the Riemann 
zeta function. Since 7 is also divergent like (^ - u)~l we have ac —• 2x c / 7 for 

Let us next discuss an important role played by boundary conditions. Imposing 
twisted boundary conditions on the Bethe wavefunction does not ruin the exact inte-
grability by virtue of the £/(l) symmetry of the system. Shastry and Sutherland then 
noticed that this was an efficient way to evaluate the effective current-carrying mass 
(transport mass) [43]. Under twisted boundary conditions with the twisting phase <j> 
the shift of the ground-state energy from the periodic case (<£=0) is 

E0(4>) " £o(0) = T>c<t>2/N + 0(<*>4). (4.10) 

The interesting point is that the charge stiffness Vc is directly related to the DC part 
of the conductivity a(u>) 

Re CT(U>) = ^-Vc6(hu) . (4.11) 

For free electrons the coefficient of <5(fia>) is proportional to m _ 1 with m being the 
electron mass. Therefore it is legitimate to define the effective mass m* through 
m* /m oc V'1 [43]. In view of conformal theories the energy shift due to twisted 
boundary conditions by <f> is attributed to the excitation Ic = Is = De = 0 and 
Dc = < /̂27r [12]. From (3.1), (3.16) and (4.6)-(4.8) one can easily express the 
enhancement factor of the current-carrying mass in terms of the bulk quantities [44] 

m ' / m = ( 2 7 - X J V X C - (4-12) 

Then, for instance, in the t-J model near half-filling the effective mass is extremely 
enhanced as 

m V m ~ ^ f f i - I,)"1 (4-13) 

which corresponds to the fact that the system approaches the insulating phase. 
lb conclude this section we emphasize that formulae (4.8) and (4.12) are valid for 

any ID correlated electron system, and hence characterize the universal properties of 
Luttinger liquids. 
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5. Conclusions 

In this paper the long-distance properties of the t-J model at t = J for arbitrary 
electron filling have been studied using the Bethe ansatz solution and the finite-size 
scaling method in conformal theory. The results are compared with the repulsive 
Hubbard model in detail. Starting with microscopic models we have shown explicitly 
that the electron behaviour in these highly correlated systems is characterized as the 
Luttinger liquid. The separation of the charge and spin degrees of freedom is quite 
essential. Consequently the charge sector is described by the Gaussian theory and 
the spin sector by the c = 1 SU(2) current algebra. The dressed charge matrix 
introduced in the Bethe ansatz calculation provides us with the precise link between 
the characteristic parameter of Luttinger liquids (i.e. Gaussian field periodicity) and 
the microscopic parameters in the theory. Notice that this is the most difficult step in a 
conventional bosonization approach. In conclusion we have presented the microscopic 
foundation of the concept of Luttinger liquids a la Haldane on the basis of conformal 
field theory and Bethe ansatz solutions. 
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Appendix A 

In this appendix we present our calculation of the finite-size corrections in section 2 
in such a way that it can be applied to generic nested Bethe ansatz solutions. Let us 
start with the Bethe ansatz equations 

1 N„ 

Arp°(AJ0 = 2 7 r / « - ] r ; > > o / 3 ( A ? - A £ ) a = l , . . . ,Z j=l,...,Na 

/3=i fc=i 

(Al) 

where N denotes the system size, Na is the number of 'particles' of the type a 
(= 1 , . . . , /) and p° (A) are the bare momenta. The phase shifts <f>a0( A) are assumed 
to obey <£a/3(A) = <ppa(\) = -<£0/j(-A). We consider the case in which the 
quantum numbers If belong to the interval [I£,IQ] so that 

lt~lZ = Na /+ + / " = 2 2 V (A2) 

Define 

l Ng 

Z°'N(X) = hp0"(A) + 2^N £ £ < M A -A^ ( ^ 
0 = 1 f c = l 

, x , dz
a,wW , ±. It /A/I. 

PQ,N(X) = QX *«.,*(««.) = -ff • (A4) 
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Fbr N -* oo with Na/N = va and Da/N = 6a being fixed, the rapidity distribution 
functions satisfy 

where oa(A) = p°'(A) and Kafi(X) = #,„(A). Then, for za(X) = 
JJmN-oo 2a,yv(^)» w e h a v e 

(A) = ^PIW + £ / _ | ^ ^ ( A - V)P„(AV). (A6) 
/3 •'«/» 

Let us first calculate 

9 ^ a JTf = TT+Mti) - *«(£)) = A I"" dApa(A|g±) 
dq+ 8q}, 

Introducing the dressed charge functions 

««,,»(V = 6ap + Y,f_] 17WA')tf7/J(A' - A,) 

we obtain 

-9-r 

^ J /» 
= Pi3(<l0)Za0 

(A7) 

(A8) 

(A9) 

where the vertical bar is meant to put q* = ±qa and the Ixl dressed charge matrix 
Z is given by Za/3 = Za0(q0). 

We next calculate 

2d6a ^dza{qj) | dza{q-a) 
dq^ dq^ dqp 

After some manipulations we get 

dS 
9qt = ^ H ( Z ' U 

In a similar way one can show that 

dv„ 

d<l~ti 

9Sa 

d<lf3 

_ « * « 

H 
We thus find in matrix notation that 

/pdq 
\pdq -)-(J£. ?)(«)• 

(A10) 

(All) 

(A12) 

(A13) 
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where (pdg*),, = Pa(qa)dqt(dv)a = dva and (d6)a = d6a. 

We are now ready to express the finite-size corrections in the energy 

£ = £ ["" dXe°a(X)pQ(X\q±) (A14) 

in terms of the matrix Z. Let us define the dressed energy functions 

^(Alg*) = 4 (A) + £ / " ^-e3(\'\q±)Kga(\' - A) (A15) 

with the condition 

«a(9«l<?±) = 0. (A16) 

This condition ensures the stationary condition 

0 = ^ = ±ea(qi\q^)Pa(qt\q±). (A17) 

Another basic relations are 

.2 

Pa(la)
2\dqi) 

= 27Tua (A18) 

where va are the Fermi velocities. 
Expanding e^q*) to second order in dq* = q% ^ qa and substituting (A13) and 

(A18) we finally obtain 

e(q±) = e(±q) + 2n(-(dv)t(Z-1)tVZ-1dv + (d<5)'ZVZ'd6 J (A19) 

where Va0 = u0£a/3. Note that d6a = Da/N and dva = Na/N - u° where i/° is 
the value for the ground state. Hence e(q±) - e(±q) is of order N~2. 

Appendix B 

We express the compressibility xc = dn°/dn in terms of the dressed charge fc(Q) 
in (3.14). First notice the chain rule 

For zero magnetic field (B -* +oo) the rapidity distribution in the ground state 
satisfies 

P c(A) = 71(A) + / dA'#(A - A')pc(A'). (B2) 
J-Q 
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With the aid of an auxiliary function F(A|A') obeying 

rQ 

-Q 

we find from (3.14) and (B2) that 

F(A|A') = R(A - A') + / dvR(A - v)F(is\A') (B3) 
J-Q 

« e ( A ) = l + / F(A|A')dA' 
J-Q 

= PC(Q)(F(A\Q) + F(A\-Q)), 

-Q 

dpM) 
(B4) 

8Q 

It is now straightforward to show from (2.35) that 

§J|jf = -2pe(Q)*e(Q)- (B5) 

The dressed energy function (2.33) for zero field obeys 

rQ 

-Q 

rQ 

cc(A) = 2 + n-2irR(A)+ / dA'R(A - A')ec(A') . (B6) 
J-Q 

This function is subject to the condition ec(±Q) = 0, according to which we obtain 
£C(Q) = -(dQ/dn)e'c(Q). Using (B5) and (2.29) we thus verify the relation for 
Xc in (4.6). The expression for the spin susceptibility x , = dM/dH in (4.6) can be 
derived in a similar way by examining the asymptotic behaviour for B > 1. 

Let us now check (4.9). Approaching half-filling we have Q —• 0, and hence from 
(2.35) 

n° ~ 1 - 2QPc(0). (B7) 

Equation (B2) yields pc(0) ~ R(0). Thus Q ~ (1 - n°)/(2R(0)). The dressed 
charge behaves as £C(Q) ~ 1 + (1 - n°). Similarly it is seen from (B6) that e'c(Q) ~ 
-TT(1 - n°)R"(0)/R(0). After all this we get 

Inserting R(0) = ( l /7r) ln2, R"(0) = -(3/27r)C(3) with < being the Riemann 
zeta function, and u = n°/2 we obtain (4.9) in the text. 
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We investigate the algebraic structure of the supersymmetric t-J model in one dimension. 
We prove that the Bethe ansatz states are highest-weight vectors of an spl(2,l) superalgebra. By 
acting with shift operators we construct a complete set of states for this model. In addition we 
analyse the multiple! structure of the anti-ferromagnetic ground state and some low-lying 
excitations. It turns out that the ground state is a member of a quartet. 

1. Introduction 

Since the pioneering work of Bethe [1] and a subsequent work of Faddeev and 
Takhtajan [2] on the isotropic Heisenberg model, it is known that the Bethe ansatz 
alone does not provide a complete set of states instead it only determines ti.j 
highest-weight vectors of multiplets of the underlying SU(2) symmetry group. 
Recently, Essler et al. [3] proved that for the one-dimensional Hubbard model the 
Bethe ansatz states are lowest-weight vectors with respect to the SO(4) symmetry. 
In this paper we show that this feature, which is essential to construct a complete 
set of states, also appears in the context of a supersymmetric integrable model. 
However, the algebraic structure is more complicated and exhibits new interesting 
properties, e.g. the anti-ferromagnetic ground state is not a singlet but a member 
of a higher multiplet. 

We investigate a model of classical statistical physics in two dimensions, an 
spl(2,l)-supersymmetric 15-vertex model, which is a generalization of the 6-vertex 
model. Each link in the lattice can assume one of three states where two are 
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bosonic and one is fermionic. The results for the spl(2,l)-supersymmetric 15-vertex 
model are easily translated to the one-dimensional t-J model (for special values of 
the couplings t and / ) . Recently this model has attracted much interest in 
connection with high-rc superconductivity. It describes a quantum system of 
electrons on a one-dimensional chain, where at a lattice point there may be an 
electron with spin up or spin down or a hole. The hamiltonian for a lattice of L 
sites is given by [4] 

^=p{-tL{cLcJ+Ua + cll^a))p+jE(sj-si+l-
r^i (i.i) 

* j,(T i j v ' 

where the projector P = n ^ O — n ; T n ; i ) restricts the Hilbert space by the 
constraint of no double occupancy at one lattice point. 

We present an explicit construction of the eigenvalues and eigenvectors of the 
transfer matrix of the spl(2,l)-supersymmetric 15-vertex model using the algebraic 
nested Bethe ansatz method [5,6]. By this procedure the problem of finding the 
spectrum is reduced to the problem of solving a system of coupled transcendental 
equations, the Bethe ansatz equations (BAE). We find three different kinds of 
BAE, which correspond to three different possible choices of pseudovacua. Two of 
these forms of BAE were already obtained by Lai [7], Schlottmann [8], Sutherland 
[9] and Sarkar [10] using similar methods. Moreover, we analyse in detail the 
algebraic structure of the eigenvectors obtained by this nested construction. From 
the invariance of the transfer matrix (and consequently of the one-dimensional t-J 
hamiltonian) with respect to the spl(2,l) superalgebra it follows that the eigen-
states are classified in terms of supermultiplets corresponding to irreducible 
representations of this superalgebra. We analyse the structure of these representa
tions. In addition, we prove that the Bethe ansatz states are highest-weight vectors 
of the spl(2,l) superalgebra, which was investigated by Scheunert et al. [11]. 
Therefore, by acting with the spl(2,l) lowering operators on the Bethe states we 
obtain additional eigenvectors. Finally, the total number of orthogonal eigenvec
tors generated by this procedure leads to a complete set of states. This result has 
been already announced in ref. [12]. 

The paper is organized as follows. In sect. 2 the spl(2,l) vertex model, as well as 
its transfer matrix, is defined on a two-dimensional lattice. We also give the 
relation between the transfer matrix and the one-dimensional supersymmetric t-J 
model. In sect. 3 we diagonalize the transfer matrix using the quantum inverse-
scattering method. In sect. 4 the algebraic structure of the Bethe vectors is 
investigated. Our results for lattices with small and large number of sites are 
illustrated in sect. 5, where the structure of the ground state is also discussed. In 
sect. 6 we give details of the proof of the completeness problem of the Bethe states 
of this model and sect. 7 contains a summary of the main results. 
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2. The spl(2,l) vertex model and Yang-Baxter algebra 

The graded 15-vertex model is a lattice model of classical statistical physics in 
two dimensions. Its partition function on a L X L' (L columns and L' rows) 
periodic square lattice is given as 

*= E n s{X), 
conf. XELXL' 

(2.1) 

where the sum extends over all allowed "bond configurations". Each bond can 
accept one of three states characterised by a = 1, 2, 3, which can be bosonic (B) or 
fermionic (F). In what follows we will adopt the convention 1 = B, 2 = B, 3 = F. 
We follow the general strategy of the algebraic Bethe ansatz of Faddeev et al. [5]. 
The vertex weights Six) are determined by 15 bond configurations at the lattice 
site x, and take the following values: 

S(v)lp = y-\-a = <ryS8Z8s
p - -5ZS*. (2-2) 

The parametrization in terms of the spectral parameter "v" has been introduced 
for later convenfence (see eq. (2.11)). The sign factor <r takes care of the statistics, 

°V« = 
1, if y = 8 = 3 (fermionic) 
1, otherwise. 

(2.3) 

S can be considered as a matrix acting in the tensor product of two three-dimen
sional auxiliary spaces C3 X C3 and can be arranged as a 9 X 9 matrix, 

S$(v)-

(a 
0 
0 

0 
0 
0 

0 
0 

lo 

0 
b 
0 

c 
0 
0 

0 
0 
0 

0 
0 
b 

0 
0 
0 

c 
0 
0 

0 
c 
0 

b 
0 
0 

0 
0 
0 

0 
0 
0 

0 
a 
0 

0 
0 
0 

0 
0 
0 

0 
0 
b 

0 
c 
0 

0 
0 
c 

0 
0 
0 

b 
0 
0 

0 
0 
0 

0 
0 
c 

0 
b 
0 

0) 
0 
0 

0 
0 
0 

0 
0 
w, 

(2.4) 

where 

2 2 
a = \ , b = \, c= , w 

V V 
- 1 (2.5) 
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We define the monodromy matrix as the matrix product over the S's in the 
following way: 

TMV)=s${ v)s°4Kv) • • • stfL
L(»)> 

r-jr-« = r _ | - | _ . . . - j - a , (2.6) 
{/3} Pi Pi PL 

This monodromy matrix acts in the tensor product of an auxiliary space and a 
"quantum space" C3 X C u and can be regarded as a 3 X 3 matrix of matrices 
acting in the "quantum space", 

T:(V) = 

l A B2 B3\ 
C2 D, D2 

\C3 D3 D4 

(2.7) 

The transfer matrix is defined as a trace of the monodromy matrix in the 
auxiliary space, 

T$\(») = Lttl(v) = LwwTZffliv), (2.8) 
a a 

where 

cralS)=U<raS, (2.9) 

Here the <r-factors take into account the fact that we are dealing with bosons and 
fermions. 

The thermodynamic properties of the vertex model can be obtained from the 
solutions of the eigenvalue problem of the transfer matrix, 

T ^ = A ^ . (2.10) 

This eigenvalue problem will be solved in sect. 3 by means of the nested Bethe 
ansatz. 

It can easily be shown that the matrix S given by eq. (2.2) fulfills the Yang-Baxter 
equation 

s$'p{v-v')szy(v)s$y(v') = s$:y:{v')sff{v)sfi'{v-V'). (2.11) 
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By means of iterations we can also prove the Yang-Baxter relation for the 
monodromy matrix T, 

tfl^-yOWJ'W^ (2.12) 

In addition conservation of fermions imply the following property of the T-matrix: 

Vae-^y-irf&X") ="aP<raMTpy]\v), (2.13) 

for all a = 1, 2 or 3. 
The Yang-Baxter equation for the monodromy matrix (2.12) together with 

property (2.13) imply the commutativity of the transfer matrix for different spectral 
parameters, 

[ T ( « ) , T ( I / ) ] = 0 . (2.14) 

This reflects the integrability of the model. In fact, the eigenvalue problem (2.10) 
can be solved exactly by the Bethe ansatz method. 

At the end of this section we will show that the above defined transfer matrix is 
related to the one-dimensional supersymmetric t-J model, such that if we solve 
the eigenvalue problem of the transfer matrix T we will automatically diagonalize 
the hamiltonian of the one-dimensional supersymmetric t-J model. 

The hamiltonian of the t-J model for a one-dimensional lattice of L sites is 
given as [4] 

4r-p/-/£( c^cy +^ + ct+1^c^)\p + y E U - V i - ^ r - ) . (2-15) 
* j,<r ' j * ' 

where the c^ are spin up or down annihilation (creation) operators, the Sj spin 
matrices and the n ; occupation numbers of electrons at lattice site /. The projector 
P = n / l . / I - rij T nj, A) restricts the Hilbert space by the constraint of no double 
occupancy at one lattice point. Therefore, at each lattice site we have three 
possibilities (1, 2, 3) = (T, i, 0), i.e. an electron with spin up or down or no 
electron (hole). This hamiltonian can be rewritten in terms of Hubbard's projec
tion operators [13], 

Xf=\aj){^\ ( a , 0 = 1, 2, 3), (2.16) 

where |1;(2;)> denotes an electron with spin up (down) and |3y> a hole at site j . 
Using (2.16), up to a chemical potential the hamiltonian reads 

*=-tZ Y,{xfxfU+xf+1xf*) + \jz[ E xfxf:,-xfxfl\. 

(2.17) 
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For convenience we will consider the hole operators as fermions and the spin 
operators as bosons. In fact, this choice is possible since in one-dimension there 
exists a transformation exchanging bosons and fermions. Therefore, the spectrum 
of the / - / model with two fermions and one boson is equivalent to the spectrum of 
the / - / model with two bosons and one fermion (for even L) [10]. 

For J = 2t the t-J model is "supersymmetric" and connected to the previously 
defined vertex model through the relation 

; r = -2—ln(vLT(v)) 
v-0 

(2.18) 

The proof of this identity is analogous to the one for the isotropic Heisenberg 
model [14]. 

3. Construction of Bethe eigenvectors 

The main subject of this section will be solving the eigenvalue problem of the 
transfer matrix 

T V = X& (3.1) 

through an algebraic construction [5] based on the Yang-Baxter algebra of the 
monodromy matrices 

S<f(v- v')T:W(u)Tf\#(v') = Tf\$(v')T;r\$(u)S:'t;{v-v'). (3.2) 

The monodromy matrix T can be written as a 3 X 3 matrix, 

'A 

C, 

\c3 

B, B3 \ 
D, D2 

D, DJ 
(3.3) 

This suggests solving the problem by means of the nested Bethe ansatz with two 
levels [6]. The transfer matrix is given by a trace of the monodromy matrix T (see 
eq. (2.8)). For the first-level Bethe ansatz the operators Ba (Ca) (a = 2, 3) play the 
role of creation (annihilation) operators of "pseudoparticles". The first-level 
"pseudovacuum" <P is defined by the equation 

Sun v u> 

y— j 1 _ . . . — — 1 <pU»'l 
B[ B'2 PL 

,0 for y = 2, 3. (3.4) 
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Since at a vertex a generalized "ice rule" holds (see eq. (2.2)) the solution of this 
equation is 

*• Pi 02 PL 

^ ' = n \ , = i i ••• i - (3.5) 
'=1 1 1 1 

This pseudovacuum is an eigenstate of A, 

A\f.}(u)<P^ = aL(u)<P^, 

Pi Pi PL 1 1 1 

1-| '-•••-|-1 = !-| I---I-1' (3-6> 
1 1 1 1 1 1 

and also of Dx and D4, 

Pi Pi Pi. 1 1 1 

a - j 1 - • •. - \ - a = a - j j - . . . -\~a (3.7) 

1 1 1 1 1 1 

(a = 2 and 3, respectively). Because of the special form of the matrix 5 of eq. (2.2) 
the summations over the internal lines in eqs. (3.6) and (3.7) are trivial. In eq. (3.6) 
they can assume only the value 1, and in eq. (3.7) only the fixed value a = 2 or 3, 
respectively. The action of Ba (a = 2 or 3) on the "pseudovacuum" yields new 
states. So, the {Ba} can be considered as "creation operators" and the eigenvector 
of the transfer matrix can be obtained by successive application of the B's 
according to the first-level Bethe ansatz 

^(m=^„^!}(^1)^«^Ku2) •-- ̂ J^r - 'C^)* 1 ^^ 1 , (3.8) 

where the summations over the a, (i= I,..., N) are restricted to a, = 2, 3. The 
coefficients iP̂ y* are to be to be determined by the second-level Bethe ansatz. This 
means the eigenvalue problem of the transfer matrix (3.1) will be solved in a 
recurrent way (nested Bethe ansatz method). The requirement that ^ is an 
eigenvector of T leads to another eigenvalue problem for a new transfer matrix 
T(1), as will be shown later. Now we start to solve eq. (3.1). Following the general 
strategy of the algebraic Bethe ansatz [5] we apply the transfer matrix r(v) (2.8) to 
the state ^ given by eq. (3.8), 

rfoXv)*" = «,;>(.) + TD\ff(v))*U>\ (3.9) 
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where 

T D # > V ) = E fX>\\v) = E ^ V l W " ) - (3-10) 
a = 2 a = 2 

In order to commute A(v), Dt(v) and DA(v) through all B(Vj) towards <P and then 
apply (3.6) and (3.7) we use the property (2.13) and the following commutation 
rules, derived from the Yang-Baxter relation (3.2): 

a(v'-v) c(v'-v) 
A^B^vn> = biv'-J)B"iu')A{v) ~ b\v'-u)B°iv)Aiv')' ( 3 , 1 1 ) 

and 

Ty^u)Ba(v') = -^^(Baiv')Tyy,,(v)Syy:'"a'(v-u') 

-c(v-u')By.(u)T:(v')) (3.12) 

Ba(u) V» , ) ' a ( ^ , ) M"' ) BM)S:'j\v-u'). (3.13) 

All indices of the auxiliary space in eqs. (3.11), (3.12) and (3.13) assume only the 
values 2 and 3. Using eq. (3.11) two types of terms arise when A is commuted 
through Ba. In the first type A and B„ preserve their arguments and in the second 
type their arguments are exchanged. The first kind of terms are called "wanted 
terms", since they will give a vector proportional to W and the second type are the 
"unwanted terms (u.t.)". Then, using eqs. (3.9), (3.8), (2.13), (3.11) and (3.6), we get 

A^iu)^^ = \A(L:)^I3'"> + u.t.( A), (3.14) 

where the coefficient Â  is given by 

N a(u,-u) 
U")=aL(v)Uh( „ • (3-15) 

Correspondingly we obtain from eq. (3.12) the wanted and unwanted terms in the 
form 

Tflg?(o^-fc>)n^.o«'.)^(''2)---
x B-fc- , )(^)*""v , T(i)l«J>(y . k } W + u.t.(Z>), (3.16) 
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where we have introduced a new (the second-level) transfer matrix 

*«$(», [",)) = E ^ a ^ T ^ ^ v , {t,,.}) (3.17) 
0 = 2 

as a trace (over only B = 2 and 3) of the second-level monodromy matrix. This is 
given by T(1) = S(v - vN)...S(v -vx) in analogy to eq. (2.6). Now, however, all 
indices (the external and the internal ones) assume only the values 2 and 3, as in 
the internal block of the matrix T denoted in eq. (3.3). In order to obtain in eq. 
(3.16) a "wanted term" proportional to V, the vector V(l) has to fulfill the 
eigenvalue equation 

*M», {»>))*$ = *«>{», {v,})*}?, (3.18) 

which is solved by the second-level Bethe ansatz. The monodromy matrix T(1) 

belongs to an SL(1,1) 6-vertex model slightly modified compared to the SU(2) one 
due to the presence of fermions. If we identify T(i^ —AiX), T(l)l = B(l), T{l)l = C(1) 

and r(1)3 = D(1) again B(X) (C(1)) can be interpreted as a creation (annihilation) 
operator with respect to the "pseudovacuum" 4>(1), which is now of the form 

N aN a2 a, 
<PlrhUsai,2= ! ... I I • (3.i9) 

i-i 2 2 2 

It is an eigenstate of A(1) and D(1), satisfying 

N n ^ ( i ^ " . {^X»= TWv-»,)*$, 

<*N « 2 ai 2 2 2 

2 — j — ... —j j - 2 = 2—j ] - ... — j — 2 , (3.20) 
2 2 2 2 2 2 

«AT a2 "l 2 2 2 

3 - | - ... - j 1-3 = 3 - j 1 - ... - | - 3 . (3.21) 
2 2 2 2 2 2 

The summations over the internal lines in eqs. (3.20) and (3.21) are only over the 
values 2 and 3, respectively. The eigenvector ^r

(1) of T(1) is given by the second-level 
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Bethe ansatz 

* # = *<i)fii)(ri. {"t))BM(v2, {»i})-B«ti%*{yM, {»,})*&">• (3.22) 

Following a strategy analogous to the one above, we apply T(1) to the state *P(1) and 
commute Am(v, {«,}) and Dw(u, {u,}) through the Bm(ya, [vt)) towards *(1) and 
then use eqs. (3.20) and (3.21). Since the Yang-Baxter algebra for the monodromy 
matrices (3.2) is also valid in the inhomogeneous cases when T(v) is replaced by 
T(v, {f,}) [15], we derive the following commutation relations: 

Am{v, {vt))Bm(v\ {*,}) = lllZ^B^u', lv,))Aw(u, {«,}) 

wiv — v') 
Dw(v, k})*W"'> M ) = b(v-v')B^U'' ^.•})D(.)(". {"/)) 

w(u — u') 
*<.>("• {"}) V 1 7 ' ' { y } ) = alu-u')Bw{u'' W«>(v' {V]>>- ( 3 - ^ 

Using eqs. (3.17), (3.22), (2.13), (3.23), (3.24), (3.20) and (3.21) as above we obtain 
again wanted and unwanted terms, 

TO&K"' {".•})*,(\tt)) = K 1 ) ( " . {«,-})+AD)1)(i>, {i;1.}))*-(«|-)'> +u.t.(^ (1 )) + u.t.(D(I)), 

(3.26) 

where 

\ = n " ( " - ^ n ^ t;?. (3.27) 

AD(1)= - < - i ) * i W - » , ) n ^ r - <3-28) 
(l> , = 1 fl=l 01 V - V o l 

p_i fc(«-yp) 

Substituting these equations in (3.16) and taking (3.8) into account we get, in case 
the unwanted terms u.t.(y4(1)) and u.t.(D(1)) cancel, 

^ ; , ( ^ ) ^ ' , = (Az,,(J;)+ADi)(y))^"> + u.t.(£»), (3.29) 
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where AD and AD are given by 

" a(v-Vi) " a(yB-v) 
AD I=bL(V) n 7 7 — - ^ n h)' „ , (3.30) 

A0l,= - ( - . , ^ . ( „ ) n A ^ . (3.3.) 

Finally, combining eqs. (3.14) and (3.29) we have, again if the unwanted terms 
u.t.(yl) and u.t.(D) cancel, 

Tlf}''l}(")*m = A(f)V^"», (3.32) 

where 

A ( « ) = A / < ( I ; ) + A D I ( I ; ) + A D I I ( « ) . (3.33) 

The cancellation of all unwanted terms ensure that V, as given by eq. (3.8), is an 
eigenstate of the transfer matrix T (2.8) with eigenvalue \(v) of eq. (3.33). 

In appendix A we show that the unwanted terms indeed vanish if the Bethe 
ansatz equations hold, 

I T T H i ? \~/ r H ~ 7 7 = - 1 ' J = 1*-..,N, (3.34) 
\ b(vj) J ,=, b(v, - Vj) a(Vj - ut) p., a(yp - wy) 

( - 1 ) I I T T r 11 77 r—; r = 1> a = l,...,M, (3.35) 

where N is the number of holes plus down spins and M is the number of holes. 
Another way to obtain these equations is to require that the eigenvalue A(v) (3.33) 
has no poles at v = vt and v = yp. Using (2.5) and making the change of variables 
v-+iv + l,y-*iy + 2 we obtain 

V; + i\L JL Vj-vk + 2i ** Vf-ja-i 
' ' n ' ' . V I ' 0 . . , J=h...,N, (3.36) Vj-ij k-i Vj-vk-2i p = i Uj-yp + i 

U - — = 1, a=l,...,M. (3.37) 
j-i ya-

vj-1 

This form of the Bethe ansatz equations (BAE) was previously derived by Suther
land [9] and later by Sarkar using a generalized permutation operator [10]. We 
stress that this procedure could be repeated with two other choices of the 
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pseudovacuum leading to two other forms of the BAE. The pseudovacua of both 
levels of the Bethe ansatz <P and 4>(1) (see eqs. (3.5) and (3.19)), which we used 
above, consist of states of kind 1 = B and 2 = B, respectively. Basically, the change 
of pseudovacuum is determined by altering the initial convention (1 = B, 2 = B, 
3 = F). Using (1 = F, 2 = B, 3 = B) we get 

j=l,...,N, (3.38) 

fi*zs£_fi*zaz* ,....,„, (3,9) 

where N is the total number of spins and M is the number of spins down. These 
equations were already obtained by Lai [7] and Schlottmann [8] using the coordi
nate Bethe ansatz method. 

Finally, the choice (1 = B, 2 = F, 3 = B) leads to a new form of the BAE *, 

+i) 

N 

n 

L 

ya-

ya-

•h* 
0-1 VJ 

- Uj + i 

-ye 

~yp 

= i, 

— i 

+ i 

a 

j=l,...,N, (3.40) 

\,...,M, (3.41) 

where N is the number of holes plus spin downs and M is the number of spins 
down. In the following we will work with the BAE's (3.36) and (3.37), since this is 
the most convenient form for the present investigation. 

We have reduced the eigenvalue problem of the transfer matrix (3.1) to a system 
of coupled algebraic equations for the parameters {vj} (j = l,...,N) and 
{yj (a = 1 , . . . , M). The basic procedure to solve eqs. (3.36) and (3.37) is to adopt 
the string-conjecture, which means that the v's appear as strings and all roots y's 
are real, 

v2j = vZ+i(n + l-2j), ; = 1, . . . ,«, a=l,...,N„, n = \,2,..., 

ty-real, j 8 = l , . . . , M , (3.42) 

where v% is the position of the center of the string on the real u-axis. The number 
of ^-strings A^ satisfy the relation 

N=ZnNn. (3-43) 

When this paper was in preparation the authors were informed about a preprint of Essler, Korepm 
and Schoutens where this new form of the BAE also was obtained. 
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This hypothesis for the v's can be easily understood by heuristic arguments, 
analogously to the isotropic Heisenberg model [2,16]. To understand absence of 
complex roots for the y's we apply the following argument, which is similar to that 
one developed by Takahashi for the one-dimensional electron gas with a repulsive 
delta function [17]. If all u, are real or appear as complex conjugate pairs, 
Im ya > 0 implies that the absolute value of the left-hand side of eq. (3.37) is larger 
than unity. Therefore, Im ya > 0 is not possible. In the same way we can prove that 
Im ya < 0 is not possible. We can see here the great advantage of using this form 
of BAE. In the other two forms not only the parameters v but also the roots y 
appear as strings. This means that counting the states is much more complicated. 
Although we are not able to prove the string-conjecture rigorously, we will assume 
it to be valid. Since Bethe [1], assumptions of this kind have been widely used by 
many authors (ref. [16] and references therein). Applying this conjecture in (3.36) 
and (3.37) and taking its logarithm we obtain the coupled equations for the v^ and 

( v" \ Nm M I u" - y \ 

•f h E E <9„„K - »?) + £ ' " V ^ = 2ir/a", (3.44) 
" / m 0=1 0=1 \ n I 

(m,/3) #(« ,«) 

E I f l ^ = H , (3.45) 
n a= 1 

where d(x) = 2 arctan x and 

n 

®nm(x)={ 

el. x , ) + 2 e f - — ^ - r - r ) + . . . +2e{—-—-) 
\\n-m\J \ | n - m | + 2 / \n + m-2J 

+ 0\ I for n*m 

Hence the solutions of eqs. (3.36) and (3.37) are parametrized in terms of the 
numbers /£ and Jp. Here, the / " are integers (half-integers) if L + M — Nn is odd 
(even) and the Jp are integers (half-integers) if E„ Nn is even (odd). In addition 
they are limited to the intervals 

\Ia\<I^ = ^U+M-EtnmNm-l), (3.47) 

IV <'»«-£( I X - 2 ) . (3-48) 

file:////n-m/J
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where tnm = 2 min(«, m) — Snm. In fact, all sets {/£, Jp} where the / ' s and J's are 
pairwise different specify all the Bethe vectors (I^Bertie^A/)- They are highest-
weight vectors of an spl(2,l) superalgebra, as we will show in sect. 4. 

In order to avoid misunderstandings we should add some general remarks on 
the string-conjecture (3.42) and the bounds /£ax and 7max given by eqs. (3.47) and 
(3.48). Both statements are to be considered as assumptions, they cannot be proven 
rigorously. In fact they are not exact. There are finite-size corrections of the string 
configurations of order 0 ( e _ L ) for fixed string centers v£ and of order O(l) near 
to the boundary v^ax (given by I^X producing "exotic solutions". On the other 
hand a naive estimate of 1^ from eq. (3.44) would suggest additional solutions 
(for n > 2) which are cancelled by assumption (3.47). However, both assumptions 
together lead to the correct number of states, as is well known for the SU(2) case 
[2] and will be proven below for the spl(2,l) case. Obviously, the effects of the two 
phenomena mentioned above compensate for this computation. In addition to the 
"exotic solutions" mentioned above, there exist also "wide pairs" and "quartets" if 
the density of real roots is large enough. It is believed that these problems may be 
avoided and exotic effects may be neglected, if one considers the following 
thermodynamic limit. Introduce a symmetry breaking magnetic field B and take 
first the limit L -> oo and then B -* 0. It should be stressed that many features of 
the Bethe ansatz are not well understood. 

In the thermodynamic limit the BAE's are written in terms of densities of roots 
(pn(v), (T(A)) and BA-holes * (p*(u), o-h(A)), such that eqs. (3.44) and (3.45) can be 
replaced by integral equations for the densities. 

At the end of this section we apply the results obtained for the spl(2,l) vertex 
model to the supersymmetric t-J model. Using the identity (2.18) it is possible to 
obtain the energy eigenvalues of the t-J model from the eigenvalues of the 
transfer matrix (3.33). The terms ADf D | given by eqs. (3.30) and (3.31) do not 
contribute and from eq. (3.15) we find 

N 4 
^ - E T T I - (3-49) 

y - i i + v i 

Thermodynamic properties of the model were investigated in ref. [8] using the 
second form of the BAE (3.38), (3.39). The ground state and the excitation 
spectrum were discussed in ref. [18] using the first and second form of the BAE. 

* Unfortunately, in this paper the meaning of the term hole is ambiguous: A "hole", as denoted above 
is a physical hole, i.e. a lattice site with no electron. A "BA-hole" corresponds to a non-occupied 
place in the set of numbers {/"} or {/} for a solution of the BAE (see sect. 5 for examples). 
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4. Algebraic properties of the Bethe states 

In this section we analyse the algebraic properties of the Bethe states. By 
asymptotic expansion {v -* <*>) we obtain the generators of spl(2,l) as matrix 
elements of a matrix M of operators in the "quantum space" defined as follows: 

T:"&\U) = <ra»{v»ft"8l;? - - f f , . „<r„ l v CT + 0(u"2). (4.1) 

We prove the commutation relations of the entries of M using the Yang-Baxter 
relation (3.2) for the monodromy matrix and the property (2.13). For i ) -»»we 
have (in what follows we will omit the quantum space indices and write them only 
whenever necessary) 

Mfff(v') -X(a", p", a, (i)ff(v')Mf 

= ff(v')8$"-X(a",p",a,p)8£"f?"(v'). (4.2) 

Here the sign function X is given by 

X(a", p", a, p) =(Ta„p„(Ta„p<Tap„aap. (4.3) 

Furthermore, taking1 v' -> °° we get 

MfMf-X(a", P", a, P)MfM? 

= Mf8f-X(a", P", a, P)8*"Mf. (4.4) 

This relation represents the commutation and anti-commutation rules of the 
spl(2,l) superalgebra [11]. The generators M", Ml (a * 3) are fermionic, whereas 
the Ml and Mp (a, p =£ 3) are bosonic. The sign factors X take into account the 
statistics, i.e. X = - 1 (1) if we are dealing with odd (even) generators. Eq. (4.4) 
can be written in the compact form 

[ M;", Mf\ ± = MfSf ± 8fMf. (4.5) 

In addition, from eq. (4.2) it is easy to see that the transfer matrix T (2.8) is 
invariant with respect to the spl(2,l) superalgebra, i.e. 

[ M ° " , r ( O ] = 0 . (4.6) 

Notice that the results (4.2), (4.4), (4.5) and (4.6) are also valid if we change the 
convention (1 = B, 2 = B, 3 = F). The position of the fermion simply determine 
which are the odd generators. 



626 A. Foerster, M. Karowski / Algebraic properties of Bethe ansatz 

Let us now consider the matrix M, 

V , M\ M\ 
M\ wi Mi 

Ml Ml W3j 

M- (4.7) 

The diagonal elements Wa (a = 1, 2, 3) generate the Cartan subalgebra with 
weights wa (a = 1, 2, 3), 

WW = wV. (4.8) 

In terms of the t-J model the weights are related to the z-component of the 
SU(2)-spin Sz = \(wl - w2) and the number of electrons Q = wl + w2. In order to 
calculate these weights for Bethe ansatz states we substitute (2.5) in eqs. (3.14), 
(3.15), (3.29), (3.30) and (3.31) and obtain with eq. (4.1) and (4.7) for v - » » 

[1 - - W , W + 0(v~2) = ( l - - ( L -N)\V + 0(v~2), 

[ l - -W2\v + 0(v-2) = (l - -(N-M)\V + 0(v~2), 

- l - - ^ 3 | ^ + 0 ( y - 2 ) = l-l--M\V + 0(u-2). (4.9) 

Therefore, the weights can be expressed in terms of the quantities L (= number of 
sites), N ( = number of first-level roots) and M ( = number of second-level roots), 

w , = « T = L - A r , w2 = nl=N-M, w3 = nh=M, (4.10) 

where /i T, n i , nh are the numbers of up-spins, down-spins and holes, respectively. 
At the end of this section we will derive inequalities between these weights and 
give a physical interpretation. 

Next we show that the Bethe vectors are highest-weight vectors with respect to 
the spl(2,l) superalgebra, i.e. 

M^ = 0, p > a. (4.11) 

For a = l,/3 = 2 o r 3 w e have, after using eqs. (3.8) and (4.2), 

M?V= E O J K « , aj-lyB4ul)Ba2(v2)...B (vj.J 

X [M?, Baj(vj)] BaJvj+l) ... BaJivN)W®, (4.12) 
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where 

[Mf, Ba(v)]± = MPBa{v)-<T,aBa{v)Mf = 8^A(v)-(rlij^{v). (4.13) 

In order to commute A(Vj) and T^(uj) through the Ba's toward <P we use the 
commutation rules (3.11), (3.12) and the property (2.13). Although many terms 
appear, it is possible to arrange them as follows: 

M?*= Lyj"aj(vj,{vi))Bai(vl)Ba2(v2)...Baj ,(«,._,) 

xBai+l("j+i)-BaNU-N)W$, (4-14) 

with yet unknown coefficients Y£.. The first coefficient, Y&, can be obtained by 
using the first term in (3.11) and (3.12) when commuting A(vx) and f£(v,) with 
Ba(.u2)Ba^.v3)... Ba(vN), since otherwise the argument vx re-appears in the Ba. 
The contribution of the A(ut) term to Y,f is straightforward, whereas for the 
f£(vx) term we shall use the relation 

-\ResSfp(v-v')=8pi (4.15) 

to get the eigenvalue problem for the transfer matrix T (1 )(I;,, {«,-}) (3.17). Once 
again, we just take the first term in eqs. (3.23) and (3.24) when commuting A(l) 

and £)(1) with the Bw's. Then, after some manipulations we have 

Y.f -*8f,\aL(v1)Tl— - - b L ( v , ) n — FT — — • 

(4.16) 

Analogous expressions follow for the other coefficients Y£.(.j> 2), 

j = l,...,N. (4.17) 

We observe that the requirement 1^ = 0 (;' = 1 . . . N, B = 2, 3) is equivalent to the 
Bethe ansatz equations (3.34), therefore Bethe states fulfill the highest-weight 
condition M?V = 0 (B = 2 or 3). 
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To calculate Mfo w e u s e t n e relation 

Ml* = <r^Ba.{Vl)Bai{v2) . . . Ba,N(vN)cPMmf$V$, (4.18) 

which follows from (4.2). M(1) is defined by asymptotic expansion of the mono-
dromy Tw, in analogy with M given by eq. (4.1). From (3.22) and commutation 
relations for M(1) and 7(1) analogous to eq. (4.2) we get 

M 

^(,)2^(.)= E (-l)f'~lBm(yl,[vi))...Bw(y0_l,{v,}) 
0 = 1 

x[w ( 1 ) i , B0)(yp, {«,})]+B(1)(y„ + 1, {«,-})..• B(„(yw, {v,))<Pm, (4.19) 

where 

[M0)1 Bw(y)] +=Aw(y) + r(1)
3

3(y). (4.20) 

Analogously, by commuting Aw + T(1^ through the Bw's we have 

M ( 1 ) ^ ( 1 ) = E y(.M(r/.. ( y J . {"/})*(i,(yi. to))-
0 = 1 

XB„,(VH , {«.-})B(1)(y<, + 1, {L',})...B(1)(yM, {«,•})*(„. (4.21) 

The coefficients V(|)/3 can be derived in a straightforward way by taking the first 
terms of the commutation relations (3.23) and (3.24). We get 

w=n«(rp-fi) n T7-——-
/=i « # / 3 6 ( y « - y 0 ) 

" M w(y„-y„) 
+ {-\)"Y\b{yl3-v,)Yl ,, ,, 

i = i a*/s o ( y ^ - y a ) 

0 = 1 , . . . , M . (4.22) 

The requirement Y(l)f3 = 0 (B = 1,..., A/) is equivalent to the Bethe ansatz equa
tions (3.35), which implies M^W = 0. We stress that the property (4.11) can also be 
proved for the other two choices of pseudovacuum in a similar way. 

At the end of this section we derive some inequalities between the weights wa 

(a = 1, 2, 3). From eq. (4.5) we have 

[MS, M$]±=Wf±Wg, B>a. (4.23) 
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Using (M£y = Mp and the highest-weight property of the Bethe vectors (4.11) we 
obtain 

w, >w2> ~w3. (4.24) 

Combining (4.10) with w, > 0 (/' = 1, 2, 3) and (4.24) we find conditions for the 
numbers N and M of roots in the first- and second-level Bethe ansatz, respec
tively, 

M < A / < 
L+M 

0 < M < L . (4.25) 

This means in terms of physical quantities that the magnetization S2 = \(n T - n t) 
= i (L -2N+ M) and the number of electrons <2 = « T + « i = L — M are re
stricted to 0 < Sz < (2/2 < L/2. 

5. Results for small and large lattices 

In this section we illustrate the algebraic properties of the Bethe states. We 
begin with a lattice of two sites and then discuss the case of lattices with a large 
number of sites. 

The simple case of one lattice point corresponds to the fundamental representa
tion of spl(2,l) which is given by the following weight diagram in the (52 , Q) plane, 
where Q is the number of electrons and Sz the total magnetization of the system: 

/ 

1 

0 

\ Q 

- • 

1 

1 
2 

• 
i 

0 

• 

1 

2-

S: 

By diagonalization of the t-J hamiltonian (2.17) (or of the transfer matrix T) on 
a lattice with two sites we obtain 

^ i = l T T > , 

1 

E = 2, 

^ 2 = - ^ ( l T i > + U t » , E = 2, 

*"3=IU>. E = 2, 
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n = ^ ( l 0 t > + l T 0 » , £ = 2, 

^ 5 = -^( | (U>+U0», E = 2, (5.1) 

1 
^ = ^ ( l t i ) - U t » , £ = - 2 , 

^ 7 = ̂ ( | 0 T > - l T 0 » , E=-2, 

1 
^ 8 = -^( |fn>-U0>), £ = - 2 , 

^9=|00>, E=-2, (5.1') 

where 0 denotes a hole. This result can be visualized in terms of the following 
spl(2,l) weight diagrams in the Clebsch-Gordan series 3 ® 3 = 5 © 4: 

• • 

+ 

The numbers in the weight diagrams specify the eigenvectors according to eqs. 
(5.1) and (5.1'). The symbol * denotes the highest-weight vectors according to eq. 
(5.2) below. Notice that the ground state is degenerate and given by a quartet. All 
states of an irreducible representation can be generated by repeated application of 
the shift operators Mf (/3 ¥= a) to any one of the states. Graphically, the effect of 
the shift operators on a general state of a representation of spl(2,l) is given by 

On the other hand, if we solve the Bethe ansatz equations (3.36) and (3.37) for two 
sites we obtain only two eigenvectors, VX = <P and V6 = Ba(vi =0)<P(f>"ll\, with 
energy eigenvalues 2 and — 2, respectively (see eq. (3.49)). In the language of the 
nested Bethe ansatz <P and 4>(1) are the first- and second-level pseudoground 
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states, respectively. We can easily check that these eigenvectors are highest-weight 
vectors of the spl(2,l) superalgebra, in agreement with our general proof in sect. 4. 

M ^ , = M £ ^ 6 = 0, p>a. (5.2) 

Furthermore, the seven missing eigenvectors can be obtained by successive appli
cations of the shift operators, 

v2 

% • • 

% 

% • • 

v7 

**< 

% 

= M2'^,, 

= (M2')V„ 

= M 3 '^ , 

= M2
,M3

,^„ 

= Mi%, 

= M*V6, 

= M3
1M3

2^6. 

Therefore, the Bethe ansatz together with the supersymmetry of the model provide 
all 9 eigenvectors for the two-sites model. 

We remark that by solving all three different forms of the BAE we get all 
highest-weight vectors of the SU(2) algebra. Solving eqs. (3.38) and (3.39) we get 
the eigenvectors % and ^ 9 and from eqs. (3.40) and (3.41) we obtain the 
eigenvectors yir

l and fn. 
In the case of lattices with a large number of sites the Bethe ansatz method 

turns out to be crucial, since the effort of an exact diagonalization growths 
exponentially with the number of sites L. As already pointed out in sects. 3 and 4, 
by this method, the problem of finding the spectrum of the t-J hamiltonian 
reduces to the solution of the BAE's (3.36) and (3.37) for the parameters v's and 
y's. Adopting the string-conjecture, which has an accuracy of 0 ( e _ L ) , the solutions 
of the BAE's are parametrized in terms of the numbers /£ and Jp. Moreover, each 
set {I£, Jp) where the / ' s and J's are pairwise different specify a Bethe vector, 
which is the leading vector of an spl(2,l) multiplet. 

Now we illustrate our results for the ground state and some elementary 
excitations at "half-filling" F = Q/L = 1. The following holds true for any lattice 
size, especially in the thermodynamic limit L -* oo. The ground state involves only 
real roots. This can be proved as usual by minimizing the free energy for finite 
temperature T and taking T -> 0 [18]. For example, for a lattice of size L = 40 we 
find N = 20 first-level real roots and no BA-holes. There are no second-level real 
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roots (M = 0), but 19 BA-holes. Therefore, we have the following distribution of 
/'s and / ' s : 

X X X X X X X X X X X X X X X X X X X X I1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 

• 

where the numbers corresponding to roots are denoted by x and those corre
sponding to BA-holes by O. On the r.h.s. the associated spl(2,l) representation is 
shown. The quantum numbers of the ground state are Sz = 0 and Q = L = 40, 
which means vanishing magnetization and half-filling F—l. The Bethe vector 
specified by this set of numbers {/j} is the highest-weight vector of the irreducible 
representation of dimension 4, depicted by *. Notice that the ground state is not a 
singlet but a member of an spl(2,l) quartet. Of course, the state is a singlet with 
respect to the SU(2) subgroup. 

One kind of elementary excitation over the ground state is the "spinon". It is 
obtained by removing a root from the /'-axis or introducing a first-level BA-hole, 
which corresponds to a spin flip. For a lattice of size L = 41 * we have N = 20 
first-level roots and one BA-hole, M = 0 second-level roots and 19 BA-holes. The 
distribution of /'s and 7's and the corresponding irreducible representation 
generated by the Bethe vector (*) determined by this set of /'s and J's are for 
example illustrated by 

X X X X X X X X 0 X X X X X X X X X X X X I1 

• • • • 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 

The quantum numbers of this state are Sz= 1/2 and Q = L = 41, which means a 
spinon is a particle-like excitation with spin 1/2 and charge 0. 

Another excitation is given by the presence of a two-string in the complex 
y-plane. For L = 40 we have TV1 = 18, N2 = 1 and M = 0, 

x I2 

X X X X X 0 X X X X X X O X X X X X X X I1 

X I2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 

' Note that a one-spinon state exists only on lattices with an odd number of lattice sites, otherwise 
spinons appear pairwise. 

• * • 

• • 
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(To support the visual perception we have drawn the /2-axis twice in order to 
obtain a picture similar to the corresponding one in the complex f-plane). The 
quantum numbers are Sz = 0 and Q = L = 40, which means vanishing magnetiza
tion and half-filling F= 1. The interpretation of this state is that we have the 
spin-0 contribution of a two-spinon state. 

By filling a vacancy in the /-axis we get another excitation called "holon", i.e. 
we are removing an electron from the system or introducing a physical hole. For 
L = 41 we have N' = 21 first-level roots, M = 1 second-level root and 19 holes, 

X X X X X X X X X X X X )( X X )( X X X X X I1 

0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 J 

The quantum numbers of this state are Sz = 0 and Q = 40 = L - 1, which means a 
holon is a particle-like excitation with spin 0 and charge - 1 . 

At arbitrary filling F < 1, for the ground state the distribution of the roots in 
the L>-plane also involves only real roots. In contrast to the half-filling case there is 
now in addition a "sea" of real roots in the y-plane, such that there appears a 
nontrivial Fermi level. For example, for a lattice of L = 40 sites we find a Bethe 
ansatz state with N = 25 first-level real roots and M = 10 second-level real roots 
and 14 BA-holes, 

• * • 

— X X X X X X X X X X X X X X X X X X X X X X X X X — I1 

0 0 0 0 0 0 0 X X X X X X X X X X 0 0 0 0 0 0 0 J 

Also here the ground state is member of a quartet. The quantum numbers are 
Sz = 0 and Q = 30, which means spin 0 and filling F = 1 - 10/40 = 0.75. Due "to 
the nontrivial Fermi level there exist "holon-antiholon" excitations in this case. 

6. Completeness of the Bethe vectors 

In this section we show how to construct a complete set of eigenvectors of the 
t-J hamiltonian for arbitrary chain of length L. This is obtained by combining the 
Bethe ansatz with the supersymmetry of the model. 

From the sect. 3 we know that all collections {/£, Jp] where the / ' s and / ' s are 
pairwise different specify all the Bethe vectors (li/'Bethe^.A/X The number of 
admissible values for the 1% and the Jp (for fixed {Nn} and M) is ( 2 / ^ + 1) and 
(2-Anax + 1). respectively. 1^ and /max are given by eqs. (3.47) and (3.48). Taking 
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into account that many different string configurations N„ give the same number of 
roots N (see eq. (3.43)), the number of possible Bethe vectors for fixed N, M is 
given by 

Z("- i°-&(2V)?(2 ,*+1)- <"> 
where the sum over {Nn} is constrained to E„ nNn = N. It is convenient to 
introduce the quantity q = E„ Nn. Using eqs. (3.47) and (3.48) we write this sum as 

" / g - l \ _ „{L-Zm tnmNm + M\ 
Z(N,M)+ E \ M E n " "m " , (6.2) 

where the inner sum is constrained to fixed values of N and q. This expression 
resembles the one calculated by Bethe in the isotropic Heisenberg model [1,2] and 
can be simplified to 

Z(N,M)= E L+M-2N+U«-l)l^M-"^)lN-l\ ( 6 3 ) 

The total number of Bethe vectors is obtained by summing Z(N, M) over all N, M 
restricted to (4.25). However, this number is less than 3L, so that the Bethe ansatz 
does not yield all the states of the model. In order to construct a complete set we 
shall invoke the supersymmetry of the transfer matrix. First, from eq. (4.6) it 
follows that the Bethe vectors are classified by multiplets corresponding to irre
ducible representations of the superalgebra spl(2,l). Furthermore, from eq. (4.11) 
follows that the Bethe vectors are highest-weight vectors. Then by acting with the 
spl(2,l) lowering operators Mf(/3 <a) on the Bethe states we obtain additional 
states. Each Bethe state (with fixed N, M in the interval (4.25)) is the highest-weight 
vector in a multiplet of dimension [11] 

| 4 5 Z + 1 = 2L + 1 ifW = Af = 0 

^ ' ' ~ \ 8 ( S z + l / 2 ) =4(L-2N + M+1) otherwise. (6.4) 

With these considerations, the total number of eigenvectors is 

L (L+M)/2 

2 = E E d(N, M)Z{N, M ) = 2 L + 1 + Z , - 1 + Z 2 
M = 0 /V = M 

L / 2 
%4 L-2N + 1 " It -N+\\lN-l' 

= 2L + l + 4 E U-2N+1) E i 



A. Foerster, M. Karowski / Algebraic properties of Bethe ansatz 635 

L <i+M>/2 L + M-2N+1 
+ 4 E E (L-2N + M+1)- L+M-N+l 

*J,(v)r\-"+i)(r;)-
The first sum in eq. (6.5) can be performed (see ref. [2]) to give 

Z1 = 4 - 2 L - 4 ( L + 1). 

(6.5) 

(6.6) 

The second sum Z2 deserves special attention. We present the main necessary 
steps for its evaluation. First, performing the sum over q we get 

L {L + M)/2 

Z2 = 4 E E (L-2N + M+1) 

L+M-2N+1 
x

L + M-z» + l(N-l\(L) 
L + M-N+l I M J\Nj' (6.7) 

Employing some combinatorics and making the substitution N -*x = TV - M we 
obtain 

L a - M ) / 2 

22 = 4 E E (L-2x-M+l) 
M = l -t: = 0 

X [ u + A/)l M ) U - l ) ( M) (6.8) 

After some re-arrangements this expression can be rewritten as 

z!=4Ei
ttr,[[(^)(-r')+(i:2')(v 

- ( M + l ) (6.9) L \lx + M-\\ { L \[L-x\ 
x + M)\ x-2 ) \x-\)\M+\) 

Substituting x -»L - x - M + 1 in the second and fourth terms of eq. (6.9) we get 

4^)(x+-",)-<"+"[(xUxitT,)r 
L L-M+lr 

z2 = *Z E 
M=l x=0 

(6.10) 
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Using the binomial formula we obtain after some re-arrangements 

Z'°4L'£«^-'2-M)l/o'''"l('' + 1 ) 1 " " " 2 ( 1 - ' " l «'• <6"> 

Interchanging the sum and the integral and performing the sum gives 

Z2= {^2yj\l-p)[(l + 2p)L-2-(l+p)L-2]dp. (6.12) 

This-integral can be easily performed, resulting in 

Z2 = 3 z ' - 4 - 2 L + 2L + 3. (6.13) 

Substituting eqs. (6.6) and (6.13) into (6.5) we get 

Z = 3L. (6.14) 

Thus we have shown that the number of eigenvectors of the t-J hamiltonian is 3L , 
which is precisely the number of states in the Hilbcrt space of a chain of length L, 
where at each site there may be either a spin-up or a spin-down electron or a hole. 

7. Conclusions 

In this paper we have shown that the Bethe ansatz states for the one-dimen
sional supersymmetric t-J model are highest-weight vectors of an spl(2,l) superal-
gebra. Then by acting with the spl(2,l) lowering operators on the Bethe states we 
have obtained a complete set of eigenvectors of the t-J hamiltonian. 

An interesting extension of this work is an analysis of the spl(?(2,l) "quantum-
group" structure of a "^-deformed" version of this model (see also ref. [19]). This 
is presently under investigation. 

Appendix A 

In this appendix we show that the cancellation conditions of the "unwanted 
terms" u.t. = u.tXA) + u.t.(D) and u.t.(1) = u.t.(^4(l)) + u.t.(D(1)) are equivalent to 
the Bethe ansatz equations (3.34) and (3.35). As already pointed out in sect. 3 all 
terms whose arguments are exchanged when A(u) and TD(V) is commuted through 
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fljli Ba{vj) using eqs. (3.11) and (3.12) are called u.tXA) and u.t.(£)), respec
tively. They can be arranged as follows [15]: 

u.t .(^) = £ KJA\Vj, {vi})Bai(vl)Ba2(v2)...Ba;_i(vj_l)Baj(v) 

xBaJuj+l)...BaN(vN)<PVtf, (A.l) 

u.t.(D) = £ K,<D>(<V {"/})fi4 t'>)B4 l-2)-V,(^-i)B«/1') 
; - i 

x BajJvJ+l)...BaN{vN)M$. (A.l) 

Here /Cj'4' and KJD) (/ = 1,..., AO are coefficients to be determined. The first 
coefficient of eq. (A.l) can be computed using the second term in (3.11) when 
commuting A(v) with Ba(v{) and then using the first term in eq. (3.11) when 
commuting A(v{) with the remaining Ba's, since otherwise the argument v{ 

reappears in the Z?a's. We get 

c(v, — v) JL a(v, — v.) 
K\?=-aL(Vl)-^ n , • (A.3) 

" b(vx-v) , # 1 b(Vi-vx) 
In order to calculate KjD) we rewrite the second term of eq. (3.12) as 

RcSi(Sf:\v"-v')Ba,(v)TJ,(u')), (A.4) 
V — V v =v 

by means of eqs. (2.5) and (4.15). Then, proceeding along the same lines as in the 
calculation of K\A) we get the eigenvalue problem for the transfer matrix T(1) 

(3.17). In addition, just taking the first term in eqs. (3.23) and (3.24) when passing 
Am and T3

3 through the Bw's we obtain, after some re-arrangements, 

c(u-v,) JL a(v,-V:) *t a(ya-u.) 

To get the other coefficients KJA) and KjD) (;' = 2, . . . , N) we use the commuta
tion rule for the Ba's (3.13) and put Ba(v) in the first place. Then, repeating the 
same procedure we obtain analogous expressions with j in the place of 1. 
Furthermore, the requirement KJA) + KJD) = 0 (j = l,...,N) together with the 
fact that c(v)/b(v) is an odd function (see eq. (2.5)) leads to the Bethe ansatz 
equation (3.34). 
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The "unwanted terms" that appear in the second level of the Bethe ansatz 
method can be arranged as follows: 

M 

0=1 

x*<n(y/»-i» ["i))Bm(v, {»i))Bm(yp+i> {»i)) — Bm(vM> {"*})*(!)• (A.6) 

By similar arguments as above, the coefficients K[A^ + K[D^ can be computed 
using the second term in eqs. (3.23) and (3.24) when commuting A0)(u, {i>,}) and 
r(,J(i;, {i>8ii}) through Bw(ylt {«,-}) and then using the first term in (3.23) and 
(3.24) when commuting Aw(yv {y,}) and T^Oy,, {u,}) with the remaining B(1)'s. 

i=i M r p - " ) «#/3&(y„-y0) 

o(«-rp)i=i ^ % r w 
Once again, the other coefficients can be obtained using the commutation rules 

(3.25). The requirement A£*<»> + K ^ = 0 (j8 = 1,..., M) together with the fact 
that c(v)/b(v) is an odd function yields the Bethe ansatz equation (3.35). 
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III . O T H E R MODELS OF STRONGLY CORRELATED 
ELECTRONS 

A . M O D E L S W I T H L O C A L I N T E R A C T I O N 

The first electronic model that was exactly solved by means of the nested 

Bethe Ansatz is the non-relativistic continuum model of electrons with local in

teraction. This model is equivalent to the many-body problem of s p i n - | fermions 

with ^-function interaction (the Bose gas with ^-function interaction was solved by 

E. H. Lieb and W. Liniger in Refs. 163, 164. Preceding the exact Bethe Ansatz 

solution were studies by J. M. McGuire1 6 5 and by M. Flicker and E. H. Lieb1 6 6 , 

who investigated the spectrum and the ground state in the sectors with one and two 

down spins respectively. Especially important was Flicker's and Lieb's paper with 

the solution of the two down spin problem. In 1967 C. N. Yang3 derived expressions 

for the eigenfunctions of the hamiltonian of the system for an arbitrary number of 

down spins (see also M. Gaudin Ref. 4). Yang solved the general case of a lattice 

gas of identical particles and identical vacancies and gave a detailed account of the 

nested Bethe Ansatz. His paper is reprinted as [repr.lII.A.l]. B. Sutherland extended 

Yang's results to the case of distinguishable particles and identical vacancies139 ( the 

results of this paper were used by Sutherland in his solution of the t-J model in 

[repr.ll.l]). 

The JV body S-matrix of the model of non-relativistic electrons with local 

interaction was investigated by various a u t h o r s 1 6 7 - 1 7 0 . The thermodynamics of the 

model was investigated by M. Takahashi1 7 1 and by C. K. Lai1 7 2 in 1971. Both 

authors derived an infinite set of coupled integral equations, the solutions of which 

determine all thermodynamic quantities. They also studied the special limits of zero 

temperature, and of zero and infinite coupling constant. Takahashi's more detailed 

paper is reprinted as [repr.lll.A.2]. 

The low-energy spectrum of Bethe Ansatz solvable models (which is essential 

for the asymptotic behaviour of correlations) quite generally can be described in 

terms of the so-called Luttinger-liquid theory, which was invented by F . D. M. Hal-

dane in Refs. 90-94. Nowadays Luttinger-liquid theory is one of the main ap

proaches to strongly correlated systems of condensed mat ter physics. The main 

idea of Luttinger-liquid theory is to base the low-energy effective hamiltonians of 

solvable models on the spectrum of the Luttinger model1 7 3 (for a review of the Lut-

tinger model see Ref. 174) plus residual anharmonic couplings, which vanish at low 

energies. The Luttinger model itself is an exactly solvable fermionic model. The ex

act spectrum, free energy and dielectric constant were determined by D. C. Mattis 
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and E. H. Lieb in [repr.lll.A.3]175. The most striking feature of the Luttinger-liquid 

approach is that it allows the evaluation of the power-law singularities in the correla

tion functions (critical exponents) of many solvable models*. In his series of papers 

F . D. M. Haldane applied his ideas to a variety of models, e.g. one-dimensional 

interacting spinless fermions91, and models solvable by a Bethe Ansatz without a 

nesting92 [repr.lll.A.4, III.A.5]. 

Quite recently two new models of strongly correlated electrons have been 

proposed in connection with high-Tc superconductivity. The first model arose in 

R. Z. Bariev's Bethe Ansatz solution of two coupled xy-spin chains upon fermion-

ization by means of a Jordan-Wigner transformation1 7 6 . In [repr.llI.A.6] Bariev 

introduced the model and constructed the Bethe Ansatz. He found that the ground 

state exhibits a finite magnetization along the quantization axis. In a second paper 

R. Z. Bariev, A. LKimper, A. Schadschneider and J. Zittartz related the model to 

J. E. Hirsch's model of hole superconductivity and computed the critical exponents, 

conductivity and effective transport mass1 7 7 [repr.llI.A.7]. 

Another model of strongly correlated electrons was proposed by F. H. L. Efiler, 

V. E. Korepin and K. Schoutens178 [repr.lII.A.8]. Their S£/(2|2)-supersymmetric 

model contains the supersymmetric t-J model as a submodel and can be inter

preted as the Hubbard model plus moderate nearest-neighbour interactions. These 

interactions include bond-charge repulsion179 and pa i r -hopping 1 8 0 - 1 8 2 terms. In 

one dimension the model is integrable. The hamiltonian is of the permutation 

type 1 3 8 already encountered for the supersymmetric t-J model. In Ref. 2 they de

termined the ground state wavefunction in any dimension and proved it to exhibit 

off-diagonal long-range order (ODLRO), thus establishing the superconducting na

ture of the model. The Bethe Ansatz solutions in one dimension, a highest weight 

theorem for the Bethe Ansatz states with respect to the 5L/'(2|2)-supersymmetry 

and higher conservation laws, were derived in Ref. 183. 

The relation of £7(M|iV)-supersymmetries and hamiltonians of systems of in

teracting fermions was addressed by K. Okumura1 8 4-1 8 5 . A generalization of the 

t-J model was considered by P. Schlottmann in Ref. 186. He constructed the Bethe 

Ansatz for a two-band (supersymmetric) t-J model with an interband splitting 

and interaction within and between the two bands. He also derived the excitation 

spectrum. 

For an application of Luttinger-liquid theory to the Hubbard model see [repr.l.18] 
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SOME EXACT RESULTS FOR THE MANY-BODY PROBLEM IN ONE DIMENSION 
WITH REPULSIVE DELTA-FUNCTION INTERACTION* 

C N. Yang 
Institute for Theoretical Physics, State University of New York, Stony Brook, New York 

(Received 2 November 1967) 

The repulsive 6 interaction problem in one dimension for N particles is reduced, 
through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the 
same sizes as the irreducible representations R of the permutation group Sjf. For 
some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis, 
in a generalized form. In particular, the ground-state problem of spin-5 fermions is 
reduced to a generalized Fredholm equation. 

(1) Consider the one-dimensional W-body 
problem 

N 
H = -Ti879*.2 + 2c S °C* -x.), c>0, 

1 l <J 
(1) 

with no limitation on the symmetry of the wave 
function ^. For a given irreducible represen
tation Rty of the permutation group S^ of the 
N coordinates X{, we want to determine the 
wave function" $. Assume Bethe's hypothesis1 

to be valid: Let p\, • • • , p^j = a set of unequal 
numbers. For 0<JCQJ < * Q 2 < * " " <xQN<L> 

,1 (2) <l>=EIliQ,P]expi[pplxQ1 + - +PPNXQN> 

where P = [PI, P2,- • • , PN] and Q = [Ql, Q2,- • • , 
QN] are two permutations of the integers 1, 
2,---,N. [Q, P] can be arranged as a N! xN I 
matrix. Denote the columns of this matrix 
by !p - To satisfy the continuity of tp and the 
proper discontinuity of i ts derivative as required 
by (1) at XQ$ -XQ^, it is sufficient to have 

« •ij- ji 
4? 

•jt-
(3) 

where the subscripts for £ on the two sides 
represent any two permutation P and P' so that 
P 1 = P ' 1 , P 2 = P ' 2 , P 3 = J ' = P ' 4 , P 4 = . ; ' = P ' 3 , e tc . 

The operator Y is defined by 

= ( y . - 1 - l ) + y . . - 1 P 0 =K..43, 
y y 34 ij ' 

where 

]k 

y .. = 1 +x.. 
V y 

= ic(t>.-p,)-x = -x 
kf 

(4) 

(5) 

(6) 

and P ^ t h e permutation operator on | so that 
it interchanges Q3 and Q4. Altogether there 
are Nl{N-l) equations of the form (3). Are 
they mutually consistent ? The answer is yes 
for any set of unequal p's. This can be seen 

with the aid of the following identities: 

Y.abY.ab = l, (7) 

and 

Y °bY.u
bCYab = YbcY.u

abY:*C, (8) 

which are easily verified. Thus given a set 
of unequal p's, and £o = £p for P = identity, all 
I p ' s are determined. 

(2) The imposition of the periodic boundary 
conditions leads to equations which, upon ex
pressing | p in terms of | 0 , become 

A / o = X ( ; + l ) j 

(.7+2)./ Nj \j 2] 

J = U ;tr, 

where 

\ . = exp(ip. L), 
J J 

•Xu-M*<r (9) 

(10) 

and 

X..- P..Y.: 
i] i) 

i]^l-P..x.)(\.+x.) 1. (11) 
1} y 1] 

The N Eqs. (9) say that £0 is simultaneously 
an eigenvector of N operators. These N oper
ators can be shown to commute with each oth
er , using 

X..X.. = 1, X..X..X..X .X, .X.. — 1, 
]k ik I] kj kl Jt 

X..X =X X..; i,j,k, and Z all unequal. (12) 
Ij rev KL tij 

(3) The operators Py- on £ form a JV! XN! r ep 
resentation of SN. To find the eigenfunctions 
£0 in (9) we can first reduce this representa
tion to irreducible ones. Choosing one specif
ic irreducible representation R reduces the 

1312 
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eigenvalue problem (9) to one of smaller dimen
sions. It can be shown that the resultant wave 
function (2) would have a permutation symme
try R& which is the same as R. For example, 
if R = identity representation = [N], then Pjj = 1, 
and (9) becomes l x l matrix equations and the 
result is precisely the well-known boson r e 
sult.2 If R = antisymmetric representation = [1^], 
then Pij = - 1 , and Xy = 1, so that (9) and (10) 
reduce to exp(ipjL) = 1, showing there is no 
interaction, a result to be expected for the 
antisymmetrical wave function. 

(4) The Xj's are functions of the p's, c, and 
R. It is easily seen (that R and R being conju
gate representations) 

x,(/>; c; JR) = n ( - — £ • X .(/>; -c; R). (13) 
3 **jA1+V7 

(5) Define i±j(p;c;R) by 

generalized Bethe's hypothesis: 

* = £ A > F ( A P I ' V 

x^(Ap2,,2).-.^(ApM,V, <"> 

where y\ <)>2< — "^Af a r e ^ e "coordinates," 
along the chain, of the M down spins, and A„ 
A2, • • •, A ^ are a set of unequal numbers. With 
this hypothesis, one finds 

y - 1 ip.-iA-c' 

*A.J>= n p / ,A+C, fc-fr); d») 
^=i o + i 

ip.-iA -c' -«'A +iA +c 
• n ' a , . , « n ' . " ; (20) 

and 

ip.-iA +c' „ - iA.+«A - c ' 
J ] a /3 p a 

i/>.-iA - c ' 

i . f r i M . w i ' n ^ ^ . (2D 

"XV + i)/XU + 2)j' 

x X r . ' X 1 X . ' - - X , . ,>. '* , (14) 
N> 1.7 27 (j|-l)7 

where 

Clearly 

X. . ' = ( l+i J . .* . . ) ( l+*. . ) - - 1 . 
y y y y 

n( /> ;c ;£ )=x( /> ;c ; / l ) . 

(15) 

(16) 

(6) We now evaluate \j for jty =R = [2 M 1 J V ~ 2 M ] . 
By (16) we need to find nj{p;c; [N-M,M]). TO 
do this we first define a convenient represen
tation for P^ of (15): 

Consider N spin-^ particles, and consider 
the spin wave functions * for total z spin = |(AT 
-2M). These spin Wave functions transform 
under S# according to a sum of irreducible 
representations, 

[Ar] + [ t f - l , l ] + DV-2,2] + - " +[N-M,M]. (17) 

We consider the .Pj/s of (15) as operating on 
these spin wave functions * . The eigenvalue 
equations (14) for HJ are then to be solved for 
a * that belongs to the symmetry [N-M, M], 

(7) Consider the N spins as forming a cyclic 
chain. The wave function * has CM^ compo
nents [N-M spins up, M spins down]. The e i 
genvalue problem (14) can be solved with a 

(8) Thus for the Rj. = [2M\N-2M] s y m m e t r y , 

we need to solve 
x* 

exp(ip.L)= right -hand side of (21), (22) 
J 

together with (20). In taking the logarithm of 
(20) and (22) care must be taken to add te rms 
2w'(integer). The value of the integer can be 
determined by going to the limit c — +«>. One 
obtains, for the ground state with the symme
try Rlj) = [2MlN-2M], for the case AT = even, 
M=odd, 

-£pe(2A-2/>) = 2nJA-EAAA-A')> (23a) 

Lp = 2M +£A6(2/>-2A), (236) 

where the p's are a set of N ascending real 
numbers, the A's a set of M ascending real 
numbers, 

e(/») = -2 tan - 1 ( /» /c) (-7T «e<77), (24) 

and 

J = successive integers from 

- K M - 1 ) to + i (M- l ) , (24a) 

\+I = successive integers from 

l - § W t o £ w . (24b) 

Equation (23a) differs from that given in a r e -

1313 



386 

VOLUME 19, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 DECEMBER 1967 

cent paper,3 in the definition of 0 and our intro
duction of J&- The present equation allows 
for a natural discussion of the limit c — +» 
(not c — 0!) and hence the Values of J^. 

(9) We can now approach the limit N — =°, M 
= »,£, — «> proportionally, obtaining 

-j®Q6(2A-2p)p(p)dp 

= 2ng-fBe(A-A'MA')dA', (25a) 

—a 

p = 2irf+JB6{2p-2A)a{A)dA, (25b) 

dg/dA = a, df/dp=p. (25c) 
Or, after differentiation, 

fB 2ca{A')dA' rQ 4cpdp , „ . . 
2n°=-LBc° + {A-A>r+LQ c* + 4(>-A)" ( 26a ) 

C 4 
2Jrp = l + l -»-± 

J-Bc2 + 

Ac ad A 
B c 2 + 4(/>-A)2 ' 

and 

N/L=J pdp, M/L=J_BadA, 

B/L=j_ p2p{p)dp. 

(26b) 

(27a) 

(27b) 

(10) Equations (26) are generalized Fredholm 
equations with a symmetrical kernel. It is 
easy to show that the equations are nonsingu-
lar by first studying the eigenvalues of the ke r 
nel in the limit B = Q = <*>. 

(11) Equations (26) and (27) yield the ground-
state energy per particle for spatial wave func
tions with the symmetry [2^1-™-^] , at a giv
en density N/L. For N fermions with spin \ 
interacting through the Hamiltonian (1), this 
spatial wave function is coupled to a spin wave 
function of conjugate symmetry [N-M,M], i .e., 
the total spin of the system is \ N-M. 

(12) For S = » , integration of (26a) over all A 
yields N = 2M. Thus for the fermion problem 
with spin \, B = •» gives the ground state for 
states with total spin = 0. This state is also 
the absolute ground state for the problem, by 
a theorem due to Lieb and Mattis.4 

(13) For the case B = 0, M/L is proportional 
to B. One can readily expand all quantities in 

powers of B, obtaining, for fixed r =N/L, 

—=const. 

+ r [ - S + a " " ) t a - l 2 ? ] + - - <»> 
This result is in agreement with results already 
obtained by McGuire5 for the case M= 1 and 
by Flicker and Lieb8 for the case M = 2. 

(14) For each symmetry ify of spatial wave 
function ip, the excited states near the ground 
state can be obtained in a similar way as in 
the'boson case.7 More quantum numbers a re , 
however, necessary to designate the excitations 
than in the boson case, because of the existence 
of the integers J\ (which are in fact quantum 
numbers). Details will be published elsewhere. 

(15) For the boson problem the thermodynam
ics and excitations for finite T were treated by 
Yang and Yang.8 Extension to the present prob
lem presents no difficulty. Details will be 
published elsewhere. 

(16) Using (13) one could generalize all the 
considerations above to the case of R^ = [N-M, 
M]. Details will be published elsewhere. The 
main change is that while all Eqs. (26) and (27) 
remain the same, (26b) is replaced by 

rB 4carfA rQ 2cp(p>)dp' . , 
2np = \ -I BC2 + 4(/>- -QC2 + (P-P')2 
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B. Sutherland in 1967 in Stony Brook. 
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Integral equations which describe the thermodynamic properties of a one-dimensional elec
tron gas with repulsive and attractive delta-function interactions are obtained. From these 
equations one can calculate the energy, entropy, magnetization, particle density and pressure 
at given temperature, magnetic field and chemical potential. 

§ 1. Introduct ion 

In recent papers Gaudin1 ' and Yang2) gave the ground state energy of a one-

dimensional electron gas with a delta-function interaction3 '"6 ' as a solution of a 

set of coupled integral equations. W e try to t reat the thermodynamic propert ies 

of this system as a one-dimensional Bose gas and a one-dimensional Heisenberg 

model.8) For this purpose it is necessary to obtain all of the energy eigenvalues of 

the Hamiltonian. In § 2 we review the work of Gaudin and Yang on the wave func

tion. T h e r e appear two kinds of parameters k and A. In § 3 we make conjectures 

on the distributions of k's and A's in the complex plane. In § 4 the energy spec

t rum of the Hamiltonian for repulsive interaction is obtained and the integral 

equations which describe the thermodynamic propert ies are derived. In § 5 these 

integral equations are solved for some special cases. In §§ 6 and 7 we t rea t the 

electron gas with an attractive delta-function interaction. 

§ 2 . W a v e funct ion 

W e consider the eigenvalue problem of the Hamiltonian 

JC=-£^-i + 4cJ}6(xt-xi')+ft9H(2M-N), (2-1) 

where AT is the number of electrons and M is the number of down-spin electrons. 
T h e wave function has the following form: 

, X2S2, •••, XjfSy) — 2_l M Wj \X\, Xi, •••, XN) (jrj . (2*2) 
i 

H e r e xt and st are the coordinate and spin-coordinate of the i-tb. electron, re

spectively. Fo r a spin-^ electron, s( is + or —. GjK is a spin function of which 

a typical one is 
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G,jr=(+ + - + + ). 

MQI is an eigenfunction of (2 • 1) which is antisymmetric to the permutation of 
xx, x,, •••, xN-M and to the permutation of xN-M+u •••, xN, satisfying the con
dition 

( 1 - £ PK-MJ)M(I>I = 0. (2-3) 

Here P{j is an operator which changes x( and Xj. We can construct a full wave 
function W using the fact that ¥ is totally antisymmetric. Gaudin and Yang gave 
the solution for this problem as follows: 

*0i = £ [ Q , P ] e x p ( i S *iv*«/), (2-4) 

in the region XQi<^X(p<i---<ixQN. Here Q ar>d P are permutations of 1, 2, •••, N 
and [Q, P ] are 2V! X AH coefficients which are given by 

K2, P] = £ «20 s (QO S ^ fl F,(A„, y,), (2-5) 

FP{A,y)=li k * - A + ic. , (2-6) 
' - 1 Kpy+i) — A — lC 

AB= n e(^^*L), (2-7) 

e (x) = (x + i) /(x~ i), 

where yi<Cyi, •••<Cyjif are coordinates of xN-M+i, xN-M+i, ••••£# along the chain, 
Qi and Q, signify the orders of 1, 2, •••, N—M and N—M+l, •••, N in the 
permutation Q. The parameters A\, At, •••, Ax are newly introduced. The periodic 
boundary condition 

M<DI(XI, x%, •••, Xi, •••, Xif) = M®I\XI, • • • , X{-\-L, •••, Xx), z = l , 2 , •••, N , 

gives an equation for &'s and yfs as follows: 

e ' ^ n ^ f c ^ k ) , (2-8) 
a=l \ C ' 

f[ef4^zh\=I[e(A^k\. (2.9) 

§ 3. Conjectures on the distribution of Ac's and A's u \ the complex plane 

In this section we make three conjectures which are essential in the later 
sections of this paper. 
Conjecture 1. If a set of solutions (klt k,, ••-, kN; A\, Ai, •••, AM) of (2-8) and (2-9) 
contain a complex k (or A), k (or A) is also contained in the set of k's (or A's). 
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Corollary 1. At c > 0 , k's are real. 
Proof: The conjecture 1 demands that the distributions of k's and A's are sym
metric with respect to real axis. So we see that if Im &y>0, the absolute value 
of the right-hand side of (2-8) is larger than unity. On the other hand the left-
hand side is smaller than unity because Im kj^>0. So Im kp>0 is impossible. 
In the same way we can prove that Im kj<^0 is also impossible. [Q.E.D.] 
Conjecture 2. Complex A always forms a bound state with several other A's. 
In this set of A's the real parts of these A's are the same and the imaginary 
parts are (n — V)ci, (n — 3)ci, •••, —(n-l)ci for the bound state of n — A's within 
the accuracy of O (exp (— dN)), where d is a positive number. 
Conjecture 3. In the case c < 0 , complex ka makes a pair with its complex con
jugate ka and a real A, which we write as AJ. The real parts of ka, ka and 
Aa' are the same and the imaginary parts of ka and ka are c and —c within the 
accuracy of O (exp ( — dL) ) . 

§ 4. Derivation of integral equations for 
the case of a repulsive interaction 

In this case all k's are real by the corollary 1 in § 3. But A's are not neces
sarily real. We write A's as Aa

n'''. Here n means that this belongs to a bound 
state of n — A's, j specifies the imaginary part and a is the number of this bound 
state in the bound states of n — A's. We write the real part of A„n,i by Aa

n. 
By the conjecture 2 we have 

Aa
nJ = Aa

n+ (n+l-2j)ci+0(exp(~dN)), j= 1,2, - , » . (4-1) 

In the case of Mn bound states of n spins and N electrons we derive equa
tions for Aa

n's and k/s from Eqs. (2-8) and (2-9). Equations (2-8) can be 
rewritten as 

^ = n l « M - ) , .7 = 1 , 2 , - , 2 V . (4-2a) 
« = 1 a = l \ nC i 

Let us consider a product 

n e(Al^\. 
j=i x nc ' 

By (4-1) this is transformed as 

nn>(-B—H 
j = l 1=1 \ C I 

and by (2-9) 
n ( m / J n,l A m,7i\ ) n ( m / A n,l A m,ft\ ) = n - n n e(A° ~A» = n n n e(A" -A* . 

1=1 ( im,g) K=l \ 2c I) l = \\(m,fi) + t,n,a) A = l \ 2c ') 

Substituting (4-1) we have finally 
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j=i \ nc 
nnx AS-A* » = 1 , 2 , - , 

a = l,2,-,Mn, 
(4-2b) 

where 

Enm(x) = ' • 

n — m\* \\n — m\+2' \\n — m\+4:' \n + m — 2' \n + m 

for n=/=m , 

for n = m . "iMi .r \ / x \ 

ln-2l\2ni 

T h e logari thms of these equations give 

kjL = 2nl, - £] 2 0 f-*i---^), i = 1, 2, • • •, N, 
it — 1 ex —I 

y = l \ nC I m = l /3 = 1 

where 0 ( x ) = 2 tan~\r , —wC3<Ti and 

+ 2 ^ , \n — m\ i \\n — m\+2 

+ ---+261 

nc 

'AS-A£ 
n = l , ••• , 

a = l,2,---,Mn 

(4-3a) 

(4-3b) 

®„m(x)=. 

+ 20 x 
\n — m\ + 4 

X \ , nl X 

201 — ) + 2d(— ) + — + 26 

n + m — 2 

x 

+ 1 
n + m 

for n^=m , 

2n-2 + l 
2M 

for n = m . 

7y's are different integers (half-odd integer) for even (odd) Af1 + A / J + - - - . This 

can be wri t ten as 

Ii=M1 + Mt+-- (mod 1 ) . (4-4a) 

Ja
n's are different integers and satisfy the conditions 

Ja*=N-Mn + ± (mod 1 ) , (4-4b) 

\Jan\<i(N~l-^tnmMm), (4-4c) 

where 

tnm = 2 Min(M, m) -dnm . 

Giving a set of integers {Ij,Ja
n} which satisfies Eqs. ( 4 - 4 ) , we can determine 

a set of kj and Aa
n through Eqs . ( 4 - 3 ) . Fo r a set of integers {I},Ja

n} there is 

a set of omitted integers which satisfy Eqs . (4-4) and are not contained in {Ij, 

«/„"}. W e define holes of k and holes of An as solutions of 

Lk(k) =2ffX (omitted I), 

Ljn(A) = 2 ? r x (omitted Ja
n), 
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where 

h(k)=k + ±-£ fWA^Y (4.5a) 
X, n=l a = l \ TIC ' 

L i=l \ nc I L >»-i «-i V c / 

Let us consider the case of a very large system. We put the distribution 
functions of k's and An's as p(k) and ffn(k), and those of holes as ph(k) and 
ffnh(k). By the definition of holes it is clear that 

4rh (k) = 2TT (p (*) + p" (A) ), (4 • 6a) 
dk 

4rU (*) = 2TT (ff „ (A) + <Tn
ft (k)). (4 • 6b) 

Equations (4-5a) and (4-5b) are rewritten as 

»=i J V nc I 

j»(k) = ^d(^=-p}(>(k')dk' ~ ^®nm(tz^ymw)dk'. 

Hereafter we put that $dk means $1adk. Substituting these into Eqs. (4-6) we 
have 

^ - = p ( * ) + p * ( A ) - I ! [ » ] * . ( * ) , (4-7a) 

[»] p (A) = <C (A) + f; ^nm(TOT (A), (4 • 7b) 
771 = 1 

where [«] is an operator defined by 

w/(*) - - f " , "';' h,^m')dk', 
It J-» («c)J + (k-k'Y 

[ 0 ] / ( * ) = / ( * ) , 
and 

A B m = [ | « - » i | ] + 2 [ | « - m | + 2 ] + 2 [ | « - O T | + 4 ] + - - - + 2 [ « + w - 2 ] + [« + OT]. 

The energy per unit length is 

E/L = fa' - #„//) P (A) <& + S 2W°H fa (k) dk. (4 • 8a) 

The entropy per unit length is 

S/L= j { (p + Pft)ln(p + ph)-p In p-ph In ph}dk 
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+ £ f{(ff. + O l n ( t f „ + 0 - f f . In ff.-ff.* In *.*}<». (4-8b) 

The particle density is 

N/L= [pdk. (4-8c) 

The magnetization to the z-direction is 

S./L = i [pdk-2» \ffndk . (4• 8d) 

At the equilibrium state the thermodynamic potential Q=E — AN—TS should be 
minimized. So the variation of Q is zero: 

0 = dii/L = [(k'-A-/u0H)dp(*)dk + f l 2WA0W fdff(k)dk 

- T J jflg. ln( g » + <r»* ) + & C ln( f f> + f»*)}dk . (4-9) 

From Eq. (4-7) we have 

dp'l=-dp + f][n']dffn, 
n = l 

dffn
h=[n']dp-f^Anmdffm. 

7tt = l 

Substituting these into Eq. (4-9) we have 

TL J I T \ p . 

p*y 

Then we have a set of coupled nonlinear integral equations for C(4)=p ' ( i ) /p (A) 
and tln(k)=G-f(k)/Gn(k) as follows: 

l n C O f e ) = * L z 4 ^ ^ - £ [ » ] l n ( l + ? n - 1 (* ) ) , (4-10a) 
i 71 = 1 

In (1 + Vn (*) ) = ^ ^ - [»] In (1 + C-1 (*)) + f ] Anm In (1 + 7/m-\k)). (4 • 10b) 
± 7» = 1 

Equations (4-7) are rewritten as 
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(1 + C(*))p(*) = - ^ - + 2 [»]* . (*) , (4-11a) 

[»]p(*) =v.(*)ff»(*) + S -A,^r«(*). (4 - l ib ) 
Wl = l 

From thermodynamics the pressure is given by 

P=-Q/L. 

Using (4-10) and (4-11) one obtains 

P=T f in(l + Z-\k))— . (4-12) 
J 271 

This expression for the pressure is the same as that for bosons obtained by Yang 
and Yang.7' 

If we can solve Eqs. (4-10a), (4-10b), (4-11a) and ( 4 - l i b ) , we can de
termine the energy, entropy, particle density, magnetization and pressure for given 
temperature, chemical potential and magnetic field using (4-8a), (4-8b), (4-8c), 
(4-8d) and (4-12). 

Equations (4 -10a) and (4-10b) are equivalent to 

[1] {In (1 + , 0 - 1 " (1 + C"1) } = ( [0] + [2] ) In Vl, (4 • 13a) 

[ l ] { l n ( H - 7 , _ I ) + l n ( l + 7 .+ 1 )} = ([0] + [2]) lnj ? B , » = 2 , 3 , - , (4-13b) 

ln( l + ^ 1 ) = - ? § ? - C l ] l n ( l + C - 1 ) + i : A l T O l n ( l + ? m - 1 ) , (4-13c) 
£ m=l 

l n C = ^ ~ A ~ A ° H - f ; [ m ] l n ( l + ? m - 1 ) . (4-13d) 
± m=l 

(4-13a) is obtained by [1] X (first formula of (4-10b)) - ([0] + [2]) x (4-10a). 
(4-13b) is obtained by [1] X { ( » - l - t h formula of (4 • 10b)) + (»+ 1-th formula 
of ( 4 - 1 0 b ) ) } - ( [ 0 ] + [2]) X (ra-th formula of (4-10b)). In the same way we 
can prove easily that Eqs. (4-11a) and (4 - l ib ) are equivalent to 

[1] (p + T?aCT2) = ( [0] + [2] ) (Vl + 1) ffi, (4 • 14a) 

[l](?,-iff,-i + ?.+iff,+0 = ([0] + [2])(7 f ,+ l)ff,, » = 2 , 3 , - , (4-14b) 

[ l ]p = tfiffi+£lAwr..,. (4-14c) 
771 = 1 

( l + O p = ^ - + I ] | > ] < r m . (4-i4d) 

§ 5 . Special cases for e > 0 

1) The limit c-^0 

In this limit we can put 
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for an arbitrary function f(k). Then Eqs. (4-12) are written as 

(l + tfO/a + C - 1 ) ^ ' , (5-la) 

( l + 7»-i)(H-7»+i)=7» ,» (5-lb) 

i+7?1=*-2(i+ri)-ina+??„-1)2, (5-ic) 

c=^-^n(i+7j-
i)- i

I (5-id) 
n = l 

where 

z = exp ( - ,«„•# /T) . 

The general solution of (5-la) and (5-lb) is 

W « - i . C - j ^ L . 

where 

/(«) = (ban-b-la-n)/(a-a-1). 

The parameters a and b are functions of k and determined by (5-lc) and (5-Id) . 
The results are 

l(, P-A\l/, . A ' - A \ ,_ . . 
a = z and £ = y ( l + z e x p — ™ — 1 / ( 1 + 2 exp— j ,— I. (o-z) 

Equations (4-13) are transformed as 

p + 77jff, = 2( .7? i+ l )<7 i , ( 5 - 3 a ) 

T7„-lff»-l + Vn + l^n + i = 2 (5?„ + 1) ff„ , ( 5 • 3 b ) 

00 

P^lffl+X^Wm, (5-3c) 
7/1 = 1 

(1 + 0P = ~ + Etf». (5-3d) 
2ff »=i 

The solution is 

ff. = ̂ - / (0){- / ( -D}(^7 ^ T Y - „ * 4 ,1r)- (5"4b) 
27T \ /(«-l)/(») f(n)f(n+l) ' 

Substituting (5-2) into (5-4a) we have 

pW.A.((l + n„^&»)-+(l + = p * ^ S e ) - ) . (5-5) 
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In the limit c—>0 the quasi-momenta are real momenta. So (5-5) coincides with 
the well-known result. 

2) The limit c—»oo 

In this limit Eqs. (4-10a), (4-10b), (4-11a) and (4 - l i b ) become 

In C (*) = *' ~ A~ MoH - £ [«] In (1H-'W). (5-6a) 
J nasi 

ln(l + 7in(k))=^^ + f:AHmlna + 7im-1(k))+0(^), (5-6b) 

(l + CW)pffl=^-+o(i), (5-6c) 
2ft \ C / 

[»] P (*) = 7. (*) <»". (*) + £ 4 , A (A). (5 • 6d) 
m = l 

Equation (5-6b) are easily solved because Tjn(k) are all constants. The solution 
is 

? . = / • ( » ) - 1 , (5-7a) 

where 

/ ( » ) = ( « " + 1 - z - - » ) / ( « - 0 , z = exp(-jUoH/T). 

From (5-6a) we have 

C(*)=« (**- i t ) / r/(« + «-1), (5 -7b) 
and from (5 • 6c) we have 

Using (5-7a) one obtains 

( r . ^ ) = - J - r { ] [ » ] - 1 [» + 2 ] [ p ( i ) . (5-7d) 
z + 2 M / ( s - l ) / ( » ) / ( » ) / ( « + 1 ) ) 

So we have 

£ / L = AT/2L - f > [andk 

_ i V r i ^ n J 1 1 H - * ̂ t a n h ^ 
LL2 feiz + z-1 l / ( » - l ) / ( a ) / ( » ) / ( » + 1 ) J J 2 \ L / T " 

(5-7e) 

This shows that the magnetization of the one-dimensional electron gas behaves 
as that of ^-spins which are free each other when c is infinity. 

3) The limit T-*0 

We put s„ (k) = T In ijn (k) and ic(k) = T l n £(£). One can derive that 
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£n (*) = 2UoH+ [2] T In ( l + exp - - ^ ) ) + [1] T In ( l + exp **=&>-

+ ([0] + [ 2 ] ) f ] [ i ] T l n ( l + e x p - ? i ^ ) , » = 2 , 3 , - , 

from Eqs. (4-10b). Therefore s2, e3, ••• are always positive. So in the limit 
T—»0 we have a set of equations 

K (k) = k7 - A - MoH+ [1] e r (A), (5 • 8a) 

ei (k) = 2/i0H+ [1] K~ (k) - [2] e r (A), (5 • 8b) 

where the suffices ( + ) and ( —) mean 

f+(k)^\f(V at/(A)>0, f-(k) = \ ° a t / W ^ ° > 
1 0 at / (*)<0, !/(*) a t / (* )<0 . 

In Appendix A we prove that Si and /c are increasing functions of k*. So 6i and 
K are negative in the regions \B, — E] and [Q, — <2], respectively. Then Eqs. 
(4-11) give 

m'^\Lvvtkv°>mdk'- <5'9,) 

7T J-CC3+ (&-£ ' ) 7T J-B 4c3+ (k-ky 

The energy, particle number and magnetization per unit length are given by 

E/L = f k*p(k)dk, (5 -9c) 
J-e 

N / L = f p ^ i i , (5-9d) 
J-e 

Sz/L = i f " p (A) Jj& - r ff, (jfe) <ft . (5 • 9e) 

These integral equations coincide with those which were obtained by Gaudin1' 
and Yang.S) 

§ 6. Derivation of integral equations for 
the case of an attractive interaction 

If there are pairs of two complex k's each of which has a parameter A on 
real axis. We designate these A's as Aa' and corresponding k's as k^ and k^. 
By the conjecture 3 we have 

^ = 4 / + z'k | + O (exp ( - (JL) ) , 

ka
2 = Aa'-i\c\+0(exV(-dL)). 
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From Eq. (2-8) we have 

Ka aJ t+«\ -2\c\ / U A y \ -2\c\ ) \ V - I d ,' 
(6-1) 

From Eq. (2-9) we have 

(kS-Aa'\ JkJ-Aa>\ _»£*„( A.'-k,\ ( TT JAg'-AS-'W 
d / M V - I d JUt.j \ 2\c\ l\ 

—2AT' /An h \ a> Urn. / A n — A m\ 

n e(*•-«>) = - n n £ „ F H ^ - ) - <6-4) 

Substituting this into Eq. (6-1) we have 

H.WL= _ ^ j i ^ M j / ^ M g e{
Aa'~Af!'\. (6-2) 

M V _ | c | /*-i V - 2 | c | / 

Here we have represented unpaired & as kt. From Eq. (2-8) one obtains 

a=l \ —\C\ / » - l a = l \ —n\C\ ' 

And from Eq. (2-9) we have 

JV—2M-' / J » Z, \ =° -Mm / A n — A m\ 

n «^r=-nn^.pn 
i= l V n\c\ I m=l (9 = 1 \ | c | 

The logarithms of Eqs. (6-2), (6-3) and (6-4) are 

N-IM' i l l L \ M' I A ' — A ' \ 

2Aa'L = 2nJa' + £ 6[A" , *' + S f l ~ - o T T ^ , a = l , 2 , - , J W ' , (6-5a) 
y=i \ | c | / /»=i V 2 | c | / 

i / L = 2 ^ + S « ( ^ # ) + S E f i ( i # ) > i = l , . . . , N - 2 M ' , (6-5b) 
a=l \ \c\ I »=1 <*-l V « | t | / 

JV-2vlf' / ^ n Z, \ eoJtfm / > n _ j m\ _ 1 O . . . J / 

S fl(AjZ^)=2gJ<,»+i; S g . M . r - , , ' , ' ' ' "* (6-5c) 
^-1 \ « | c | / m=l 0=1 \ |c | / « = 1, 2 , ••• . 

Here J a ' is integer (half-odd integer) for 2V— M' odd (even), I} is integer (half-
odd integer) for M ' + Mi + MjH even (odd) and Ja

n is integer (half-odd in
teger) for N—Mn odd (even). Ja

n should satisfy the condition 

IJ«"I < i ( N - 2M' - f ] ; n m M m ) . 
771 = 1 

Following §4 we d e f i n e / G O . A(&) and jn(yln): 

y L I /=i V |d / ^ ^ 2|c| /) 

A(*)=*-lj£fl(A^-:)+f] g flfAz^)}, (6.6b) 
£, U=i \ d ' »»=i a-i \ n\c\ I) 
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Holes of A', k and An are defined as solutions of 

f(A')=2nX (omitted J ' ) , 

h(k) =2nx (omitted I), 

jn(A
n) =2jcx (omitted J " ) . 

In the limit of a very large system we define the distribution functions of 
A', kh Aa as 6'{k), p{k), ffn(k) and those of holes as G,h(k), ph(k), Gn

h(k). 
Using the relations 

- ^ * l = 2 j r ( f f ' ( * ) + ( r ' » ( A ) ) , 
dk 

^ L = 2n(p(k) + pk(k)), 
dk 

djn(k) 
-2jt(ffn(k)+ffn

h(k)), 
dk 

we have equations for ff', p, ff„, ff"1, ph and ffn': 

i . = ff' + ff'»+[2]ff'+[l]p, (6-7a) 
it 

- ^ - = P + P*+[i]ff' + i;i>]ffn ) (6-7b) 
2% » 

\_n']p = ffn
h + Y±Anm,6m. (6-7c) 

m 

The definitions of [»] and Anm were given in § 4. 
The energy per unit length is 

E/L = \(k'- jU0H) pdk + [2 (k> - ca) ff W + £ j 2«Ao^ fff„<^ • (6 • 8a) 

The entropy per unit length is 

S/L= J{(p + p")In(p + p") - p In p-p* In p*}d* 

+ f{ (ff' + ff'*) In (ff' + (T'ft) - ff' In ff' - ff'* In ff'"} <ft 

+ £ f{ (ff. + ff„") In (ff, + ffn") - ff„ In ffn - ff„* In ffB*} dfe . (6 • 8b) 

The magnetization per unit length is 

S./L = i {pdk - f > fff»^ • (6 • 8c) 

The particle density is 
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N/L= (pdk + 2 {ff'dk. (6-8d) 

The thermodynamic potential Q=E—TS—AN should be minimized. So we have 

0 = dii/L= {2(k'-c*-A)d(J'dk+ {(k*-A)dpdk 

+ S 2njU0H \dffndk -T^dp In ( l + -£ - ) + dph In ( l + -±-) J dk 

-TJ{^ln(l + ̂ )+^ln(l + ^ - ) } ^ 

-Ti}§{dff.]n(l + ̂ +8a%
h]n(l + -^\dk. (6-9) 

From Eqs. (6-7a), (6-7b) and (6-7c) we have 

6ff'h=-dO'-[Z]dff'-[l']6p, 

tf p* = - ffp - [1] ff(T' - £ [»]dffn, 

Sffn
h=in-\dp-flAnmd6n, 

m=l 

Substituting these into Eq. (6-9) we have a set of coupled-nonlinear integral 
equations for C = P*/P» TI' = G"1/G' and •qn = ffn'

t/ffn as follows: 

In Y = 2(-k'-^-c^ + [2] In (1 +1)''1) + [1] In (1 + O , (6 • 10a) 

In C = *' ~ A~ fi°H + [1] In (1 + V'-1) ~ I I [ » ] In (1 + ft."1), (6-10b) 

In (1 + 7 . ) = ~ ~ + [»] ̂  (1 + C"1) + E A , , In (1 + ,„->). (6 • 10c) 
J wi= l 

Equations (6-7) are rewritten as 

i - = ( l + 7 ? ' ) f f / +[2]f f '+[ l ]p , (6-11a) 
n 

• | = ( l + C)p+[l]ff ' + E W f f . , (6 - l ib ) 

[«]P = l W n + I ] Am^m- (6 - l l c ) 
TO 

The pressure P and thermodynamic potential Q are given by 

P=-Q/L=T f l n ( l + / - 1 ) — + T flnCl + C " 1 ) ^ - . (6-12) 
J % J 2u 
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Here we have used Eqs. (6-10) and (6-11). 
The integral equations (6-10) are transformed as 

[1] {In (1 + Vl) - In (1 + V') } = ( [0] + [2] ) In C"1, 

[1J {In (1 + C-1) + In (1 + ?,) } = ( [0] + [2] ) In ^ , 

[1] {In(1+ !?._,) + l n ( l + 7 .+ i )} = ([0] + [2])In 7 n , » = 2, 3, •• 

In , ' = 2 ( * ' - ^ - c ' ) + [ 2 ] l n ( i + , ' - i ) + [1] In (1 + C-1), 

In C = k°-A-V°H + [1] In (1 + 7'"1) - £ [»] In (1 + ,„- ' ) . 
J n = l 

Equations (6-11) are transfomed as follows: 

[1] (Vff' + Vlff1) = ( [0] + [2] ) (1 + C) P , 

[1] (p + V^) = ( [0] + [2]) (1 + yd ffx, 

[ 1 ] (rin-lffn-l + Vn+l<Tn + d = ( [ 0 ] + [ 2 ] ) ( 1 + 9?n) ffn , » = 2 , 3 , • • • , 

- = ( l + 7 ' + [ 2 ] ) f f ' + [ l ] p , 
it 

•7J-=(l + C)P+[l]ff/+ £[»](;,.. (6-14e) 
27T » - l 

§ 7. Special cases for c < 0 

1) T%e /£mz'/ c—>0 

In this limit we can put [»] = [0]. Therefore Eqs. (6-13) become 

(1+0(1+^)=^ , 
(1 + ^ - , ) ( l + i7„+1) =?/n

s, « = 2, 3, ••• , 

^ / ( l + i?1)=e3 ( J : !-^ r ' ( l + C-1), 

f = 2 e <*'-^ ( 1 + , '- ') / f [ (1 + ̂ n"1). 
n = l 

And the solutions are 

(6-13a) 

(6-13b) 

(6-13c) 

(6-13d) 

(6-13e) 

(6-14a) 

(6-14b) 

(6-14c) 

(6-14d) 

where 

f(n) 

Vn=f\n)-1, 

C = ( / 2 ( 0 ) - l ) - 1 , 

ri'=f\-l)-\, 

bzn-b~1Z-n , / l + 2-V* ,-^ /S ' 

(7-la) 

(7-lb) 

(7-lc) 
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Equations (6-13) become 

7/<r' + 7,<ri=2(l + C)p, 

Ijn-lGn-l + ^n+l^n+1 = 2 ( 1 + 7?„) ffn , » = 2 , 3 , • • • , 

J-=(2 + 7')ff' + p, 
7T 

27T »-» 

Using (7- la ) , (7-lb) and (7-lc) we have a solution for these linear equations: 

±_ (b + b->)f(-l)(-f(-2)) 
2;r / ( 0 ) 

ff'= — / 2 ( ~ 1 ) ( f e - 1 + ^- 1g) , (7-2b) 
2n / ( 0 ) 

*n = j - / ( - D ( - / ( - 2 ) ) { — - ^ - — - - - - ? }. (7-2c) 
2z l / ( « - l ) / ( « ) / ( » ) / ( » + 1)) 

One can calculate p + 2(T' which is the distribuion of real momenta in the limit 
c-*0: 

p + 2 (r '=-i-((e (* !-A- ' ' ° ' f f ) / 3 '+l)-1+ (c<*'-'-'.*>/«,+ l ) - 1 ) . (7-3) 
2ff 

This result coincides with the well-known facts and suggests that our theory is 
correct. 

2) The limit T^O 

We prove that sn(&)]>0 from Eq. (6-10c). Therefore in the limit T—»0 we 
see fjn=oo and ffn = 0 for n — \, 2, ••-. s' and /£ are determined by 

s' (*) = 2 (J? - A - c*) - [2] s'" (k) - [1] K~ (k), (7 • 4a) 

K (k) = k2 - A - v0H- [1] s '- (k), (7 • 4b) 

and are monotonically increasing functions of k1 as will be shown in Appendix B. 
We define the parameters B and Q by s'(B)=0 and K(Q) = 0 . fj' and C are 
zero in the region \B, —5] and [Q, — Q ] , respectively, and infinity outside these 
regions. So one obtains a set of coupled linear equations in the limt T->0. 

JL=ffv« + i r 2\c\ff'(k')dk> i r« kip(^)^ 
?r n J-B4\c\'+(k-k')' n J-Q\c\>+(k-ky' 
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E/L= [B 2(ki-c'-)ff'(k)dk+ [Q klp(k)dk, 
J-B J-Q 

N/L=2 r a'(k)dk+ r p(k)dk, 
J-B J-Q 

SZ/L= r p(k)dk. 
j - « 

These equations are equivalent to those which were obtained by Gaudin.1' 

§ 8. Discussion 

Our equations are non-linear and have infinite unknown functions. But the 
author believes that the numerical calculation of physical quantities can be done 
if we use a high-speed computer. 

It is possible to calculate the excitation spectra from the thermodynamically 
equilibrium state as Yang and Yang7) did for one-dimensional bosons. 

In Ref. 6) the author discussed the analytic properties of the energy at zero 
temperature. But if one uses our integral equations it is possible to investigate 
the analytic properties of thermodynamic quantities at finite temperature. 

Our theory is based on the three conjectures of § 3. So it is necessary to 
prove these conjectures strictly. 

We have obtained the integral equations for two-component bosons, namely, 
the case of a wave function which transforms as an irreducible representation of 
SN with two rows. The integral equations for the ground state energy was de
rived by Yang.2' We put a chemical potential for first-kind of bosons as A + fi0H 
and one for second-kind of bosons as A — jU0H. In the case of repulsive interac
tions (4-10a), (4-10b) and (4-11a) are replaced by 

In C + [2] In (1 + C O = — A~ MoH - £ [»] In (1 + T?^1) , 
]_ n = l 

In (1 + Vn) = 2n^H + [»] In (1 + O + 11 Anm In (1 + y,^1), 
± 771 = 1 

( l + C ) p = - J - + [ 2 ] p - f ] [ » ] f f 1 . > 

respectively. 

Appendix A 

Equation (5-8) is transformed as 

e,(*) =jU0H+ f J - s e c h 7 ^ " " ^ /c-(k')dk'+ f — t f f i ^ W ( * ' ) < & ' • 
J Ac 2c J c \ c ' 

(Al) 

So we consider a series of functions {Si(n)} and {/cm}: 
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J Ac 2c J c \ c I 

(A2) 

K^'Kk) =P-A-jUoH+ [ l]S l
( n>-(^), (A3) 

Km(k)=k'-A-fioH, (A4) 

Sl
w(k)=2fi0H. (A5) 

We prove the following lemma by mathematical induction. 
Lemma 1. 

a) *F>>-A-(hH, ic1
m>-2A-2/x0H. 

b) ei ( B )>e1
( B + 1 ) , /c(n)>A;(n+1>. 

c) £!(n) and K(n> are monotonically increasing functions (MIF) of &J. 

[Proof] It is clear from (A4) and (A5) that a) and c) are valid for » = 1. From 

£l
CJ> = 2ju0H+ f — s e c h g ( * k'\m~ (k') dk'<s^ 

J Ac 2c 
and 

We see that b) is valid for n = l. It is clear from (A2) and (A3) that if a) , 
b) and c) is valid for n = k, a) , b) and c) are valid for n = k+l. [Q.E.D.] 

From a) and b) we see that the limit 6i = limn_„SiCn) and K = limn_„Km exist. 
These two functions £i and ic are solutions of (5-8a) and (5-8b) and MIF's of 
k\ 

Appendix B 

The Equations (7-4a) and (7-4b) are transformed as 

K(k) = -/i9H+ {^rsech^fP~e'+(k')+ (J*L.R(±zK)K-(k')t (Bl) 
J A\c\ 2\c\ J \c\ \ |c| / 

e' (*) = k< - A - 2c! + UoH+ {k* + [1] (a+ (k) - * ' ) } . (B2) 

So we consider the series of functions defined by 

e'^{k)=2(P-A-ci), (B3) 

Km(k)=k'-A-UoH, (B4) 

e'(»+D(jfc) =k*-A-2c> + VoH+ {k<+ [1] (Km+(k) - £ ' ) } , (B5) 

J \c\ \ \c\ I 

+ f-J— sech n(k~k'hnn^+(k')dk'. (B6) 
J A\c\ 2\c\ 
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Lemma 2. 

a) tc(n)<K<n+1\ £ 'W<£ '<'1+1). 

b) Km(k)<k' + c\ s'm(k)<2k> + 2jUoH. 

c) Km and £/<n) are MIF's of k\ 

[Proof] For « = 1 b) and c) are easily proved by (B3) and (B4). From (B5) 
we have 

£,(2> (k) >k> - A - 2c" + /i0H+ {k* + [1] (K(1) (k) - £2)} = £,(1) (k). (B7) 

Substituting (B5) into (B6) we have 

Km(k)=k'-A + fXoH+ \—R(k~k')(KmW) -k'*)dk' 
2 J \c\ \ \c\ 1 

- f J _ SeCh K(k- k>) e"2>- QfeQ dk'>k> - A + V°H 

J 4\c\ 2\c\ ~ 2 

+ f—R(^^ - ) (K m {k ' ) -k")dk' = ICW(k). 
J \c\ \ \c\ I 

From Eqs. (B5) and (B6) it can be easily proved that a) and b) are valid 

for n = k-\-\ if they are for n = k. One can prove that 

J \c\ V |c| / 

J A\c\ 2\c\ 

and 

& 2 + [ l ] ( / ( £ ) - P ) 

are MIF's of &2 if f(k) is an MIF of k%. From this fact we have that c) is 

valid for n = k+l if it is for n = k. [Q.E.D.] 

From a) and b) we see that there exist the limits 

£'(&)=lim£'(n)(&) and K (&) = lim KW (k). 

It is clear that these two functions satisfy (7-4a) and (7-4b) are MIF's of &2. 
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Exact Solution of a Many-Fermion System and Its Associated Boson Field 
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Luttinger's exactly soluble model of a one-dimensional many-fermion system is discussed. We 
show that he did not solve his model properly because of the paradoxical fact that the density oper
ator commutators [p(p), p(—p')], which always vanish for any finite number of particles, no longer 
vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators p{p) define a boson field 
which is ipso facto associated with the Fermi-Dirac field. We then use this observation to solve the 
model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This 
we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface param
eter fik, and find: 0fik/dk\kF — co (i.e., there exists a sharp Fermi surface) only in the case of a suffi
ciently weak interaction. 

I. INTRODUCTION 

THE search for a soluble but realistic model in 
the many-electron problem has been just about 

as unfruitful as the historic quest for the philoso
pher's stone, but has equally resulted in valuable 
byproducts. For example, 15 years ago Tomonaga1 

published a theory of interacting fermions which was 
soluble only in one dimension with the provision 
that certain truncations and approximations were 
introduced into his operators. Nevertheless he had 
success in showing approximate boson-like behavior 
of certain collective excitations, which he identified 
as "phonons." (Today we would denote these as 
"plasmons," following the work of Bohm and Pines.2) 
Lately, Luttinger3 has revived interest in the subject 
by publishing a variant model of spinless and mass-
less one-dimensional interacting fermions, which 
demonstrated a singularity at the Fermi surface, 
compatible with the results of the modern many-
body perturbation theory.4 

Unfortunately, in calculating the energies and 
wavefunctions of his model Hamiltonian, Luttinger 
fell prey to a subtle paradox inherent in quantum 
field theory5 and therefore did not achieve a correct 

* Research supported by the U. S. Air Force Office of 
Scientific Research. 

1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) S, 544 
(1950). 

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
> J. M. Luttinger, J. Math. Phys. 4, 1154 (1963). Note 

that we set his »0 = 1, thereby fixing the unit of energy. 
References to this paper will be frequent, and will be denoted 
by L (72), for example, signifying his Eq. (72). 

1 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960). 

s Luttinger made a transformation, L (8), which was 
canonical in appearance only. But in the language of G. Bar
ton [Introduction to Advanced Field Theory, (Interscience 

solution of the -problem he himself had posed. In the 
present paper we shall give the solution to his inter
esting problem and calculate the free energy. We 
shall show the existence of collective plasmon modes, 
and shall calculate the singularity at the Fermi 
surface (which may in fact disappear if the inter
action is strong enough), the energy of the plasmons, 
and the (nontrivial) dielectric constant of the system. 
In an Appendix we shall show how the model may be 
generalized in such a manner as to remove certain 
restrictions on the interactions which Luttinger had 
found necessary to impose. 

I t is fortunate that solid-state and many-body 
theorists have so far been spared the plagues of 
quantum field theory. Second quantization has been 
often just a convenient bookkeeping arrangement 
to save us from writing out large determinantal 
wavefunctions. However there is a difference be
tween very large determinants and infinitely large 
ones; we shall show that one of the important dif
ferences is the failure of certain commutators to vanish 
in the field-theoretic limit when common sense and 
experience based on finite N tells us they should 
vanish! (Here N refers to the number of particles 
in the field.) 

Publishers, Inc., New York, 1963), pp. 126 et seq.] this 
transformation connected two "unitarily inequivalent" Hil-
bert spaces, which has as a consequence that commutators, 
among other operators, must be reworked so as to be well-
ordered in fermion field operators. It was first observed by 
Julian Schwinger [Phys. Rev. Letters 3, 296 (1959)] that the 
very fact that one postulates the existence of a ground state 
(i.e., the filled Fermi sea) forces certain commutators to be 
nonvanishing even though in first quantization they auto
matically vanish. The "paradoxical contradictions" of which 
Schwinger speaks seem to anticipate the difficulties in the 
Luttinger model. 

304 
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S0, the canonical transformation 

H = eiXS°He-iXS° 

gave the result that 

We shall show that these nonvanishing com
mutators define boson fields which must ipso jacto 
always be associated with a Fermi-Dirac field, and 
we shall use the ensuing commutation relations to 
solve Luttinger's model exactly. Because this model 
is soluble both in the Hilbert space of finite N and 
also in the Hilbert space N — » , with different 
physical behavior in each, we believe it has applica
tions to the theory of fields which go beyond the 
study of the many-electron problem. The model can 
be extended to the case of electrons with spin. This 
has interesting consequences in the band theory of 
ferromagnetism, as will be discussed in some detail 
in an article under preparation.5 ' 

II. MODEL HAMILTONIAN 

We recall Luttinger's Hamiltonian3 and recapitu
late some of his results: 

H = Ho + H', (2.1) 

where the "unperturbed" part is 

H0 = f dx ++(x)ir3pil,(x) (2.2a) 

Jo 

= E (oi*Gu — a>2*ka2k)k, (2.2b) 
k 

and the interaction is 

305 

(2.6) 

H = H0, (2.7) 

and consequently that the spectrum of H = H0 + H' 
was the same as that of H0, independent of the inter
action V(x — y). This can be explicitly verified for 
his choice of 

L 

S0 = Jj dxdy t\{x)Ux)E{x - y)i\{y)My), (2.8) 
0 

where E(x), not to be confused with the energy E, is 
defined by: 

dE{x-y)/dx=V(x-y), (2.9) 

assuming that 

V = j : J V(x) dx = 0. (2.10) 

In the Appendix we shall show among other things 
how to generalize to V ^ 0. It is also simple and 
instructive to verify Eqs. (2.6) and (2.7) somewhat 
differently by using the first quantization, 

and 

H' = 2X J J dx dy $+
1(x)fl(x) 

H o ^ - i Z ^ + i t ^ (2-11) 

H' = 2X E E V(xn - ym), (2.12) 

X V(x - y)++MUy) (2.3a) 

2X 
= -£ E &t,+k,.k,+kXh ~ h) 

X afklau,atk.a2kt. (2.3b) 

Here ^ is a two-component field and the form (b) 
of the operator is obtained from (a) by setting 

where N and M are, respectively, the total number 
of " 1 " particles and "2" particles, with coordinates 
x„ and ym, respectively. The properly antisym-
metrized wavefunctions are given by 

tf = det | e""" |de t \e""vl 

N M 

X exp \ X) 23 * Efa - Vm) }• (2.13) 

, 1 v* ikx(alk\ 

and 

*+ = - 7 = E « " t o ( o i t , a 1 t ) , 
VL k 

(2.4) 

with o,it's denned to be anticommuting fermion 
operators which obey the usual relations 

«,*«,"*' + a,-<*<a,-i s {a,-i, a,**.} = 0 (2.5) 
{a*.k,a*k-\ = 0, and \aik, af,k.\ = «,•,•.««.. 

Luttinger noted that for an appropriate operator 
6» D. Mattis, Physics 1, 184 (1964). 

Using Eqs. (2.9) and (2.10), ̂  is readily seen to obey 
Schrodinger's equation 

H* = m (2.14) 

with just the unperturbed eigenvalue 
N M 

E = E k. - E qm. (2.15) 
n = l m=*X 

The wavenumbers are of the form 

kt or qt = 2T integer/1/, (2.16) 

as required for periodic boundary conditions. This is 
in exact agreement with the results of Ref. 3, and 
can also be checked in perturbation theory; first-
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order perturbation theory also gives vanishing re
sults, and indeed, it is easy to verify that to every 
order in X the cancellation is complete, in accordance 
with the exact result given above. 

Up to this point, Luttinger's analysis (which we 
have briefly summarized) is perfectly correct. I t is 
the next step that leads to difficulty. The Hamil-
tonian discussed so far has no ground-state energy; 
in order to remove this obstacle, and thereby es
tablish contact with a real electron gas, Luttinger 
proposed modifying the model by "filling the infinite 
sea" of negative energy levels (i.e., all states with 
ki < and q2 > 0). Following L(8) we define b's and 
c's obeying the usual anticommutators, such that 

A general and inescapable concavity theorem states 
that if Ea(\) is the ground-state energy in the pres
ence of interactions, (2.3), then 

a,t = 

and 

h k > 0 

a2t 

(2.17) (p*„ k < 0, 

\bt k < 0 

\c*t k > 0. 

Using this notation the total particle-number 
operator becomes 

31 = E b\bt - clct (2.17a) 

(i.e., the number of particles minus the number of 
holes). 

Since the Hamiltonian commutes with 31 we can 
demand that 31 have eigenvalue N0. In the non-
interacting ground state there are no holes and the 
b particles are filled from — kF to kF where kF = 
ir(N0/L) = irp. The noninteracting ground-state 
energy is Narp + energy of the filled sea (W). 

The kinetic energy assumes the form 

Ho = E Mb* + CM) |*| + W, (2.18) 

where 
W = ( £ * - X>) (2.18a) 

is the infinite energy of the filled sea, an uninteresting 
c number which we drop henceforth in accordance 
with Luttinger's prescription. The interaction [H', 
Eq. (2.3) and the operator S0, Eq. (2.8)] can also be 
expressed in the new language by means of the 
substitution (2.17). The reader will no doubt be 
surprised, as indeed we were, to find that now with 
the new operators, Eq. (2.7), with S defined in (2.6), 
is no longer obeyed. 

Upon further reflection one sees that this must 
be so, on the basis of very general arguments. In the 
new Hilbert space defined by the transformation to 
the particle-hole language (2.17), H is no longer 
unbounded from below and now has a ground state. 

d2E0(X)/d\* < 0. (2.19) 

This inequality is incompatible with the previous 
result, viz. all E — independent of X, which was 
possible only in the strange case of a system without 
a ground state. 

The same thing can be seen more trivially using 
second-order perturbation theory (first-order per
turbation theory vanishes). I t is easily seen that 

W = -(f )2 E ^ ni(k)n2(-k), (2.20) 

where n^k) and n2(fc) are the number of ways of 
shifting a particle of type " 1 " and type " 2 " respec
tively by an amount k to an unoccupied state. A 
simple geometric exercise will convince the reader 
of the following facts: (1) if we start with a state 
having a finite number of particles, then nr and n2 

are always even functions of k (i.e., there are just as 
many ways to increase the momentum by A; as to 
decrease it by the same amount.) (2) If we start 
with a filled infinite sea then there is no way to 
decrease the momentum of the " 1 " particles nor to 
increase the momentum of "2" particles. Hence, 
for this second case ni(/fc)w2( — k) is nonzero only for 
k > 0. Thus E„" vanishes for a state with a finite 
number of particles, but it is negative for a filled sea 

If the reader is unconvinced by perturbation 
theory, then he can easily prove that E0 is lowered 
by doing a variational calculation. 

What has gone wrong? We turn to some algebra 
to resolve this paradox, and following this, present a. 
solution of the field-theoretic problem defined by 
H„ + H' in the representation of 6's and c's. 

in. CASE OF THE FILLED DIRAC SEA 

The various relevant operators are given below; 
the form (a) of each equation will not be used in the 
bulk of the paper, and is just given here for complete
ness. In the following equations, p > 0. 

Pi(+P) = E ofi+,,0,» (3.1a) 

= E c**p0? + E b*+v0* + E &*+A. 
* < - P - p £ * < 0 *>0 

(3.1b) 

Pi(-P) s E a i V i * + p (3.2a) 

= E o»o?+, + E oA+p + E °\bt+„ 
* < - p -P^A<0 *£0 

(3.2b; 
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ft(+p)^E«,V,. (3.3a) [A,B]= [A*,B] = 0, 

= E W«A + E *-A + E w t . W(p)' ^ = [B(-p)'fi*(~p)] = < -
*<-» -»s*<o *>o The Z? field is the continuation of the A field to nega-

(3.ob) ^ive p. therefore together they form a sw^Ze boson 
P»(-P) - E «?*a2 t+J> (3.4a) field defined for all p. 

» The relationship of the p(p)'s to Luttinger's 
= E *>*&*+„ + E 6tc?+p + E 0tcf+„. ^W' 8 - L(25)> i s obtained by using (2.4): 

k<~p ~p<k<0 Jfc>0 

(3.4b) 2V,(i) = +\(x)Ux) = | E ft(p)e"'", 
Equations (3.1a)-(3.4a) give the density operators (6.1V) 
in the original representation, so let us calculate in Na(x) = ^\{x)^2{x) = 7 E p2(p)e~"". 
this language a commutator such as (assume p > * 
p' > 0 for definiteness) IV. SOLUTIONS OF THE MODEL HAMILTONIAN 
r < \ /• »M _ V r * * 1 Before making use of the results of the previous 
IM-P) . MP)J - Z , l«i*«.*+,. oI4.+,.o,».J section, we remark that P l(+p) and p2(-p) are 

+„ +00 exact raising operators of H0, and Pi(—p) and pj(p) 
= E o**ai*+p-»' — E o**+»'<»i*+, = 0. (3.5) are exact lowering operators of ff0 corresponding to 

*"~" * " excitation energies p. That is, 
The zero result could have been expected by writing rH- f • _\i • _ r,^\ 
the operators in first quantization: (.4.1; 
»(-P> = E e — and P2(p) = 2 > - (3.6) ^ ^ ^ " ^ ( ± P ) " 

» •» The identification of the p's with boson operators 
whence they evidently commute. Nevertheless, the m a d e in the previous section suggested to us the 
zero result is achieved in (3.5) only through the possibility of constructing a new operator T which 
almost "accidental" cancellation of two operators, obeys the same equations (4.1), as H0. This is indeed 
each of which may diverge in the field-theory limit possible, if we define T as follows: 
when N = <*>. We now show that in that limit the 2ir -^ 
operators in fact no longer cancel, by evaluating the T = X" E {PI(P)PI(-P) + P2(-p)p*(jp)} (4.2) 
commutator using form (b) for the density operators. 
It is a matter of only some minor manipulation to t t h e "'s b e i nS d e f i n e d h e r e a n d ™ t h e remainder of 
obtain the important new result: t h e PaPe r b ^ Ecls- (3.1b)—(3.4b), i.e., always in 

the hole-particle representation]. It follows that 
M-P), PI(P')] = IPJP), P>{-P')] [Ti p i ( ± p ) ] = ± p p i ( ± p ) ( 4 3 ) 

= Sv.v- E 1 = \~ sv,v-, (p' > 0). (3.7a) as required, and similarly for p2(=Fp). Therefore, let 
-"<k<0 us decompose H into two parts 

In addition, H = Ht + H2 (4.4) 
[p>(p), P*(P')] = 0. (3.7b) with 

A quick check is provided by evaluating the vacuum ff, = H0 — T = \ E l&l (&*&* + o*kck) 

expectation value , 

<o| [PI(-P), ft(p)] |0> - T § {^)"»(-P) + P.<-P)A<P)}}. (4-5) 

= E <0| ofo+M+J* |0> = pL/2r, (3.8) a n d 

-*<''*'<° H2 = W + T 
which is exactly what is expected on the basis of the -. r 
previous equation. Evidently the form (b) of the = T 2X E {»(P)PI(—P,P2(P) + t>( — p)pi(p)p2(—p)} 
operators (27r/pL)+ipj(+p) and (2w/pL)+ip2(—p) 
have properties of boson raising operators [call them + 2*- E {PI(P)PI(-P) + P,(-V)P,(V)\ (4 6) 
A*(p) and B*(-p)] and (2ir/pL)+ipi(-p) and £* w « w » j 
(2ir/p^)+iP2(+p) have properties of boson lowering with v(p) = real, even function of p. By actual 
operators [A(p) and B(—p)], i.e., construction, all the p operators which appear in H, 
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commute with Hi. This will be an important feature 
in constructing an exact solution of the model. We 
define an Hermitian operator S, 

•LJ a l l ! > V 

where <p(p) is also a real, even, function of p to be 
determined subsequently by imposing a condition 
that the unitary transformation e's diagonalize H2. 
First we evaluate the effect of such a transformation 
on various operators. I t commutes with Hu 

e'sHie~iS = Ht = H0-T, (4.8) 

because both pi and p2 appearing in S commute with 
Hi, as noted above. In the following, p can have 
either sign: 

e" V (p)e~'s = Pi (p) cosh <p(p) + pt(j>) sinh <p(p), (4.9) 
eisp2(p)e~iS = p2(p) cosh<p(p) + p,(p)sinhp(p). (4.10) 
We have verified that this transformation is a proper 
unitary transformation and preserves commutation 
relations (3.7) as well as anticommutation relations 
(2.5), and the reader may easily check this point. 
H2 is brought into canonical form by requiring that 
in (exp iS) H2 (exp —iS) there be no cross terms 
such as Pi(p)p2( — p). This leads to the equation 

tanh 2<p = -\v(p)/ir, (4.11) 

which cannot be obeyed unless 

\Ku(p)\ < w for all p. (4.12) 

Equation (4.12) serves to limit the magnitude of 
potentials capable of having well-behaved solutions 
(e.g., a real ground-state energy). For the more 
realistic potentials discussed in the Appendix, there 
is also a more realistic bound on v(p): there, v(p) may 
not be too attractive, but it can have any magnitude 
when it is repulsive, i.e., positive. 

With the choice of <p in (4.11), the evaluation of 
H2 becomes 

eisH2e-is = ~ Zsech2<p(p){Pl(p)pi(-p) 
J-1 J»0 

+ P2(-P)P2(P)} - £ P ( 1 - sech2<rf. (4.13a) 
p>0 

The second term is the vacuum renormalization 
energy 

Wi = - X) P(l ~ seeh 2<p) 

-1 / > { ( ' - ^ ) ' -}•<»*> 
It may be expanded in powers of X to effect a com
parison with Goldstone's many-body perturbation 
theory4; we have checked that they agree to third 
order. 

The problem is now formally solved, for we can 
find all the eigenfunctions and eigenvalues by study
ing Eqs. (4.4), (4.8), and (4.13). First notice that 
the operator T does not depend upon the interaction 
and that if there is no interaction we could write the 
Hamiltonian either as 

H = Ho, (4.14a) 
or as 

H = (Ho - T) + T = Hi + H2. (4.14b) 

Since Ht and H2 commute, every eigenstate, SF, of H 
may be assumed to be an eigenfunction of Ht and H2 

separately. Moreover, ¥ may also be assumed to be 
an eigenfunction of each av = A* Av and ft, = BI „£_„ 
for all p > 0, since these operators commute with 
H and 31. 

Evidently (4.14a) and (4.14b) provide two dif
ferent ways of viewing the noninteracting spectrum. 
H0 is quite degenerate: the raising operators of H0 

are the b+'s and c+'s. By requiring that ¥ also be an 
eigenstate of av, fiv and H, we are merely attaching 
quantum numbers to the degenerate levels of H0. 
If avy = nj& and /3j,M> = m$> (where nv and « , are of 
course integers), we say that we have nv plasmons of 
momentum p and mp plasmons of momentum —p. 
With no interaction the energy of a plasmon is 

«(p) = |p| . (4.15) 

We may speak of Hi as the quasiparticle part of 
the Hamiltonian; in Hi the operator T plays the role 
of subtracting the plasmon part of the energy from 
H0. 

When we turn on the interaction, the above 
description of the energy levels is still valid, except 
that now we are forced to use the form (4.14b) because 
H2 is no longer T. The degeneracy of H is partially 
removed by the interaction, because now the energy 
of a plasmon is 

«'(P) = |p|sech2<p(p). (4.16) 

Notice that the plasmon energy is always lowered 
[and therefore the plasmons cannot propagate faster 
than the speed of light c = 1, i.e., de'/dp < 1. In 
the more realistic case discussed in the Appendix, 
the plasmon energy can be increased by the inter
action although de'/dp < 1 is always obeyed.] 
by the interaction; if (4.12) is violated the plasmon 
energy is no longer real and the system becomes 
unstable. Note, there are no plasmons in the ground 
state, so that Wi (4.13), is the shift in the ground-
state energy of the system. 

There is one important point, however, that re
quires some elucidation. We would like to be able to 
say that in view of the fact that Hi, a(p), and /3(p) 
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conserve particle number, the most general energy 
level of H (fixed N0) is the sum of any energy of 
Hi (same Na, and no plasmons) plus any (plasmon) 
energy of H2 (note: the plasmon spectrum is inde
pendent of No). Were we dealing with a finite-
dimensional vector space, such a statement would 
not be true, for even though Hi and H2 commute 
they could not possibly be independent. Thus, if 
Ha had n eigenvalues eu • • • , e„, and if Hi had an 
equal number Eu • • • , E„ the general total eigen
value would not be any combination of e,- + Et for 
this would give too many values (viz. n2 instead of n.) 
But we are dealing with an infinite-dimensional 
HUbert space and the additivity hypothesis is in 
fact true for the present model. 

To prove this assertion we consider any eigen-
state ¥ which is necessarily parameterized by the 
integers n„ and mv. Consider the state * = 
( I I . (Av)

n'(Bv)
m-}^. The state $ is nonvanishing 

and has quantum numbers n„ = 0 = mv. I t is also 
an eigenstate of Hx with energy Ei(^f). In addition 
(and this is the important point) the state ~>ir may be 
recovered from * by the equation 

¥ = const X { I I ( 4 3 " ( B + J - | * . 
V 

To every state ty, therefore, there corresponds a 
unique state * from which it may be obtained using 
raising operators. Conversely, to any eigenstate 
of Hi (for fixed N0) we may apply raising operators 
as often as we please and obtain a new (nonvanishing) 
eigenstate. Thus the general energy is an arbitrary 
sum of quasiparticle and plasmon energies. 

I t may be wondered where we used the fact that 
the Hilbert space is infinite-dimensional in the above 
proof. The answer lies in the boson commutation 
relations of the A'B and B's. I t is impossible to have 
such relations in a finite-dimensional vector space. 

The eigenvalues corresponding to these states 
$ will be labeled in some order, Et (i = 1, 2, • • •), 
so that the total canonical partition function Z(\) 
and the free energy F(\) are given by 

Z(X) = e-FW/kT 

= (Ze-Ei/tT)(e-w'/kT) IT (Ee-"''",/H). 
* a l l v \ n = 0 ' 

(4.17) 

The first factor is difficult to evaluate directly. How
ever it can be obtained circuitously by noting that 
the energies Et are independent of X and therefore 

Z(0) = «-'<0"*' 

= (£<r*' / 4 r)II (±e-"'M/kT). (4.18) 
i a l l v \ n = 0 ' 

*0 

But the second factor can be trivially evaluated, as 
can F(0) = free energy of noninteracting fermions. 
Therefore we use (4.18) to eliminate the trace in
volving the Ei's in (4.17), with the final result: 

F(X) = F(0) + W1 

+ 2kT £ In {(1 -e-''(")/k'P)/(l -e-"
v)/kT)}, (4.19) 

j>>0 

where e and e' are given in (4.15) and (4.16). I t is 
noteworthy that the ground state and free energy 
both diverge in the case of a 6-function potential. 

V. EVALUATION OF THE MOMENTUM 
DISTRIBUTION 

In this section we calculate the mean number of 
particles with momentum k. This quantity is nh 

and is the expectation value of 

nk = b\bk (5.1) 

in the ground state. Since nh is an even function of k 
we need only consider k > 0, and it is further con
venient to introduce a Fourier transform so that 
[using (2.4)] 

L 

nk = -jr J J dsdt e " ( - " / ( s , t). (5.2) 
0 

Here 

7(8, f) = <*| tf (8 )* i« |*> 

= <*o|e"VI(s)e-<Vs*itt)e'"'s l*o>, (5.3) 

where S is given by (4.7), ^ is the new ground state, 
and ^o is the noninteracting ground state which is 
filled with b particles between — kF and kF and has 
no holes (or c particles). This assignment depends on 
there having been no level crossing, which can be 
readily verified using (4.7)-(4.13). 

In order to calculate the quantity e*s\pi(t)e~,s we 
introduce the auxiliary operator 

Ut) = e^'UtyT"", (5.4) 

where o- is a c number. We observe that f, (t) is the 
desired quantity while 

Ut) = Ut). (5.5) 

In addition, 

dj/da = e"si[S, «M0K" ' s 

= e"s[2WL £ p , ( - p ) * ( p ) p - V V " s M 0 , 

(5.6) 

where we have used the commutation relations (3.7) 
as well as the fact that ^ commutes with p2. Equa-



413 

310 D- C. M A T T I S AND E . H. LIEB 

tion (5.6) is a differential equation for j,{t) and (5.5) Zi(s, t) = exp \2ir/L £ ) [cosh p(p) — l]2 

is the boundary condition. The solution is *>0 

W) = W,(t)R.(t)H(), (5.7) X p - 1 ( e , I ( - " - 1)). (5.15) 
where Likewise, 

W„(t) = exp \2ir/L £ [Pi(-P)e"' R-\s)R{t) =. JB_(S, t)R+(s, t)Z2(s, f), (5.16) 
p>0 

- p,(p)e-p V ' t c o s h ^ (P) - 1]} (5.8) W l t h 

and #+(s , /) = exp {2T/L £ p2(p)[sinh <Kp)] 

#„(*) = exp {2*/L £ [P2(-P)e"> 
» > 0 

X p - V ' - e " ' " ) } . 

- Pa tpK^Jp - 1 sinh <*p(p)} (5.9) #_(s, <) = exp \2w/L £ P2(-p)[sinh <p(p)] 
p > 0 

The reader may verify that (5.7) satisfies (5.5) and _, ( , 
(5.6) by using the commutation relations (3.7). X v ^ " ~ c *))> 
We recall the well-known rule that Z2{s, t) = exp {27r/£ E [sinh ^>(p)]2 

exp (A + B) = exp (A) exp (£) exp ( - 1 / 2 [ A , £]) _ ,.„„_., 

when [A, B] commutes with A and B. From here on W e s e e a t o n c e f r o m t h e definition (3.1b), (3.2b), 
we shall set <r = 1 and drop it as a subscript. We o f * ( ? ) t h a t - f o r P > 0, P l ( - p ) \^) = 0. Similarly 
note that since P l(p)+ = P l ( - p ) and P2(p) + = <*>l P(P) = °> P»(P) |*2> = 0, and <¥2| P 2 ( - p ) = 0. 

P.( -P) , H e n c e ' 

R\t) = i?_1(/) and W\t) = W'\t). (5.11) ^ <) = ^( s> # 

We also note that E and W commute with each other. a n d 

Thus, (5.3) becomes 7 i ( S i t) = Zl(s, t)(%\ WZ1+\{s)W-W^WW? |*i>. 

/(«, 0 = <*o| rMR~\s)W-\s)W{t)R{t)Ut) |*o> (5.18) 

= JI(S, t)I2(s, t), (5.12) jf w e now define 

w h e r e h+(y) = 2r/L T, [cosh^(p) - 1] 

/,(«, t) = <*,| *i(«)tir l(«)ITtt)*.W I*,), 

/,(«, 0 = <*,| i?-l(s)B(0 |*2>. 
, , . h-(y) = 2T/L 22 [cosh <p(p) - 1] 

We have used the fact that the ground state is a j»o 
product state: * 0 = ^ I * *2 where ^ is a state of x - i , - i v , _ -,„.s ,„» , 
the " 1 " field and * 2 is a state of the " 2 " field. ¥ , is P ^ e Je ' [b y ; 

filled with 6 particles up to +Av and has no c parti- combining (3.10) and (5.15) we have that 
<:les; ^ 2 is filled with b particles down to — kF and L 

has no c particles. W+(s, t) = exp / N^h+iy) dy, 
Now, using the definition (5.8) and the rule (5.10) ° (5.20) 

we easily find that fL 

W-(s, t) = exp - / N^h-iy) dy. 
W~\s)W{t) = W_(s, f)TT+(s, 0 ^ ( 8 , 0, (5.14) J o 

Since 
with 

WAs, t) = exp {2./L E P l(-p)[cosh„(p) - 1] [*' ( a ; ) ' ™ ] = * * " »>*>(*)• (5.21) 
v>\ ^ ^ [ tf (*),#,(»)] = - a ( * - y ) t f ( * ) , 

X p V ' ~ e*")}, i t f o U o w s t h a t 

W-(s, t) = exp {2^/-^ X) Pi(p)[cosh^(p) - 1] 

p > 0 

(5.13) x p-»(e«-»' _ e " " ) e - ' ^ ( 

TF+(s, O^iWWT1^. 0 = *iW exp [ - M 0 ] 

X p - 1 ^ " " ' - e"*")}. ^ l ( « , 0^(«)TT_(«, 0 = tf 0 exp [+A_(«)]. 

p > 0 
(5.22) 
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Finally, 

v*kF (5.23) 
*= Z,(«, t). 

Combining all these results, we conclude that 

I(s, t) = Z0(s, t)Zt(s, t)Z2(s, t)Z,(s, t), (5.24) 

where 

Z0(s, t) = exp (h-(s) - h+(t)) 

= exp {— 4T/L 2~2 [cosh <p(p) — 1] 
p > 0 

X (1 - e " " * - " ) ) . (5.25) 

In order to make a comparison with Luttinger's 
calculation of nk, we first observe that the functions 
Zt(s, t) are really functions of r = s — t and that 
they are periodic in s and t in (0, L). We then define 
the functions G(r) and Q(r) as follows: 

exp l-Q(r)] = G(r) m Za(r)Z,(r)Z,(r). (5.26) 

Substituting (5.26), (5.24), and (5.23) into (5.2) we 
obtain 

nk = 2K/L ZZ F(k - p), 

where 

F(k) = 1/2JT f dr 
J-iL 

^ 1/2* J dre 

(5.27) 

(5.28) 

(5.29) 

In (5.29) we have passed to the bulk limit N, 
L —> oo, not an approximation. 

At this point our expression for nk is formally the 
same as Luttinger's [cf. L (52), L (69)]. The dif
ference is that our Q is different from his. He obtains 
Q by evaluating an infinite Toeplitz determinant 
with the result that [L (70)] 

Q(r) = \2/2v2 f dp1 ~ C0Spr \v(p)\2. (Luttinger) 
•'o P 

(5.30) 

Our Q, which is the correct one to use, is obtained 
by combining (5.15), (5.17), and (5.25), replacing 
sums by integrals in the usual way, and using the 
definition (4.11) of <p(p). The result is 

Q(r) = X2/2x2 f dp 1 ~l0SW \u(p)|2, (5.31) 

where 

\u(p)\2 = (2*2/\*){(l - (A*W7r)TJ - 11- (5.32) 

I t is worth noting that (5.30) agrees with (5.31) to 
leading order in X2. 

Since we have not yet specified v(p), we may now 
follow Luttinger's discussion from this point on 
with the proviso that we use the correct (X depen
dent) u(p) instead of v(p). The reader is referred to 
pages 1159 and 1160 of Luttinger's paper. 

There are two main conclusions one can draw. The 
first is that if we start with a 5-function interaction 
[so that v(p) and hence u(p)\ are constants, it can 
be shown that nk = | for all k. Such a result is quite 
unphysical, but it is not unreasonable because the 
ground-state energy W (4.13a) diverges when v(p) = 
constant at large p. Also, the result would be the 
same if we started with the more physical interaction 

H> = 1/L Z U(P) + P.(P)){P«(-P) + A.(-P)}»(P) 

discussed in the Appendix. This is indeed unfor
tunate, because relativistic field theories usually 
begin with local (5-function) interactions. 

The second conclusion is that if one makes a 
reasonable assumption about v(p), and hence about 
u(p) and Q(r), one finds that for k in the vicinity 
of kF, nk behaves like 

nk •d - e\k - kF\2° <r(k - kr), (5.33) 

where 

a(k) = 1, k > 0 

= - 1 , k < 0 
(5.34) 

and d, e, and a are certain positive constants. Now 
in Luttinger's calculation 

a = XVVKO)2, (Luttinger) (5.35) 

[cf. L(75)], where v(0) = lim v(p). 
p-*0 

If 2a < 1, then the conclusion to be drawn is that 
although the interaction removes the discontinuity 
in nk at the Fermi surface, we are left with a function 
that has an infinite slope there. There is, so to speak, 
a residual Fermi surface. In Sec. IV of his paper, 
Luttinger shows that at least for one example of 
v(p) perturbation theory gives the same qualitative 
result as (5.33) with the same value of a, (5.35). 

If, on the other hand, 2a > 1 then there is no 
infinite derivative at the Fermi surface. nk is per
fectly smooth there (although, technically speaking, 
it is nonanalytic unless 2a = odd integer.) In this 
case virtually all trace of the Fermi surface has been 
eliminated. But notice that the correct a to use is 
obtained by replacing v(0) by w(0) = l im^0 u(p) 
in (5.35), i.e., 
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2a = {1 - [Xf(0)A]2}_i - 1. (5.36) 

Thus, even subject to the requirement that |Xf(0)| 
be less than ir, 2a can become as large as one pleases. 
Yet perturbation theory predicts (5.35) which yields 
2a always less than \. 

We may conclude that a strong enough interaction 
can eliminate the Fermi surface, while perturbation 
theory predicts that is always there. 

VI. DIELECTRIC CONSTANT 

Because the response to external fields of wave 
vector q only depends on an interaction expression 
linear in the density operators, we can immediately 
obtain for the generalized static susceptibility func
tion or dielectric constant (response -5- driving force), 
for any temperature, T 

X\(q, T) = xo(«, T){sinh<p(g) + cosh^g)} 2 cosh 2<p„ 

in terms of the "unperturbed" susceptibility Xa{q, T). 
I t is also a simple exercise to calculate exactly the 
time dependent susceptibility in terms of the "un
perturbed" quantity. 

I t is interesting to note that the susceptibility 
can diverge (which is symptomatic of a phase trans
formation) only for 

\v{q) -* -K, (6.2) 

i.e. only for sufficiently attractive interactions and not 
for repulsive [v(q) > 0] interactions. 

Recently Ferrell6 advanced plausible arguments 
why a one-dimensional metal cannot become super
conducting. We can prove this rigorously in the 
present model. The electron-phonon interaction is 

ff.i-* = £ g(p)[pi(p) + P*(P)H&, + £ J , (6.3) 

where £ and £+ are the phonon field operators. In 
the "filled-sea" limit this coupling is bilinear in 
harmonic-oscillator operators, and therefore the 
Hamiltonian continues to be exactly diagonalizable. 
The new normal modes can be calculated and there 
is found to be no phase transition at any finite 
temperature. 

APPENDIX 

We shall be interested in extending Luttinger's 
model in two ways. Firstly, we note that the restric
tion V = 0 is really not necessary. Turning back to 
Eqs. (2.13) et seq. we impose periodic boundary 
conditions * ( • • • , x< + L, • • •) = ^ ( - • •, xh • • •), 
and find that 

e R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964). 

(q + N\V) and (k + M\V) = 2T/L X integer (Al) 

replace the usual condition (2.16), where N = 
number of " 1 " particles and M = number of "2" 
particles. However, when N, M —» °° in the field-
theoretic limit the problem evidently becomes ill-
defined unless V = 0. 

A less trivial observation concerns the form of 
the interaction potential. There is no reason to 
restrict it to the form <*pip2, and in fact the more 
realistic two-body interaction 

H' = | XXp){Pl(-p) + *(-?)}{*(?) + p,(p)} 

(A2) 

is fully as soluble as the one assumed in the text, 
for any strength positive v(p), and provided only 

X»(p) > —§7r, (A3) 

i.e. provided no Fourier component is too attractive. 
The shift in the ground-state energy is now given by 

* - § » { ( ' ^ M - ™ 
The plasmon energy is now 

e"(p) = \p\ (1 + 2Xy(p)A)} (A5) 

and for the important case of the Coulomb repulsion, 
v(p) = p~2, the plasmons describe a relativistic 
boson field with mass 

m* E= (2XA)1 (A6) 

and dispersion 

t"(p) = (p2 + m*2)1. (A7) 

Here, too, dt"/dp < 1. 
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Abstract. The explicitly soluble Luttinger model is used as a basis for the description of 
the general interacting Fermi gas in one dimension, which will be called 'Luttinger liquid 
theory', by analogy with Fermi liquid theory. The excitation spectrum of the Luttinger 
model is described by density-wave, charge and current excitations; its spectral properties 
determine a characteristic parameter that controls the correlation function exponents. 
These relations are shown to survive in non-soluble generalisations of the model with a 
non-linear fermion dispersion. It is proposed that this low-energy structure is universal 
to a wide class of ID systems with conducting or fluid properties, including spin chains. 

1. Introduction 

This paper is the first in a series that will present a general description of the low-energy 
properties of a wide class of one-dimensional quantum many-body systems, which I will 
call 'Luttinger liquids'. The work to be described was originally motivated by the search 
for a replacement for Fermi liquid theory in one dimension, where it fails because of the 
infrared divergence of certain vertices it assumes to remain finite; these divergences 
make an approach based on conventional fermion many-body perturbation theory 
useless. However, there is a certain model of an interacting one-dimensional spinless 
fermion system, the Luttinger model (Luttinger 1963), which has been explicitly solved 
(Mattis and Lieb 1965). This solution, by a Bogoliubov transformation, in effect 
resums all the divergences encountered in perturbation theory. The excitation spec
trum of the diagonalised model is described in terms of non-interacting boson collective 
modes. 

The feature of the Luttinger model that allows its solution is its exactly linear fermion 
dispersion. What will be demonstrated in this paper is that correction terms representing 
non-linearity of the fermion dispersion can be added to the model, and give rise to 
non-linear boson couplings between the collective modes. A boson many-body pertur
bation expansion in these terms is shown to be completely regular, so the Bogoliubov 
transformation technique that solves the Luttinger model is shown to provide a general 
method for resumming all the infrared divergences present, at least in the spinless 
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Fermi gas. The name 'Luttinger liquid' has been chosen to reflect the idea that such 
systems have a low-energy excitation spectrum similar to the Luttinger model spec
trum, but with interactions between the elementary excitations. This resembles the 
relation between the Fermi liquid theory and the soluble model on which it is based, 
the free Fermi gas. 

This paper is perhaps the most technical of the planned series. It sets up the essential 
machinery for working with the Luttinger model and its generalisations, and uses it to 
discuss the effects of a non-linear fermion dispersion. The previous treatments of the 
model in the literature are often ambiguous on certain points, and there has been a 
certain amount of confusion, particularly associated with the role of cut-offs. I have 
therefore aimed to present a completely self-contained and precise treatment of the 
original Luttinger model, in particular emphasing the key role played by charge and 
current excitations (as opposed to collective density wave modes) which have in general 
been neglected in previous treatments. It was attention to these details that allowed the 
identification of a key part of the underlying structure of the solution that proved to 
remain valid in the 'Luttinger liquid' generalisation, with applications to be described 
in future papers. 

The characteristic properties of a 'Luttinger liquid' that have emerged are: (i) a 
conserved charge; (ii) a characteristic 'Kohn anomaly' wavevector '2k? , varying linearly 
with charge density; (iii) persistent currents at low temperatures, quantised in units that 
carry momentum 2kp; (iv) a spectrum of collective density wave elementary excitations, 
with a dispersion linear in \q\ at long wavelengths that defines a sound velocity vs; (v) 
two additional velocities, I>AT and vj, associated with charge and current excitations, 
obeying v$ = {VNVJ)XI2; (vi) power-law decay of correlation functions at T = 0, with 
coupling-strength-dependent exponents that depend only on exp(—2<p), where 
VN — vs exp(—2<p) and vj = vs exp(2<p). It should be emphasised that this means that 
exp(—2<p) is a measure of the essential renormalised coupling constant, and can thus be 
obtained from knowledge of vs and the change of ground state energy with charge, 
which gives Vs-

ID systems with this Luttinger liquid structure so far identified include: (a) interacting 
spinless fermions; (b) interacting spin-i fermions (and those with higher internal sym
metries; (c) the Bose fluid (including systems with internal symmetries); (d) the finite-
density gas of soli tons of the Sine-Gordon theory; (e) uniaxially anisotropic spin systems 
(the 'charge' here is azimuthal spin)—antiferromagnets (only in the case of finite azi-
muthal magnetisation in the easy-axis case) and ferromagnets (easy-plane only). For 
many of these classes there exist models exactly soluble by the Bethe ansatz (Bethe 
1930), and the Luttinger liquid structure can then be explicitly tested and verified 
(Haldane 1981). Subsequent papers will present such 'case studies' (see also Haldane 
1980). 

The Luttinger liquid has a characteristic instability if a multiple of its fundamental 
momentum 2&F is equal to a reciprocal lattice vector reflecting an underlying periodicity. 
For large enough values of the parameter exp(—2<p), a gap opens in the spectrum, and 
the system becomes insulating. This instability can be studied in detail using the precise 
operator machinery set up in this paper, and will be the subject of paper II in this series. 
A universal description of the behaviour of the strongly renormalised Luttinger liquid 
near this instability emerges. The precise agreement between the predictions of this 
description and the features found in many of the 'test case' models solvable by the 
Bethe ansatz will provide strong evidence for the universality of the 'Luttinger liquid' 
description. 
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The organisation of this paper is as follows. To avoid confusion, it deals only with 
the spinless form of the model. The necessary generalisation to spin-i fermions, and 
from these to the Bose fluid and spin systems, will be dealt with in subsequent articles. 
In § 2 there is a brief introduction to specifically one-dimensional features of the Fermi 
gas. Section 3 contains the bulk of the technical development, and describes the structure 
of the non-interacting Luttinger model. The machinery set up in § 3 leads quickly to the 
solution of the interacting-fermion Luttinger model in § 4. Section 5 uses the machinery 
to discuss the effects of a non-linear fermion dispersion. Finally, §6 summarises the 
results, and formulates the hypothesis that the 'Luttinger liquid' structure is universal 
to conducting spinless fermion systems in ID. 

2. The one-dimensional Fermi gas 

Fermion systems in one dimension have features quite distinct from those in higher 
dimensions. This is because the one-dimensional Fermi surface consists of two discrete 
points, while in higher dimensions it is continuous. The special spectral structure result
ing from this can be seen by examining the full spectrum of excited states above a ground 
state with Fermi wavevector kF. Figures 1(a) and (b) show the single-particle dispersion 
(and ground state occupancy) and the particle-hole pair spectrum of the (spinless) ID 
Fermi gas with periodic boundary conditions on a length L. The distinctive one-dimen
sional feature of the pair spectrum is the non-existence of low-energy pairs for 
0 < \k\ < 2kF; in higher dimensions this region of 'missing' states is filled in. The full 
spectrum of excited states with zero excited charge (with respect to a ground state with 
odd charge N0 = kFL/jz) is obtained by using figure 1(b) to determine the allowed 
energies of multiple-pair states, and is shown in figure 1(c). 

Figure 1. (a) Single-particle spectrum of the free Fermi gas in ID; (b) Particle-hole pair 
spectrum; (c) full zero-charge (multiple particle-hole) excitation spectrum (energy differ
ences E(n) = 2nvFn2/L of extremal states at A: = 2nkF greatly exaggerated). 
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At low energies E <£ vFkF, where vF is the Fermi velocity de(kF)/dk, the spectrum 
splits up into separate sectors that can be labelled by an even integer J, and can be 
described as excitations about a set of extremal states with momentum kpj. These states 
have an energy £(jr/L)up/2, and this quadratic energy dependence (valid for energies 
<vFkn is shown on a greatly exaggerated scale in figure 1(c). The spectrum of excitations 
with non-zero but even values of extra charge (N - N0) is similar, but with kF replaced 
by (kF + jt(N - No)/L), and the addition of a term £(nIL) vF(N - N0)

2 to the energy. The 
spectrum of excitations with odd values of (N - No) differs only in that extremal states 
correspond to odd values of/. The form of the excitation spectrum suggests that at low 
energies it can be described by linear boson ('sound wave') excitations about the extremal 
states labelled by integers N and / . Such a classification breaks down at higher energies 
not only because of the non-linearity of the electron dispersion, but also because there 
is no longer any unambiguous operational way of assigning the quantum number/. 

These observations can be summarised by the hypothesis that the low-energy spec
trum can be represented by the form (where 6 J are boson creation operators) 

H = vsS \q\ b% + i(n/L)[o^N - N0)
2 + vj2] (2.1) 

i 

P = [kF + (n/L) (N - N0)]J + S qbtyq; kF = JINJL, (2.2) 
i 

where qLI2n= ± 1 , ±2, . . .; N and J are integers, subject to the selection rule (for 
periodic boundary conditions) 

(_!)> = - ( - ! ) " (2.3) 

The parameters are identified as 

v s = vN = vj = vF, (2.4) 

where vF is the Fermi velocity. Such a spectral form is obviously compatible with the 
above discussion, but only has the status of a plausible hypothesis until it has been 
verified that it gives the correct multiplicity of states. This can in fact be verified, as is 
shown in the next section, by examination of the non-interacting Luttinger model, for 
which the spectral form (2. l)-(2.3) holds exactly at all energies. 

Though the three parameters vs, VN and vj axe. all equal to the Fermi velocity in the 
case of the non-interacting Fermi gas, they describe quite distinct properties of the 
spectrum. It is thus natural to wonder whether in fact interacting gapless fermion systems 
also have a low-energy spectrum described by (2.1)-(2.3), but with renormalised and 
unequal values of the three velocity parameters us, vN and vj. This can in fact be 
confirmed by the study of the interacting Luttinger model (described in §4, which is 
explicitly soluble. Though it has the feature that vs, v^ and vj are no longer equal, they 
are not independent, and their ratios are determined by a parameter that characterises 
the essential interaction strength and low-energy physical properties such as the asymp
totic forms of the various correlation functions. I will argue that these relations, together 
with the spectral form (2.1)-(2.3) are universally valid for the description of the low-
energy properties of gapless interacting one-dimensional spinless fermion systems. The 
assignment of different values to the parameters v$, VN and vj in this 'Luttinger liquid 
theory' will be analogous to the assignment of different effective masses to the quasi-
particles for the characterisation of different physical properties in Fermi liquid theory. 
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3. The Luttinger model and its solution: I. The non-interacting limit 

3.1. Historical development 

The Luttinger (1963) model is an exactly soluble model of interacting fermions in one 
dimension with the following key features: 

(i) its elementary excitations are non-interacting bosons; 
(ii) the mean fermion current / is a good quantum number; 
(iii) all its correlation functions can be explicitly evaluated. 

The complete solubility of this model only emerged over a period of a decade; because 
the resolution of certain ambiguities in versions of the solution developed in the literature 
over this period turned out to be a key step in the work reported in this series of papers, 
I will merely cite some of the key papers in the literature, and then present a detailed 
version of the solution without further reference to its historical development. 

The model was proposed by Luttinger (1963), but this first step in its correct solution 
was taken by Mattis and Lieb (1965), who discovered the free boson elementary exci
tations. Soon after, Overhauser (1965) pointed out that these bosons could be used to 
construct a complete set of eigenstates. Theumann (1967) and Dover (1968) gave early 
calculations of the single-particle correlation function, but the systematic calculation of 
correlation functions became trivial after the simultaneous discovery of the existence of 
a simple representation of the fermion operators in terms of the boson fields by Mattis 
(1974) and Luther and Peschel (1974). In fact, these fields are not on their own sufficient 
for the full construction of fermion operators in the diagonal basis, and both these early 
forms have problems associated with the characterisation of q = 0 modes. In particular, 
Luther and Peschel (1974) introduced a certain cut-off parameter ain their version, with 
the stipulation that it only became an exact operator identity in the limit a—* 0. The 
necessity for any such limiting procedure has been entirely eliminated in the exact 
formulation reviewed below. The first completely precise formulation in the solid-state 
literature (though from a field-theory viewpoint) was given by Heidenreich et al (1975), 
though there has been an entirely parallel development in the field-theoretical literature 
on the related 'massless Thirring model' which I will not review here. The first construc
tion of the important unitary charge-raising operators in terms of the bare fermions was 
apparently given by Haldane (1979). An important paper essentially parallel to, but not 
part of, the above developments is that of Dzyaloshinskii and Larkin (1973) who studied 
the spin-i version of the (originally spinless-fermion) model, and provided an interpret
ation of the Mattis-Lieb solution from the point of view of conventional many-body 
diagrammatic perturbation theory. Similarly, Everts and Schulz (1974) have shown 
how the power-law character of the correlation functions can be simply recovered by 
the standard equation-of-motion techniques. Below, I give a description of the spinless 
fermion form of the model; the simple extension to the spin-i case will be discussed 
elsewhere. 

3.2. The fermion description 

It is useful to begin a discussion of the Luttinger model by characterising its Hilbert 
space: this is not the usual electron Hilbert space, but has been expanded to include a 
branch of 'positron' states as well. This second, unphysical set of fermions will require 
high energies for their excitation, so will not qualitatively affect low-energy properties, 
but are absolutely necessary for the construction of the new basis of eigenstates given 
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here. Note that definition of the Hilbert space does not require any precise specification 
of the electron and positron dispersions, only that these energies are bounded below, 
and increase without limit as the momentum \k\ —> <». The model is defined on a finite 
ring of length L; only periodic fermion boundary conditions will be considered. It is 
then useful in developing the formalism to take the ground-state charge N0 = kFL/jt to 
be odd, so the ground state is non-degenerate (this restriction is eventually dropped). 
The Hilbert space worked in is spanned by the set of finite-energy eigenstates of the free 
Luttinger model, measured from a ground state with electron states from — kF to kF 

filled, and all positron states empty. 
A correct definition of the Hilbert space is required before any operator acting in it, 

such as the Hamiltonian, is defined. It gives meaning to 'operator identities' such as 
A-B, shorthand for (ar|.A|/3) = {a\B\P) for all \a), |/3) forming a set that spans the 
Hilbert space. Operators are only well defined if {a\A |/3) is finite for all a, /S; the problem 
of ill-defined operators does not arise in finite-dimensional Hilbert spaces such as in 
lattice systems, but problems can arise with infinite-dimensional spaces arising from 
continuum problems. This type of problem flawed Luttinger's original solution of the 
model. One standard way to ensure all operators worked with are finite is to consider 
only quantities that are normal-ordered in a set of creation operators that create excited 
states out of the ground state. 

Instead of working directly with charge +1 electron states, and charge —1 positron 
states, it is useful to describe the Luttinger model in terms of charge +1 'right-' and 
'left-moving' fermions labelled by p — ±1 (note that this label should not be confused 
with a momentum label, for which k is used here). The kinetic part of the Luttinger 
Hamiltonian is then given (using units where h = 1) by 

H° = vF 2 (pk - kF) {n^ - {nkp)0) {nkp)0 = 6(kF - pk) (3.1) 

VF J dxE:Vp(*)(¥>v-*F)Vv(*): (3-2) 
Jo p 

where :(...): means fermion normal-ordering with respect to the ground state of (3.1). 
The term kF is essentially a chemical potential to fix the ground state charge. The 
spectral diagrams corresponding to figure 1 for the non-interacting Luttinger model 
(3.1) are shown in figure 2. The fermion field rpl(x) is given by 

ip}(x) = lim 
e-*0* 

L-m ^ e to exp(-£|A:L/2jr|) dp]. (3.3) 

The limiting procedure e—* 0+ is usually left implicit, but has been explicitly included 
here to emphasise the similarity with a analogous construction that will appear later. It 
is necessary for the definition of the periodic delta function generated by the anticom-
mutation relations: 

{$(*) , %(x')} = 6PP. \ lim (L~1 2 exp[-k(x - *')] exp(-e |*L/*|)) 

= L-l8pp, lim [(1 - ze-2E)_1 + (1 - z*e"2£)-1 - 1] 
e-»0+ 

= V 2 8(x-x'-nL). (3.4) 
n — — » 

where z = cxp(2mx/L), and allowed A>values in the sum satisfy exp(i/cL) = 1. 
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Figure 2. Diagramscorresponding to figure 1, this time for the spectrum of the non-interacting 
Luttinger model (3.1). Dotted areas indicate the presence of 'unphysical' states involving 
excited 'positrons'. 

Note that the quantity e appears as a dimensionless infinitesimal quantity necessary for 
controlling the sums over the infinite range of values of k, and in no way plays the role 
of a 'cut-off length'. 

The fundamental electron and positron fields are related to the fields ipf
p(x) in a 

non-local way: in terms of the c^, they are given by 

,U~\ = vXx) -1/2 X o(kP) 
kp 

eikxclp 

xp\x) = L-m'Zdi-kp)c-ikxckp. 
kp 

(3.5) 

(3.6) 

When expressed in terms of xpf
p(x),the electron field xp\x) is given by 

Vfto = ^~. 2 p f dyK(y) $(* + y), 
lm P J-{L 

where K(y) = (fl/L)[tan(«y/L)]_1. 

3.3. The boson description: construction from fermion operators 

A central role in the theory of the Luttinger model is played by the density operator for 
type-p fermions: 

Pqp ~ 2ii Ck + qpCkp + qP
l'kP 

= NP = 2 rikp - <n*p>o (q = 0). (3.7) 

Note that the subtraction of the (infinite) ground state density of type-p fermions means 
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that the q — 0 component of pqp is a well defined operator in the sense discussed above: 
this procedure is equivalent to normal-ordering in the fermion variables. The commu
tation relations of the pqp are 

[pqP, P-qy] = dpp'6qqiLpql2n). (3.8) 

This is easily established by direct evaluation of the commutator, then writing pair 
operatorsc\pCk.p as (c\pCk-p -(clpCk-p)0) + (clpCk.p)0, where (ctpCk-p)o = 4*'<i/tp>o: this guar
antees that operator quantities are effectively normal-ordered, and hence well defined, 
so they can be manipulated safely. The commutator (3.8) trivially vanishes when 
p # p'\ for equal indicesp, it is given by 

Opqq- — Opqq' + 8qq' ZJ ({nic+qph — (rc*P)o); 
k 

Vpqq' s 2-1 \.ck + q~q'pckp ~ \ck + q-q'pCkp)o)-
k 

Being well defined,_the operators Opqq- can safely be cancelled, and the remaining 
c-number term gives the RHS of (3.8). A second important commutation relation is that 
with the fermion fields: 

[pqp,Vl{x)] = 6pp.e-i<>*xp;(x). (3.9) 

It will prove useful to define the following partial Fourier transforms: 

fifXx) = L"1 S d(±pq) e* p,„. (3.10) 
i 

These operators have the property that {pp~\x)y =pp
+)(x), and that pp~\x) 

annihilates the vacuum state of (3.1). They satisfy periodic boundary conditions, 
PP*\X +L) = pp

±^{x). The local density of p-type fermions, with respect to the ground 
state density, is 

lim [xpl(x + a)%{x) - <$(* + a)ipp(x))0] ** pP(x) = [pp
+\x) + pp~\x)]. (3.11) 

The limiting procedure a —* 0 is to avoid direct reference to the infinite quantity 
<Vj(*).ty.(*»o-

The commutation algebra (3.8) immediately suggests the construction of boson 
operators. Foiq i= 0, 

a\ = {2jtlL\q\)m S d(pq)pqp (q*0;q= InnlL, n = ±1, ±2,. . .). (3.12) 
p 

These obey exact boson commutation relations, and have the property that aq annihilates 
the ground state of (3.1). There is no q = 0 boson mode (indeed, the form (3.12) is 
undefined at q = 0); the q = 0 mode is represented by the number operator Np, which 
commutes with the bosons a\. The density operators are then expressed by 

Pqp = Npfyo + {L\q\l2x)m{e(pq)a\ + d(-pq)a-q}. (3.13) 

The algebra of the operators {a\, aq, Np) that have been constructed so far is incom
plete: it lacks a ladder operator Up that raises the fermion charge Â , in unit steps, while 
commuting with the bosons aq. The ladder of allowed values of Np has no upper or lower 
limit, so (in contrast to the case of boson or finite spin ladder algebras) the number 
operator cannot be expressed in terms of the raising operator and its conjugate lowering 
operator. The raising operator can be chosen to be unitary, Up1 =(t/p) t. Finally, the 
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fermion nature of the ladder operators means that Up will a/tficommute with U-D and 
U~Jp. 

It is useful to study the construction of the ladder operators Up in detail. It is important 
that these operators be given in a well defined form. A heuristic understanding of their 
form can be gained from the following argument. A special subset of eigenstates of (3.1) 
are those with occupations nkp = 0(kF + (2JINP/L) - pk); these states \{NP}) include the 
vacuum, and share with it the property that they are annihilated by aq. The ladder 
operator Up must have the property that 

Up \NP, AL„> = V(P, Np, N-p) \NP + 1, N.p), r? = ±1. t 

A construction with this property is 

2 clpdipk - [kF + (2NP + \)nlL\). 
k 

Writing this in a more symmetrical form, using an integral representation of the Kro-
necker delta function, this becomes: 

Up = L~m Ax <zxp{-ipkfx) exp[-i$(*)] VPM exp[-i<pp(x)]; 
Jo 

<t>p{x)=p(jzx/L)Np. (3.14) 

The ladder operator Up must also have the property that it commutes with the boson 
operators aq, or equivalently with the density operators pqp< when q J= 0. The commu
tation relation (3.9) means that the trial form above does not have this property. 
However, it would if the operators <pp(x) were modified so that 

[pv, <t>p(x)] = -\b~PPS{pq) e - n i " M - (3-15) 

Because this commutator is a c-number, 

[Pqp, exp(-i0p<x))] = -e(pq){dpp. e-**) exp{-itf>p(*)}(l - 6^, 

[ppq, exp{-i^<x)}] = -e{-pq)(5Pp. e " ^ cxp{-i<pl(x)}(l - 6^). (3.16) 

When q •£ 0, these terms exactly counterbalance the commutator (3.9), so when Up is 
given by the form (3.14) with a <pp(x) that satisfies (3.15), 

[Pqp, Up-] = dppdgoUp. (3-17) 

The explicit construction of the quantities <pp{x) is now easily given; using the property 
(3.8): 

<t>p{x) = {IjzpIL) (hxNp + i 2 o e(-pq) {^"xlq)PqP)- (3-18) 

The first term in this is just the q = Ocomponentof the sum, with the limit q-* 0 properly 
taken, so this can be re-expressed as 

4>p{x) = lim t(2mp/L) 2 6{-pq)cT^lq) exp[-eflg\LI2n)] pqp\ (3.19) 
£-»0+ \ q I 

The limiting procedure e—* 0+ has been included in order to properly define the sum in 
much the same spirit as in equation (3.3), and it will be needed to properly define the 
periodic delta function, e is a positive dimensionless infinitesimal, and in no way should 

t TI depends on the ordering convention used in constructing \{NP}). 

file:///LI2n
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be interpreted as a cut-off length, despite the formal similarity to the length parameter 
a introduced by Luther and Peschel (1974). The field (f>p(x) is easily found to have the 
following properties: 

V<pp(x) = 2jtppp-\x) (3.20) 

[<t>p(x), (t>p(x')\ = [<t>l(x), (j>;(x')) = 0 ; 

[<PP(x), cf>Xx')] = lim {dpp{-\n(l - e~2£z- *>))} (3.21) 
e-»0+ 

where z = exp(i^r(j: — x')IL). <pp(x) has the property that it annihilates the vacuum state 
of (3.1); this is easily seen when <j)p(x) is written in terms of Np and aq: 

(t>P(x) = p(jtx/L)Np + i E 6(pq) (2n/L \q\)m er*aq. (3.22) 

This means that the operator Up defined by (3.14) plus (3.19) is normal-ordered in the 
boson operators that annihilate the vacuum state of (3.1). As will shortly be seen, this 
guarantees that this construction of Up defines a well defined operator. 

It is useful to give a representation of the unitary operators Up in terms of Hermitian 
phase variables dp = 0P, conjugate to Np: 

Up = (-l)(*N-»%, Up = exp(Wp); (3.23) 

[Np, dp] = iSpp; [dp, dp] = [Np,Np] = 0. (3.24) 

The prefactor (-!)(*?*-<•) ensures that Up and U-p anticommute, so that the unitary 
operators Up and U-p can commute. This choice of anticommutation factor corresponds 
to a particular ordering convention in constructing states \{NP}) in terms of fermion 
operators; other choices are possible. 

For some purposes, it is useful to introduce a local phase field 8p(x): 

dp(x) = 6P + (j>p{x) + <pl{x). (3.25) 

This has the property 

W6p(x) = 2jtppp(x). (3.26) 

It can easily be seen that pp(x) and 9p(x) are canonical conjugate fields: 

[Pp(x), e„.(x')] = i<V 2 S(x - x' + nL). (3.27) 
n 

3.4. Boson form of the Hamiltonian 

So far, no use whatsoever has been made of the fact that the Hamiltonian (3.1) has a 
linear fermion dispersion, and the above discussion has only depended on identification 
of its vacuum state and the structure of the associated Hilbert space. The linear spectral 
property will now be used to construct a new basis of eigenstates that will be shown to 
be complete and hence to span the Hilbert space defined by all finite-energy eigenstates 
of (3.1). The operators Np commute with (3.1), butaj and Up do not: first note the 
commutator of the density operator with the Hamiltonian: 

[H°, pgp] = Vfpqpqp. (3.28) 
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With this, the definition (3.12) of the boson operators aq leads to 

[H°,a\]=v?\q\a\. (3.29) 

Instead of attempting to directly evaluate the commutator [H°, Up], I use the following 
argument: the special set of states \{NP}) can be constructed from the vacuum by acting 
on it with Up: 

\{NP}) = ± n (UP)N'\0); (3.30) 

this is verified by explicitly showing that Up as constructed indeed has the property 
Up\Np,N-p) = T}\NP + 1, Np). Because aq annihilates the states |{Np}), (3.22) implies that 

Up\{Np}) = L~l 2 f dx exp[i(fc - pkF)x] exp[-i$(x)]4, exp[-ip(nx/L)Np) \{NP}) 
It JQ 

00 

= 11 ( l + 6(pq) ^ {2KlL\q\)^{njr\a\y^ 

X 2 clpdipk - [k¥ + (2N„ + l)n/L] + 2) \q\nq\ \{Np}). 

The Kronecker delta ensures that no states containing boson excitations survive in this 
sum, and (3.30) is verified. 

The energies of the eigenstates \{Np}) are easily obtained by examining their con
struction: E({NP}) = V?{JZIL) TP(NP)2. A larger set of eigenstates is obtained by acting 
these with the boson operators: 

\{NP}, {nq}) = I I ( ^ ) 0 ({/,)% |0>. (3.31) 

In its action on these eigenstates, the Hamiltonian is given by 

H°=vF\l,\q\aqaq + (n/L)'2(Np)
2]. (3.32) 

l i P 

This can be written in terms of the phase fields 0p(x) as 

fl° = i ; F - f ajcE:(V0p(x))2:, (3.33) 

Jt JQ P 

where boson normal-ordering is implied. The momentum operator is similarly given by 

P = 1<p[kr + {nlL)Np)Np + S qa'qaq (3.34) 
p i 

= - dx*2p[kFV6p(x) + :(Vdp(x)) :]. (3.35) 
JTJO P 

The question arises: are the eigenstates (3.31) a complete set? If so, Up is proved to be 
a well defined operator, and (3.32) and (3.34) have the status of identities in the full 
Hilbert space based on the vacuum of (3.1). The possibility of two such different sets of 
eigenstates of the free Luttinger Hamiltonian (3.1) arises because of the high degree of 
degeneracy of the spectrum due to the linear dispersion: all eigenstates with even (odd) 
fermion charge N - NQ have energies that are even (odd) multiples otnup/L with respect 
to the ground state. One way to check the completeness of the set (3.31) is to directly 
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investigate the degeneracy of states at a given energy. An equivalent, more elegant, 
way is to compute the grand partition sum of the Hamiltonian at arbitrary inverse 
temperature /3, first using the 'obvious' set of fermion excitation states, then the set 
(3.31). This is a sum over positive definite quantities, so if any states were missing from 
(3.31), the result of the second calculation would be less than the first. 

Defining w = exp( - /fou>F/L), the direct evaluation of the partition function using the 
free fermion basis gives 

oo 

z(W)=(n (i+w 

Using the set (3.31), one obtains 
oo 

Z(w) = Q l (1 - w2")-1)2 ( 2 ^ w(nl))2. (3.36b) 

These apparently different expressions are in fact both equal, since the elliptic theta 
function #3(0; w) (Gradsteyn and Ryzhik 1965, p 921) has both a series and a product 
representation: 

00 «° 

HO; w) = 2 w("2) = I I (i + w2"-1)2^ - w2"). 
n = — oo n-\ 

The set (3.31) is thus complete, and spans the full Hilbert space. 

3.5. Boson form of fermion operators 

With the completeness of the set of eigenstates (3.31) established, the remaining task is 
to construct the representation of the fermion operators \pp(x) in this basis. The ground 
work has been laid: ipp(x) is trivially obtained by inverting the expression (3.14) for Up: 

ipl(x) = L'mexp(ipkFx){e\p[i(pl(x)]Upexp[i(pp(x)]} 

= (_;i)apJV-,)L-i/2 exp(ipkFx){exp[i$0O] exp(i0„) exp[i^(jc)]}, (3.37) 

where 4>p(x) is now defined directly by (3.22). This is an explicitly well defined operator, 
since it is normal-ordered in terms of the bosons aq. The anticommutation relations can 
be explicitly verified; here the limiting procedure defined in (3.19) and (3.21) is required: 
the procedure is to construct the anticommutators, and then re-normal-order the result
ing products in terms of the bosons, so they become explicitly well defined operators 
that can be manipulated and cancelled. The anticommutation of fields with different 
labels p is trivially assured by the anticommuting properties of Up\ for equal p, the 
anticommutator {tyl(x), i}>p(x')} is given by 

L - 1 exp[ipfcF(;c + x')] exp[i6\(x,x')]U2 exp[iOi(jc,x')]Fix,x0 

6l{x1x') = <pp{pc) + 4>^x') 

Fl(x,x') = Gx(x -x') + Gix' -x) 

G,(;t - *') = exp[i;tp(jt - x')IL] exp{-[0p(x), <t>l(x')]}. (3.38) 

The c-number function Fi(x,x') is multiplying a well defined (i.e. normal-ordered) 

(3.36a) 
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operator expression. Fi{x,x') can be evaluated using equation (3.21): setting z = 
exp[ijr(;c - x')IL], 

Fi = lim {z"(l - e-2ez- *) + Z~P{\ - e'2^)} = 0. (3.39) 

The anticommutator {ip},(x), rl>p(x')} thus vanishes correctly. The anticommutator 
{VP(*)> y>p(x')} is given by 

L"1 exp[ipA:F(*' - *)] exp[idl(jt, *')] cjsp[i0ix,x')]F4x, x') 

<%(*,*') = «,(*)-«,(* ' ) 

F2(x,x') = G2(x - x') + Gix1 - x) 

G2(x - x') = cxp[inp(x - x')/L) exp{+[#,(*), <t>l{x')]\ (3.40) 

Again this is a normal-ordered operator expression, times a c-number function F2(x, x'). 
Again using (3.21), 

F2 = lim {zP(l - e"2^-^)-1 + z-"(l - e'2^)'1} 
£ - • 0 

= L 2 ( - l y ^ x - x ' + nL). (3.41) 
/I = — oo 

when * — x' = nL, the operator-valued expression that multiplies F2 in (3.41) takes the 
simple c-number values L~l exp(-inpkpL) = L_ 1(-l)". The anticommutator is thus 
correctly given by the periodic delta function as in (3.3). 

This completes the derivation of the operator algebra needed to describe the model 
using the alternative basis set of eigenstates (3.31). This algebra is a precise tool, and I 
now use it to recover the expressions (3.32) and (3.34) for H° and P directly from the 
fermion representation (3.37). Consider the quantity 

1 dxexp(-ipkfa) ipl(x + la)xl>p(x - ha). (3.42) 
Jo 

Using the expression (3.3) for %(x), this is easily found to be 

Hlmpa'Y1 + 2 exp[i(fc - pkF)a] (nkp - (n^>o) (3.43) 
k 

where a' = (L/jz)sin(jza/L). Using the alternative expression (3.37), and then normal-
ordering, it is found to be 

(2mpa')~l(L + j dx{exp[2mp(a/L)Np] exp[i<&;(*)] exp[i«Dp(x)] - 1}) 

*,(*) = i 2 (2n/L \q\)ia e-^flfap) 2 sia(:hqa)aq. (3.44) 
i 

Cancelling the divergent term L{2mpa')~l and comparing the term O(a) in the expan
sions of the two expressions, one directly obtains 

2 (pk - k?) K - (n^o) = WL)N2
P + Ilpqd{qp)a^r (3.45) 

The expressions for H° and P are now trivial to obtain. 
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3.6. The charge and current formalism 

So far, the formalism has been developed in terms of operators labelled by p = ± 1 , 
corresponding to the right- and left-going fermions. It is convenient for some purposes 
to introduce the symmetric and antisymmetric combinations, labelled by N and J respec
tively, which will be related to charge and current variables. It is also useful to include 
the ground state electronic charge (number of electrons minus number of positrons) 
No = kFL/jtin the charge variables. The following combinations are defined: 

N±=N0 + ^NP J = LpNp (3.46) 
p p 

eN = ^ep dJ = Jtpd„ (3.47) 
p p 

PN(X) = (WL) + 2 PP(x) p/x) = LppP(x) (3.48) 
p p 

4>N(X) = 2 <t>P(x) <t>j{x) = niNo/L)x + J,p<pp(x). (3.49) rp\ 
p p 

Phase fields 6s{x) and dj(x) are then defined by, e.g., 

6N(X) = 8N+ <PN(X) + <pN(x). (3.50) 

The following relations are found: 

Vdsix) = IKPAX) Vdj(x) = lizptix) (3.51) 

[ps(x), dsix')} = [pj(x), d/(x')] = i H ( 5 ( x - x ' + nL); (3.52) 
n 

[pn(x), 8J(X')] = [PJ(X), G^x')] = 0. (3.53) 

The fields (ps(x), d^x)) and (pj(x), dj(x)) are canonically con jugate pairs. Note however 
that [PN(X), PJ(X')] and [9j{x), 8N(X')] do not vanish, except at equal positions, x - x'. 
On the other hand, [6N(x), dN(x')], [PN(X), PN(X')], etc, do vanish. 

When the quantities p/Ax), <PN(X) , etc are expressed in terms of boson variables, they 
are explicitly given by 

PN(X) = (NIL) + 2 {\q\llnL)m e"x (aJ + a_,) 
i 

<j>N(x) = x{JIL)x + i 2 (2nlL \q\)m &'{"xaq 

pj(x) = (JIL) + 2 {\q\l2nL)m sgn(q) &*{a\ - «_,) 
i 

<pj(x) = n(N/L)x + i 2 (2JT/L \q|)m sgn{q) ^xaq. (3.54) 
v 

Note how sgn(q) characteristically appears in the boson part of/-labelled quantities. 
The commuting unitary operators Us = exp(i0#) and Uj = exp(i0y) respectively 

raise N and / by one. In this basis, the fermion field operator i/>p(;t)becomes 

ipfe) = L-ti-VW-Wfapmptf + <PV)] exp[ii(p0y + 6N)] 

x exp[Ji(pft + <t>N))). (3.55) 

The dependence on kF has been absorbed into the definition of <pj(x). 
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The Hamiltonian takes the form 

H° = y F ( 2 k | f l X + i ( ^ ^ ) ( ( A r - ^ o ) 2 + / 2 ) ) ( - l ) y = - ( - l ) " ; (3.56) 

P = [*F + n{N - N0)/L] J + 2 gaja, kT = ttNJL. (3.57) 

This is just the form postulated in § 2. The selection rule linking allowed values of/ and 
N arises because Np and N-p are both integral. 

In the phase field variables, the Hamiltonian can be written 

H = vF-fLdx :(V0„(;t))2 + (V6j(x))2: 

K Jo 

1 (L 

P = - 4c:VeA<x)V0X*): + HC. (3.58) 
•T- Jo 

Since p ^ x ) = (2Tc)~lVdj(x) is the canonical conjugate to 8N(x), and py(;t) to 6j(x), the 
Hamiltonian (3.58) can be written as a Klein-Gordon field Hamiltonian in either the N 
or the J variables. The periodic fermion boundary conditions that must be satisfied by 
(3.55) imply that exp[idN(x + L)] = exp[idN(x)], etc, so 6N{X + L) = 2JZJ + 8N(x + L), 
and 6j(x + L) = 2nN + 6}(x). The quantum numbers N and / thus can be related to 
topological excitations of the phase fields 8N(x) and 6j(x), while the bosons relate to 
their small fluctuations. 

The physical interpretation of the quantum number N is simple: it is just the total 
electronic charge (electrons minus positrons). Similarly, it will now be shown that / is 
proportional to the mean current. It would be tempting to identify PN(X) with the local 
charge density operator p(x); unfortunately, this is not correct, due to the non-local 
relation between the electron field and ipP(x). The fundamental definition of the local 
electronic density in terms of the electrons and positrons leads to 

p(x) = PN(X) + T(X), 

< * ) = 2 txv[i{k-k')x](-pp')6{-kk')clfky. (3.59) 
kk'pp' 

At low energies, the extra term x{x) involves only fluctuations with q ~ 2k?. The fund
amental definition of the current/"(x) is through the continuity equation for local charge: 

jtp(x) = i[H,p(x)] = Vj(x). (3.60) 

The mean current/ is then given by 

j = L"1 f dxj(x) = lim {{qLY\H, p,]}, (3.61) 
Jo ?-o 

pq being the Fourier transform of p(x). In a low-energy subspace, and provided k^ is 
finite, the contribution from T(X) can be neglected, and pNq substituted for pq in (3.61). 
Then it is easily found that 

/ = v?(J/L). (3.62) 

Actually, this is exact in the case of the free Luttinger model, but in a more general 
model extra terms will be present, and a linear relation like (3.62) will only be valid in 
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a low-energy subspace, where the presence of long-wavelength boson excitations does 
not affect the current. 

Finally, I note a useful low-energy, finite k? approximation for T(X): 

T(JC) ~ X xpl{x)xp-p{x). (3.63) 

4. The Luttinger model and its solution: II. The interacting model 

The full Luttinger model is obtained by taking the kinetic term (3.1), (3.32) and adding 
the fermion two-particle interaction: 

Hl = (JI/L) 2 ( V „ V + V z A -P)PRPP-<W- (4-1) 
pp'q 

The density operators p^, are defined by (3.7) and (3.13). The coupling constants 
Viq = Vi(\q\R) and V^ = V^Ogli?) have dimensions of velocity. They will be required 
to satisfy the following conditions: 

(i) Vi(0),K2(0) are finite; 
(ii) V2I,/(VF+ VXq) —>0 as \q\ -* °°, faster than | <y |—*-
(iii) | Va,| < (op + V1?) for all q. 

Conditions (i) could be relaxed somewhat, but this would alter the physics of the model. 
Conditions (ii) and (iii) are necessary to ensure thaf the Hilbert space of the model 
H° + H1 remains the same as that of H°. The conditions (i) and (ii) imply the existence 
of some length scale R that controls the crossover from the small-^ to large-g regimes. 
The inclusion of this length scale in (4.1) means that Vi and V2 can be written as functions 
with a dimensionless argument. R is an effective range of the interaction in real space. 

Using the phase-field formalism of §3.6, the low-energy (E< vFIR) form of the 
Hamiltonian can be written 

i rL 

/ / = - , 
jrJo 

. 2 , , 2 
dx w^Ve^x)) + vA,V9j(x)) : (4.2) 

•"• JO 

where 

vN=vF+ Vi(0) + V2(0), vj = vF+ V,(0) - VJ0). (4.3) 

It is also useful to define the quantities 

(Oq=\(vF+Vlq)
2-(V2t!)

2\m\q\ (4.4) 

tanh(2<p,) = - VV(wF + Vlq). (4.5) 

Then the quantities vs and <p are defined by 

vs = lim (coq/\q\); <p = lim (<p,). (4.6) 

q-+0 q->0 

The definitions (4.2)-(4.5) imply the relations 

vN = vs exp(-2<p); vj = vs exp(2(p). (4.7) 
It will be convenient to represent q>g as q>g(\q\R), where the function g(y) has the 
properties 

g(0) = l ; ymg<y)-*Q as y-^oo. (4.8) 
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The conditions (i)-(iii) assure this, and also that cpq is finite, a>q is positive definite (except 
at q = 0) and vN, vj are positive definite. The model is fully parametrised by L, kF, <oq, 
and <pq (or tp, R and giy))- R has not been defined up to a multiplicative factor: it 
should be chosen so the crossover in g(y) is around v ~ 1 (a unique definition might be 
provided by demanding that (g(y))2 is normalised, for example). 

When the full Hamiltonian W° + H1 is written out in terms of aq and the number 
operators TV, / , it takes the simple bilinear form 

H=-h&oF\q\) + i(jz/L)(vNN2 + vjJ2) 
i 

+ 12 \q\ [(»F +' Vlq)(a$aq + a^q) + V^a^ + ap_,)]. (4.9) 
i 

This is trivially diagonalised by a Bogoliubov transformation. The new ground state is 
given by , > 

|GS) = exp|_-042L/i?)] exp( Stanh(<p?)aJat_(?J |0,0) 

A2(cpg(y)) = - ^ j[° dy ln[cosh(W(y))]. (4.10) 

For the ground state to belong to the Hilbert space of H°, the normalisation constant 
must be finite; this means that the limit R—> 0 cannot be taken. The condition (4.8) 
assures that the constant A2 is finite. 

The Hamiltonian is diagonal in terms of the new boson operators 

b\ = cosh(<p?)4 - sinh((pq)a-q = 2 odpq, -<P?) PqP (<7 * °); (4-H) 
p 

a(q, <pq) = {2nlL \q\)ll2[d(q) cosh(<pq) + 0(-9)sinh(<p,)]. (4.12) 

The diagonalised Hamiltonian is given by substituting these into (4.9): 

H = E0 + X oiqb\bq + h(ji/L)(vNN2 + vjJ2), 
i 

E0 = iI,(coq-vF\q\). (4.13) 
i 

The ground state energy shift E0 may well be divergent if coq does not tend to uF kl fast 
enough as | q \ —* °°; however, in contrast to the case of a divergence of the ground state 
normalisation parameter A2, this divergence is subtractable, and causes no problems. 
The form of the momentum operator remains essentially unchanged: 

P = [kP + n{NIL)]J + 2 qby>T (4.14) 
i 

The relation between the 'true' Fermi momentum [kF + JZ(N/L)] and the total charge N 
is unaffected by the interactions. 

In addition to the total charge Af with respect to the ground state remaining a good 
quantum number, the current quantum number J is also conserved. This reflects an 
invariance of the Hamiltonian, under which it is unchanged by independent global gauge 
transformations of the 'right-' and 'left-moving' ('clockwise' and 'anticlockwise') fer-
mion fields %{x),p = ± 1. The density operators pqp are given by 

Pqp = K # + pJ) <V + (L \q\/2n)[a{pq, cpq)b\ + a(-qp, <pq)b-q], 

[H, pgp] = p sgn(^)w,[cosh(2<p?)pw, - sinh(2<p,)p, _„)]. (4.15) 
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Following the arguments of (3.60)-(3.62), the mean current/ is given by 

/ — lim 
<7-»0 

(qL)'1 S [H, Pqp]} = lim (^(ay^l) e ^ S p p J . (4.16) 
I P i q-*o \ P i 

From (4.7) the mean current is found to be / = Vj(J/L); vj thus plays the role of the 
renormahsed Fermi velocity for fermion currents, as well as controlling the energy of 
2fcF excitations. Note that it is somewhat unphysical for Vy and V2 to differ: if they are 
set equal, as would be the case if the model was derived as an effective Hamiltonian for 
a model where only the total charge density was coupled, vj remains equal to the bare 
value Ufdue to the kinetic term, and is not renormahsed. 

It is now necessary to transcribe the fermion field %(x) (3.37) into a form normal-
ordered in the new basis. First the definition of the quantities <pp(x) (3.22) must be 
generalised: 

<PPix, <pq) = p(jcc/L)Np + i 2 odpq, -<pq) e ^ f e , ; (4.17) 

note that the phase field 6p(x) is still given by 

Qp(x) = \ + <t>p{*, <P<) + <&{*, <P<d (4.18) 

independent of cpq. Then the fermion field is given by 

%{x) = e-»L-"Rv-m exp(ipktx) exp[i0;(*, q>p)]Up exp[itf>p(x, <pq)] (4.19) 

where v=_\ cosh(2<p), and the cut-off-dependent constant A(<p, g(y)) and a similar 
quantity B are given by 

A = lim+ f2sinh2(<p) (c+ III(E/2JI) + J dyjT^sinh^cpgO)) 

B = lim |"-sinh(2?) (c + ln(eEw) - J " dyy'1 sinh(2<pg(y))) ; (4.20) 

(Chere is Euler's constant). 
It is also useful to define two cut-off-dependent and (^-dependent functions 

Ai(u) = Ai(u; <pg(y')) and B,(u): 

Ax(u) = i" dyy-lsmh2((pg(y))[2sm(iuy)]2, 
Jo 

Bi(u) = - i f" dyy~l s inh(2 W (y) )P sm(iuy)]2. (4.21) 

Jo 

The even functions Ai(u) and Bi(u) vanish as u -*0; for large \u\, they behave as 

Ai(u) ~A + 2 sinh2(<p) 1II(2W|K|) + Odwl-1), 
Bt(u) ~B- sinh(2<p)In(2w|n|) + 0 ( |u | _ I ) . (4.22) 

Together with A and B, they vanish in the non-interacting limit q>—> 0. 
These quantities characterise the commutation algebra of the quantities <f>p(x, <pq), 

which I henceforth write as <f>p(x), suppressing the explicit dependence on q>q: in the limit 
L>R, 
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[ct>p(x),<pp{x')] = [<p;(x),<p;(x')] = 0; 

[<pp(x), 4>P(x')] = lim {-ln[l - e~2e exp(-2mp(x - x')IL))} 
£ - * 0 + 

-Ai(d(x - x')/R) +A-2 sinh2(<p) ln(R/L), 

[<t>P(x), <t>tp(x')] = -Bx{d{x - x')IR) + B + sinh(2<p) ln(R/L). (4.23) 

Here d(x) = (LIjt)\s\n{jvxlL)\ is the chord distance between points with separation x 
along the circumference of the ring of length L. 

The necessary mechanism for calculation of correlation functions has now been 
established: the desired quantity must be constructed in terms of the fermion operators 
(4.19), and then manipulated into normal-ordered form in boson variables. The limit 
]_ —* oo can then be taken. As an example, the electron single-particle correlation function 
is easily constructed (using (3.5) to construct the electron field in terms of %(x)); the 
finite-temperature terms are easily evaluated using the familiar property that (exp(abf) 
exp(a'b)) = cxp(aa'(btb)) if H = cotfb: 

Wix)V(0))r=o = (kP/Jt) [sin(A:Fr)/(A:Fr)] exp[ -A x(\x ]/R)]; (4.24) 

<T//(*),tK0)> = (^x)rp(0))T=0exp[-F(\x\)], 

F(x) = f Aq q~l [exp(j5a>,) - l ] ' 1 cosh(2<p?)[2 s in( i^)] 2 . (4.25) 
Jo 

At T =_0 the familiar free-electron result is reduced at large separations by a factor 
exp^—A^mc/Rl1^2". At low but finite temperatures T< vs/R, it is further reduced at 
separations \x\ > vsIT > R by a factor exp(-2i>|;t|£), where "E, = (vsnT). Note that when 
models with the same sound velocity vs are compared, the single-particle correlation 
function of the interacting model is always reduced below that of the free model. 

The recipe for such calculations of correlation functions was first given by Luther 
and Peschel (1974). The calculation is easily extended to give the dynamic correlation 
functions, as shown by these authors. In table 11 summarise the low-energy properties 
of the spinless fermion Luttinger model, and list the static single-particle, density, and 
pair correlation functions. In the Luttinger model itself, the linear relation (3.6) between 
the electron field ip(x) and the fields ipp(x) means that the single-particle correlation only 
has a kF oscillatory component, while the density and pair correlations only have 0 and 
2kF components, just as in the case of the free Fermi gas. However, in a more general 
model where / is not strictly conserved, interaction effects will give rise to additional 
periodic components with extra multiples of 2kp in the period. For example, in addition 
to the two components rpj,(x) and ipi-p(x) making up the operator representing the 
electron field V+(*)> there will be admixture of terms like ipl(x) Vxjjj,(x) xp-p(x) which 
adds a 3A:F oscillatory term to the single-particle correlation function. Charge conserva
tion allows terms with periodicity (2m + l)fcF in the single-particle correlation function, 
and 2mkp in the density and pair correlation functions, and the relevant terms are listed 
in table 1. 

To conclude the discussion of the Luttinger model solution, I note that the low-
energy properties of the diagonalised model depend on five distinct parameters: us, VN 
and Vj parametrise the Hamiltonian, /tF the momentum operator, and q> the fermion 
field operator. A fundamental result is the relations v^ = i>s exp(-2<p), vj = vs exp(2(p), 
which were deduced from the structure of the solution. The question arises: are these 
relations fundamental, in that they can be deduced solely from the low-energy structure 
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Table 1. Summary of 'Luttinger liquid' properties of the spinless ID Fermi gas. [%(x)\m 

means 

lim [a-im{m-V%{x)\l>p{x + a). . . %(x + (m - l)a)]. 
a-»0 

Higher harmonics of 2k? allowed by charge conservation, and likely to be present in a more 
general model, are also included in the list of correlation functions. The phase (cos or sin) 
of the asymptotic oscillations is also indicated. 
1. Interaction parameter (> 1 for repulsive forces): exp(-2<p) 
2. Relation of Fermi vector fcF to charge density p = NIL: kF = up 
3. Density fluctuation sound velocity: v$ 
4. Change of chemical potential with Fermi vector: un = d///dfcF = use-2'' 
5. Fermi velocity (for currents): vj = vse

2'f 

6. Asymptotic form of low-temperature correlation functions: 

(*WACO> ~ ? Q ( ~ I ^ L * - ; fr - *•'" exp(-*T lx -x'|/us)1,• 
Correlation 

Single-particle 
(sin) 

Density 
(cos) 

Pair 
(cos) 

A\x) 

y<(x) 

[V'toVto - P] 

yp\x)Vrji\x) 

Luttinger model form 

PP(X) 

[v;wr['M*)r 
[^)]"*'[f,wr-' 

n 

1 
(2m + 1) 

0 
2m(»2) 

0 
2m 

r\ 

\e-2* + ie2* 
h~lif + 2(m + h)V* 

2 
2mV'f 

2e~2" 
2e"2'1' + 2m2e2,f 

of the diagonalised form of the Hamiltonian, without reference to the 'bare' form of the 
model? The answer is yes: the relations (4.7) can be obtained by considering the static 
response functions of the density components 2 p p p ? and Hppppq; when q =£ 0, the cal
culation only involves the boson variables, and vs and exp(-2<p). In the limit q —* 0, the 
results must go over into the results IIIJZVH and \l2nvj calculated when q = 0, and the 
relations (4.7) are recovered. 

In addition to the above five characteristic parameters, various multiplicative factors 
appear in the asymptotic form of the various correlation functions. These depend only 
on the length scale R, and the two constants A and B; however, in contrast to (4.7), 
the relation between these various multiplicative factorsjs likely to be a model-depen
dent feature of the Luttinger model, as R, A and B depend on the high-energy 
structure of the model (i.e., the cut-off function g(y)). 

5. Generalisation to non-soluble models: the 'Luttinger liquid' concept 

The complete solubility of the Luttinger model makes it a fascinating example of an 
interacting one-dimensional system. Nevertheless, its solubility rests on quite specific 
properties that are lost if the model is modified. However, I will argue that its low-energy 
structure still provides a model of the most important features of more general, non-
soluble models. As an example I consider a generalisation of the Luttinger model that 
incorporates a non-linear fermion dispersion relation: 

e(kp) = v^Jcp - kF) + (l/2m)(kp - kF)2 + k(V12m2vF)(kp - kF)1 (5.1) 

For stability reasons, it is necessary to include the cubic term: the ground state of the 

file:///l2nvj
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non-interacting model is altered unless A>f, when sgn{e(kp)) = sgn(fcp); djcp) 
increases monotonically if A > 1. In general, the interacting model will remain stable for 
A greater than some positive limit Ac. This modification of the model retains the feature 
that / is a good quantum number; though the non-linear dispersion means that the mean 
current operator j is no longer simply proportional to / , it remains so in a low-energy 
subspace. 

The procedure for translating this generalised Luttinger model into normal-ordered 
boson form is extremely simple. An expansion technique as in equations (3.42)-(3.45) 
can be used to transcribe the non-linear fermion dispersion terms. The general fermion 
representation (4.19) should be used, with arbitrary parameter <pq. The final result is a 
boson normal-ordered Hamiltonian with quadratic boson terms that depend on N and 
/ , plus new cubic and quartic boson interaction terms. The parameter cpq{NIL,JIL) is 
then chosen to diagonalise the quadratic boson terms, giving a Luttinger model with 
N- and /-dependent parameters, plus irreducible boson interaction terms. The depend
ence of the Luttinger model parameters on N and / merely reflects the change in Fermi 
velocity for non-zero N and / , so in order to show up more clearly the other new feature 
(the boson-boson interaction), I give the new Hamiltonian only in the subspace N = 
/ = 0; when / # 0, the structure of the boson spectrum is slightly altered in that 
q>q(NIL, JIL) and (oq(N/L, JIL) are no longer even functions of q because the right- and 
left-travelling fermions then have different Fermi velocities. The boson part of the 
Hamiltonian has the form 

H(N,J = 0) = 2 a>J>% + E ^ - f dx[:(l/6m)(<t>p(x))3 + (A/48m2uF)(Op(x))4:] 
q p 271 Jo 

*„(*) = ^Pqaipq, - cpq){eiqxbq + e-^fc,). (5.2) 
p 

The colons :(...): mean boson normal-ordering. The parameters coq and <pq are now 
given by modified versions of the expressions (4.4) and (4.5), where vF has been replaced 
by 6pq = I>F + (A/4m2yF)(ci + \q2); the equation for q>q must be solved self-consistently, 
since the constant term C\ itself depends on <pq: 

cY = ̂ 2 \q\ sinh2((p,) = A'{(0yR2-
L q 

The constant c\ exists provided the large-g behaviour of the fermion interaction matrix 
elements is sufficiently good for yg(y) to vanish as y —> <». in fact, as will be seen, the 
requirement that the renormalisation of the ground state of the quadratic part of (5.2) 
by the boson interactions be finite imposes the stronger requirement y3g(y) -*• 0 as 
y—»°°. Assuming Vi(q) does not diverge as q^K&, this implies the condition 
qV2(q) —>0asq-+'x>,a. slightly stronger condition than in the absence of a non-linear 
dispersion (qmV2(q) -»• 0). 

With the explicit construction (5.2) of the boson-boson interaction terms induced 
by a non-linear fermion dispersion, it is possible to construct an expansion in m_ 1 for the 
changes in the model properties due to the modification. This is particularly interesting 
in the case of the correlation functions: it allows the rigorous proof, at least for this type 
of generalised model, that the relations (4.7) between the spectral parameters vs, vN, 
and vj and the parameter <p, and the relation between <p and the correlation exponents, 
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remain unchanged from those found in the unmodified Luttinger model. This provides 
evidence in favour of the universal nature of these relations which will be proposed in 
this paper. 

The relation between the spectral parameters is easiest to demonstrate; I give the 
form of the Hamiltonian in the subspace where no boson modes are excited: 

H(nq = 0) = 1(JI/L)(VNN2 + vj2) + (ll6m){jdL)\Nl + 3NJ2) 

+ (?J48m2vF) {nlL)\N* + 6N2/2 + JA); 

»N = VFO+ Vi(0) + V2(0); vj = on + Vi(0) - F2(0). (5.3) 

The relations (4.7) between v\, vj, vs and <p are clearly unchanged. The stability 
condition giving the lower bound Ac to allowed values of A is clearly obtained by demand
ing that the ground state of (5.3) has N = J = 0. A necessary condition is that VN and vj 
are positive definite, i.e., (that |V2(0)| < » F + ^i(O) + (A/4m2uF)ci(A) ; since Ci(A) is 
positive, this is a less restrictive condition than that in the original Luttinger model with 
m~x = 0. The condition XI v^ > max(3/4u^, llvj) ensures (5.2) has no stationary points 
other than N = J — 0, and is sufficient to guarantee stability. 

The effect of the non-linear dispersion on the correlation functions will now be 
discussed. I study the single-electron correlation function {ipr(x)^j(0))T=0 (4.24) dis
cussed earlier, as an example. Following that discussion, this is given (after a little 
manipulation) by 

<^t(A:)V(0,>)r=o = (kp/rfikpcy1 exp[-Ai(x/R)]—fE,p exp(ipkpx) 
2i P 

x (exp[ixl(x)] exp[ixP(x)]) 

Xp(x) = 2 a(pq, - cpq) 2 sixi(\qx)bq. (5.4) 
9 

(ip^rjj) = (k?lx), so the relation between A:F and electron density is unaffected by the 
non-linear dispersion. The expectation value is of course taken in the ground state of 
the interacting boson system (5.2), and hence differs from unity when m'1 is non-zero. 
A perturbation expansion in m_1 can be developed; the ground state expansion is 

|GS> = X(l + -±— 2 f(qu qi, q3)by>y>l + Ofa"2)) |0> 

3 

ftqu qi, q3) = — • . ,gyf, i | 2 / > n oipqh - v ). (5.5) 
2x\qi\ + \q2\ + |<73| P <-i 

The normalisation constant N is given by 

Jf = 1 - h(l/mvsR)2(L/27tR)c£<pg(y)] + CKm"); 

C2 = -7"— 2 /(<7i, <72, ?3)
2 (5.6) 

c2[q^g(y)] is a positive dimensionless constant that is finite provided yig(y) —* 0 as 
v —* oo, as mentioned earlier: 

c2 = f At f* d>< x~\x2 - y2) h(x, y)2 



Luttinger liquid theory' of ID quantum fluids: I 2607 

h(x, y) = l[cg(x + y)cg(x - y)sg(2x) + sg(x + y)sg(x - y)cg(2x)] (5.7) 

where cg(x) and sg(x) are cosh((pg(y)) and sinh((fg(y)). Note that c2 vanishes in the 
absence of fermion interactions (<p = 0), when there is no renormalisation of the ground 
state by the boson interactions. 

I now calculate the single-electron correlation function to 0(m~l). From (5.4) and 
(5.5), this is given by 

sin(fcpx) - cos^p*) | | ^ ( ^ ) ) J + HCj (kF/n) exp[-i4,(|x|//?)] (*,*)"' 

+ 0(m-2) 

(2p(Xp(x))3) = -(Vmv^Fdxl/R) + Oim'2); 

F(u) = 4 I de l dyx^sinxicosx - cosy)h(x/u,y/u)2. 
Jo Jo 

The function F(u) vanishes at u — 0, and remains bounded as u—* °°; the corrections to 
the correlation function thus do not affect the asymptotic behaviour of the correlation 
functions. Physically, this is because the factors \qi\m in the interaction matrix elements 
of (5.2) kill the effects of the boson interactions at long wavelengths. The relation 
between the various correlation exponents and the parameter q> is thus identical to that 
in the original Luttinger model; the value of the parameter <p, on the other hand, is 
affected by the interaction terms, and varies with the ground state charge density. 

6. Discussion: the Luttinger liquid concept 

To summarise the results of this paper: it has been shown that the low-energy excitation 
of the soluble Luttinger model of interacting fermions in one dimension consists of three 
parts: the well known collective density fluctuation boson modes, plus charge and current 
excitations, which have not previously been emphasised. Associated with these three 
types of excitations are three velocities, vs, VN and vj, which obey the relation 
us = (vNvj)m. The current of the Luttinger model is a good quantum number, and is 
quantised in units 2vjlL, each unit carrying momentum 2kf. VN = dfi/dkF describes the 
rate of change of chemical potential with the Fermi vector, which is unrenormalised by 
interactions, and given by the charge density, kF = n(NIL); vs is the density excitation 
sound velocity. The relation between the three velocities defines a parameter q>: vN = 
vs exp(—2<p), vj — usexp(2<p). This parameter q> is the intrinsic renormalised coupling 
constant of the model, and determines the non-integer power laws characterising the 
asymptotic behaviour of the correlation functions. The elementary excitations of the 
Luttinger model are non-interacting, which explains why it can be explicitly solved. An 
important tool for working with the model and its generalisation is the representation 
of the fermion fields in terms of the elementary excitations: this is given here in a fully 
precise form. 

A generalisation of the Luttinger model with a non-linear fermion dispersion, but 
where the current quantum number / is still conserved, was considered here. It was 
shown that the characteristic low-energy structure of the Luttinger model was preserved, 



2608 FDMHaldane 

including the relations between its velocities and correlation exponents, but that its 
renormalised parameters now depend on the position of the Fermi level, and non-linear 
couplings appear between the elementary excitations. 

On the basis of this demonstration that this structure remains valid in a much wider 
class of models than the Luttinger model itself, I will propose that it is generally valid for 
conducting spinless fermion systems in one dimension. For full generality, it is necessary 
to consider models where the current quantum number / is no longer a good quantum 
number: this will be done in the next paper in this series. What emerges is that unless a 
multiple of the fundamental wavevector 2&F is some multiple of a reciprocal lattice 
vector reflecting an underlying periodicity of the system, momentum conservation 
eventually inactivates a non-7-conserving term at low energies (though such terms will 
give rise to renormalisations of the low-energy spectral parameters), and the low-energy 
structure is again of the form described here. If 2&F = (nlm)G, this remains valid 
provided exp(—2<p) is less than a critical value \m2, above which an instability against an 
insulating pinned charge-density-wave state occurs. If such Umklapp processes are 
present, but exp(—2<p) < hm2, there is a characteristic non-analytic scaling dependence 
of the renormalised exp(—2q>) on \2kp — (nlm)G\, reflecting the power laws of the 
correlation functions. 

A very important test of the universality of the Luttinger model structure is provided 
by the class of models exactly soluble by the Bethe ansatz, mentioned in the Introduction. 
For these models, vs, ON, and vj can be explicitly calculated, though their correlation 
functions have not as yet been obtained. As described in Haldane (1981), the relation 
vs = (vjVfi)m can be explicitly verified, and the parameter exp(—2q>) obtained from 
these velocities shows the characteristic behaviour due to Umklapp processes when 
2kF ~ (n/m)G mentioned above, providing additional confirmation that the relation 
between exp(—2<p) and the correlation exponents is valid (Haldane 1980). 

It is obviously possible to generalise the discussion to the case of spin-i fermions; the 
spin-i Fermi gas has a characteristic instability against a gap opening in the spin excitation 
spectrum in zero magnetic field, if 2kFexchange (backscattering) processes are attractive 
(Luther and Emery 1974); the resulting state is the one-dimensional analogue of 
superconductivity, though no long-range order is involved, and can be related to the ID 
Bose fluid. Similarly, when Umklapp processes open up a gap in the charge density 
excitation spectrum, leaving gapless low-energy spin-wave modes (Emery et al 1976), 
the resulting system models the antiferromagnetic chain. This in turn can be related to 
a ferromagnetic chain by a sublattice rotation. In this way, the apparently diverse 
collection of systems mentioned in the Introduction can be brought into the framework 
of what I propose to call 'Luttinger liquid theory', which can be tested on those models 
soluble by the Bethe ansatz. Of course, this description of these models is only valid in 
those regimes where they have a gapless linear density wave excitation, and are con
ductors of a locally conserved charge, with associated quantised persistent currents at 
T = 0. This underlying unity explains the rather bizarre fact that spin systems and Bose 
fluids in one dimension have the fermion-like property of a characteristic momentum 
2kF, as seen in the equivalence of the 5 = i XY spin chain and hard core bose lattice gas 
to a spinless fermion system (Lieb et al 1961, Matsubara and Matsuda 1956). These 
generalisations will be discussed in detail in subsequent papers. 

The emphasis here has been on spectral properties and correlation functions. As a 
final comment, I note that the approach introduced here could be used as the basis of a 
theory of transport processes in 'Luttinger liquids'; for example, in the Luttinger model 
itself, transport of energy by the boson modes would be purely ballistic, since they are 
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non-interacting. The boson interactions due to a non-linear fermion dispersion would 
introduce lifetime effects and dissipative behaviour. 
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The parameters describing the excitation spectrum of Bethe-ansatz-soluble models of 1-D quantum fluids are shown to 
satisfy a relation v$ = (vft/vj)1/2 characteristic of "Luttinger liquids"; this identification permits exact calculation of a re-
normalised coupling determining correlation-function exponents. 

Recent work on 1-D quantum systems, based on the 
soluble Luttinger [1,2] model of the spinless 1-D 
Fermi gas has led to a unified description of the low 
energy properties of the 1-D quantum fluid as those 
of a "Luttinger liquid" [3]. This development is based 
on the identification of a key structure of the low-en
ergy spectrum of the Luttinger model, and the de
monstration that it survives in more general, non-solu
ble models [3]. A test of a theory purporting to pro
vide a general description of 1-D quantum fluids is 
provided by those models soluble by the Bethe ansatz 
(see ref. [4] for references). In this note, I show that 
these models quite generally have the "Luttinger liq
uid" structure in their low-energy spectrum, allowing 
identification of the exact value of a characteristic 
parameter determining the coupling-dependent expo
nents describing the power-law asymptotic decay of 
their correlation exponents. The similarity of 1-D 
Fermi and (interacting) Bose systems can be attributed 
to the fact that in one dimension particle .exchange 
necessarily involves a collision, and phase changes of the 
wavefunction due to statistics and scattering cannot 
be separated. 

Systems so far identified as "Luttinger liquids" in
clude [5] (a) the 1-D Fermi fluid, (b) the 1-D Bose 
fluid, (c) axially symmetric spin chains (antiferromag-
netic, and easy-plane ferromagnetic), and (d) the fin
ite density gas of sine-Gordon topological solitons. In 
its various guises, the S = 1/2 Heisenberg—Ising—XY 
spin chain [4] provides examples of (a)—(c); a cal

culation of the "Luttinger liquid" parameters of this 
model using the Bethe ansatz formalism that solves 
it has already been reported [6]. Other Bethe-ansatz-
soluble models for which such calculations are in pro
gress are the Hubbard chain [7] and sine-Gordon/mas
sive Thirring model [8]. 

The low-energy spectrum of a simple "Luttinger 
liquid" (without internal symmetries such as spin) 
has the form [3,6] 

H=vs ElqlbU +i(Tr/L)[vN(N-N0)
2 + VjJ2] , 

q*0 

P=[kF+ (it/L )(N - NQ)] J + E qb\b , 
q*0 

{-\)J = exp[i0(7V)] , d*F/dAr0 = *IL . (1) 

Here N is the number of particles of the fluid, which 
has periodic boundary conditions on a length/,, and 
NQ/L is the ground state density, fixed by a chemical 
potential. The quantum number/controls the mean 
current/= Vj(J/L), and for a given value of TV, allow
ed values of/ differ by an even integer; in fact it is 
only in the details of the TV-dependence of the selec
tion rule on allowed values of/ that models with un
derlying Fermi and Bose statistics can be distinguish
ed [5] . The boson creation operators M (qL/lir 
= ± 1, ±2,...) characterise approximately independent 
collective density fluctuation modes. There is a char-

0 031-9163/81/0000-0000/$ 02.50 © North-Holland Publishing Company 153 
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acteristic momentum 2kF, which varies linearly with 
the fluid density, that is the momentum carried by 
the "quantum" of current excitation. 

A fundamental result of "Luttinger liquid theory" 
[3] is a relation between the three spectral parameters 
vs, Uyy, and Vj (all velocities): 

"s = 0 W / ) 1 / 2 - (2) 

This allows the definition of a parameter >p where 

vN = vs exp {-Tip) , vj = vs exp (2<p) ; (3) 

it turns out that this parameter is the essential renor-
malised coupling parameter, and it alone controls the 
exponents of the correlation functions. For a given 
fluid, these exponents can be calculated in terms of 
<p using the "boson representation" of fermions [3, 
9—11] developed for the Luttinger model. The Bose 
fluid and spin chain results can be obtained by iden
tification with the spin—1/2 fermion system with gaps 
in its spin spectrum (due to backscattering processes) 
or in its charge spectrum (due to umklapp processes) 
[5]. The aim of this note is to (i) demonstrate relation 
(2) in Bethe-ansatz-soluble models, and (ii) give 
recipes for calculating the Luttinger liquid parameters 
vs and <p. 

The essential part of a Bethe-ansatz calculation [4] 
of energies of eigenstates is the calculation of a set of 
"pseudomomenta" kj, i = 1,..., N, where N is the num
ber of particles in the fluid. These are determined 
through a set of quantum numbers It, with allowed 
values differing by an integer; the energy E and mo
mentum Pare determined by the kt: 

N 

k:L = 2nL - Z ) &{kh k.) , i=\, ..., N , 

tion strength) have the symmetries 

e{k) = e(-k) ; &{p, q) = -&{q, p) = -Q(-p, -q) . 
(5) 

The notation 0 (p, q) and ®q{p, q) for the derivatives 
with respect to the left and right argument will be used. 
The symmetry (5) of ®{p, q) in fact arises from a more 
specific structural property: a change of variable puts 
it into difference form: 

0 (p , q) = e{a(p) - a{q)), 0 ( - a ) = - 0 ( a ) , 

a{-p) = -a{p). (6) 

Property (6) is vital for relation (2) to be obeyed. 
In the ground state of the quantum fluid, the I{ are 

all different and consecutive, and the ki are real, and 
lie in an interval [—A, A]. In the thermodynamic limit, 
their density p{k/) = l/{kj+l — k/)L is given by a linear 
inhomogeneous Fredholm integral equation of the sec
ond kind: 

2np{k) = 1 + C dk' 0p{k, k')p{k'). (7) 

The particle density and ground state energy per unit 
length are then given by 

A A 

N/L = f dkp{k), E/L = f dk e{k)p{k) . (8) 
- A - A 

It will be useful to define two more solutions a{k), 
r{k) of the integral equations: 

A 

2na{k) = 0(/c, A) - f dk' 0q{k, k')a{k'), (9) 

P=Tjkt, E = Tje{kt). (4) 2m{k) = ®q{k, A) - J dk' Qq{k, k')r{k') . (10) 

These equations are appropriate for systems without 
internal symmetry, such as the Heisenberg—Ising—XY 
chain, the boson—Hubbard chain [12], and the sine-
Gordon soliton gas, together with any continuum limits 
of these; the necessary generalisations for systems with 
internal symmetries are simple, but will not be dealt 
with here. The energy function e{k) and the "phase 
shift" function 0 (p , q) (which depends on the interac-

The ground state density N/L increases monotonic-
ally with A; the change in the system when this is in
creased is found by calculating 8p{k)/8\, after which 
some manipulation is found to be given by 

5p(yfc)/SA = p(A)[l - a ( A ) + a ( - l ) ] " 1 

X{d/dk)[a{k)~a{-k)] 00 

154 
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Then 

8(N/L)/8 A = 2p (A) [ 1 - c(A) + a(-A)] ~ ' 

and the chemical potential p = 8 (E/L)/8 (N/L) is 
found to be 

(12) 

p = e ( A ) - f dfce'(fc)a(fc). (13) 

Tlie sound wave velocity is calculated by comparing 
the energy of a state with quantum numbers /,• = if 
(i =£N),IN=lf[ + m,Km<N, with that of the 
ground state with quantum numbers /,-. The momen
tum of the excited state is AP = 2mn/L, and vs = AE/ 
AP. Easy manipulations lead to 

first factor in (18) can be expressed in terms of the 
even eigenfunctions,. and the second factor in terms 
of the odd eigenfunctions. The even and odd sectors 
are in general unrelated, so (18) is not in general true. 

The crucial extra fact about the kernel is the prop
erty (6): there is the change of variables k-*• a that 
puts it into difference form: 

<*o 
2770(a) = Q(a - a0) + J da' 0 ' (a - a ' ) a ( a ' ) , 

(19) 

a0 s« (A) . The proof of (18) follows from the de
monstration that (i) a (±A) -» 0 as A -*• 0, so X = 1 
when A = 0, and (ii) 8x18 A = 0. The first requirement 
is evidently satisfied by (9), since 0(0, 0) vanishes. 
The second is demonstrated by noting that 

vs = [2TTP(A)] - 1 \e (A) - f dk e'(/t)r(fc)l . (14) (d/da0)a(±a0) = 5a(±a0)/5a0 ± aa(±a0)/9a : 

The parameter vN is calculated from the relation 
5/i/5 (N/L) = iivN. This requires 8a(k)/8A which is 
found to be given by 

[ l - o ( A ) ] T ( * ) - a ( - A ) T ( - * ) . 

After a little manipulation, vN can be expressed as 

vN=[l-o(A) + o(-A)]2vs. (15) 

To make a current carrying state with quantum num
ber / =£ 0, one chooses /,- = if +^J. The relevant in
tegral equation describing the change in the distribu
tion of the kt is easily obtained. To lowest order in / , 
the range of the k{ shifts from [—A, A] to [—A + A', 
A + A ' ] , where 

5 (J/L)/8 A' = 2p(A) [1 - 0(A) - ff(-A)] _ 1 . (16) 

Vj is given by EjL ~ \ mjj(J/L) as J -»• 0, and can be 
expressed as 

Vj=[l-a(A)-a(-A)]2vs. (17) 

For the Luttinger liquid relation (2) to be obeyed, 
one requires 

X[o] = [1 - 0(A) - a(-A)] [1 - 0(A) + a(-A)] 

= 1 . 0 8 ) 

Note that given only the symmetry properties (5) used 
so far, this is not provable: the eigenfunctions of the 
kernel of (9) fall into two classes, even and odd; the 

where 

Sa(a)/5a0 = [1 - a(a0)] r(a) + a ( - a 0 ) T ( - a ) , 

3ff(a)/3a = [1 — a(a 0 ) r (a) - a(—a0)r(-a) 

Substitution into the expression for 8x/8A gives the 
desired result. 

The expressions (12) and (16) can thus be written 
as 

8(N/L)/8A=2p(A)e^ 5(//Z,)/5A' = 2p(A)e-*\ 
(20) 

In the Bethe-ansatz-soluble models, the dimensionless 
coupling tp thus reveals itself most characteristically in 
the variation of the charge and current quantum num
ber densities with small changes of the "Fermi pseudo-
momenta" at k = ±A. 
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Abstract. The one-dimensional model which consists of two isotropic XY chains with 
spins S = j coupled by three-spin interactions is considered with the help of the Bethe 
ansatz. It is shown that the diagonalization of the Hamiltonian can be reduced to solving 
a set of coupled nonlinear equations. The exact solution of these equations corresponding 
to the ground state of system is obtained. The model considered exhibits a ground state 
of Anderson type with the finite magnetization along the quantization axis. 

The one-dimensional quantum integrable models were intensively investigated in recent 
years. The investigation of these models was begun sixty years ago in the well known 
paper by Bethe [1,2] concerned with the calculation of the wavefunctions for the 
one-dimensional Heisenberg magnet with pair interactions and spin S = \. 

The one-dimensional Hubbard model is the other well known example of the 
integrable lattice system. The exact solution for the wavefunctions and ground state 
energy of this model was obtained by Lieb and Wu [3]. These authors used the exact 
solution of the one-dimensional gas of particles with repulsion given by Yang in 1967 
[4]. Further development in the theory of integrable models was connected with the 
generalization of the Bethe ideas and their application to more complicated problems 
concerned with the study of systems with spin S > \ [5,6]. In many cases the models 
with pair interactions were investigated. Of certain interest is the consideration of 
Bethe ideas applied to the systems in which both pair and many-particle interactions 
are present. 

In the present letter we consider a spin one-half chain with two- and three-particle 
interactions. In our case these interactions are competing ones. It leads to the frustrated 
ground state with the finite magnetization. In this sense the ground state under 
consideration can be interpreted as the RVB state of Anderson type [7]. 

The Hamiltonian of the considering model has the following form: 

H=~\i I (oj[
(r)oJ+1(T) + ojr

(T)<rf+I(T))(l-Wr;+T_I(T+I)) (1) 
J = l T=l,2 

where <r"(T)(a = x, y, z) are Pauli spin matrices of the j'th lattice site on the sublattice 
T (T = 1,2, er,"3) = <rj*(i)). We used the periodical boundary condition (O"N+I(T) = o""(T)). 
The Hamiltonian possesses the obvious symmetry with respect to the change U=$—U. 
Therefore in the following we restrict ourselves to the investigation of the case U > 0. 
The case U = 0 corresponds to the model of two non-interacting isotropic XY chains 
[8]. In the case U -* oo we obtain the modified XY chain [9]. By using the Jordan-Wigner 
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transformation [8] the Hamiltonian (1) can be presented in terms of the creation and 
annihilation operators up to the boundary conditions 

N 

# = - £ Z (^T)aj+i(T) + a/+i(r)a/(r))(l-Va/+T_1(T+i)aJ+T-i(,+i)) (2) 
J - l T = 1 , 2 

where V = 2 l / / (1 + U). 
This Hamiltonian can be interpreted as follows. There is a one-dimensional lattice 

which consists of two sublattices (see figure 1). The particles move along the sites of 
each sublattice so that only the jumps between the neighbouring sites of the same 
sublattice are possible. The interaction between the sublattices means that the energy 
of the jump between the sites j and j +1 depends on whether the site in the other 
sublattice which corresponds to this pair is occupied or vacant. The presence of such 
three-site interactions contrasts the given model with the one-dimensional Hubbard 
model [3] in the Hamiltonian of which the four-fermion interaction is the two-site 
one. Thus we obtain an interesting problem of statistical mechanics in the formulation 
of secondary quantization operators as well. 

Figure 1. Symmetrical configurations of the ground state for (a) (7 = 0; (ft) l/ = l; (c) 
0 < t / < l . 

Let us seek the amplitude of the wavefunction of the Hamiltonian (1) which 
corresponds to the state with m spins directed upward ( | ) in the sites with coordinates 
xx < x2 <... < x„ of the first sublattice and with (n — m) spins f in the sites xm+, < xm+2 < 
... < x„ of the second sublattice in the form of the generalized Bethe ansatz [3,4,6,10] 

/ ( x 1 , . . . , x n ) = I ^ . - Q „ n expiifcp.txp. + K r p . - l ) ] } . (3) 

The summation in this expression is carried out over all permutations [Plt..., P„] of 
the numbers 1,2, . . . , n. The permutation [Qi, • •., <?„] of the numbers 1,2,. . . , n is 
such that 1 « xQl =s xQ2«... =e xQn, so that TQJ = 1,2 for Q} *£ m and Qj>m respectively. 
The eigenvalue of the Hamiltonian (1) appropriate to this wavefunction is 

£ = -2 (1+1 / ) I cos A:,. (4) 
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The wavefunction which was constructed with the help of coefficients (3) is the 
eigenfunction of the Hamiltonian (1) if these coefficients satisfy the following conditions 

^ l st;T2(kPl-kP2)A;:Xp,.. (5) 
T,T'=1,2 

ATp','.'X = AXXlp, exp( , fcp.N) (6) 

where the non-vanishing elements of S-matrix are 

S\\(k) = Sg(fc) = - 1 S\2
2(k) = S2

2\(k) = sin |fc/sin(|fc - ia) 

Sl
2
2i(k) = S2

l2(k) = isha/sm(^k - ia) ea = (1 + U)/(l - U). 

A necessary and sufficient condition for the compatibility of equation (5) is the 
fulfilment of the Yang-Baxter relations [4, 5]. In our case the S-matrix satisfies these 
relations and we may use the quantum method of the inverse problem [11] to solve 
equations (5), (6). As result, we have 

expOW) = ( - ! ) — ft S i 1 ^ ~ ^ i + ̂  «' = «/2 
p = 1 s in[ 5 ( fc , -A / 3 ) - ;a] 

- sin&A,-kJ)+iar\_ « s in[KA p-A y) + 2ia'] 
( ' /J , sin[KA* - kj) - ia'] y

[}t sinCKAp - kj) - 2ia'] ' 

Taking the logarithm of both sides of these equations, we obtain 

m 

kjN+l e(kj-Af},a') = 2irIj (; = 1 , 2 , . . . . H ) 
0 = 1 

n m 

I 6(Ap-kj,a')- £ e(Ap-Ay,2a') = 2irJp (/3 = 1,2, . . . , m) 

0(fc,a') = 2arctan[coth(a')tanh5fc] - * • « 0(fc, a)=£ TT (7) 

where J, and Jp are half-integer (integer) numbers for even (odd) n and m, respectively. 
Thus, we have obtained the energy spectrum and eigen-vectors of the Hamiltonian 

under consideration through the solution of the system of equations (7). In the present 
letter we restrict ourselves with the investigation of the ground state, which corresponds 
to the following values of V, and Jp 

Ij=j-(n + l)/2 0 = l , 2 , . . . , n ) 

J, = B-(m + l)/2 (0 = 1 ,2 , . . . .m) 

A momentum of this state is 

p=i ^=27r(i; ij+z / J r ' = o . 

Following the pioneering works on Bethe ansatz [5,6], we assume that in the thermo-
dynamical limit N->oo, n-»oo, m-»oo for fixed ratios n/N and m/N the values of kj 
and \ p fill the intervals [-<?, Q] and [-B, B] uniformly with densities p(fc) and cr(A), 
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respectively. Then, instead of (7), we obtain the system of integral equations 

27rp(jt) = l + 0'(fc-A;a')o-(A)dA d'(k; a') = sinh a ( c o s h a - c o s fc)~' 
J-B 

2 w ( A ) = j 8'(A-k; a')p(k) dk- j 0'(A-A';2a')<r(A')dA' (8) 

J p(k)dk = n/N o-(A)dA= m/N. 

Similarly, going over to the continuous distribution in (4) we obtain 

J5 = -2AT(1+L/) cos kp(k) dk. (9) 
J-Q 

From the symmetry of the system it is clear that in the ground state m = «/2, and it 
corresponds to B = IT. Then, excluding the function o-(A) equations (8), we obtain 

2 i rp(fc) - | <p(k-k')p(k')dk' = l y = l - \ p(k)dk 
J-Q J-Q 

(10) 
oo 

<p(fc) = i + 2 I cos(nfc)/[l + exp(2|a|n)]. 
n = l 

These equations determine the ground state energy (9) as a function of the magnetization 
y. The analysis of (10) shows that the function E(y) has a wonderful peculiarity, 
namely, this function has an absolute minimum for y = 0, in this case Q = IT/2 

yo 
CTT/2 J (• TT/2 

= 1 - p0(k)dk — £ o = - 2 ( 1 + 1 / ) po(fc) cos kdk 
J-TT/2 ™ J—nil 

The function p0(k) satisfies equations (10) at Q=ir/2. The solution of this equation 
can be obtained with the help of numerical integration or using the perturbation theory. 
For example, at large a we have 

y o ^ - ^ e ^ ' + CXe-^ ) 
3 97T 

The presence of this minimum shows that in the ground state in the zero field the 
considering systems has a finite magnetization along the z axis. The value of this 
magnetization is determined by the value of the interaction constant U (or V for the 
model (2)). 

Let us interpret the obtained result using Anderson's picture of the ground state, 
the so-called resonating-valence-bond (RVB) state [7]. For the vanishing interaction 
a = 0 (U = 0) in the ground state we have equal numbers of spins f and I. The 
symmetrical configuration is presented in figure 1(a). This ground state can be envisaged 
as a linear combination of wavefunctions built up of singlet pairs (SP). We may think 
of it as a liquid-type state in which the system of pair bonds is resonating between the 
possible configurations. In the other limiting case a-»oo(l/-> 1) the number of spins 
I is two times smaller than the number of spins I (see figure 1(b)). The ground state 
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is a superposition of states of triangles in which there are one spin | and two spins j , 
i.e. these triangles (MT) have a magnetic momentum. In the general case (0< U< 1) 
the ground state is the linear combination of SP and MT. In the symmetrical configuration 
MT is surrounded by an interchangeable pair ( IP) ; in figure 1(c) IP is shown by a 
double line. States of spins in this pair can be interchanged without breaking short-range 
order. The interchanging of the spin states in IP leads to the moving of MT a distance 
of two lattice constants. The MT moves along the lattice with the transfer of the magnetic 
momentum without change of the energy of system. Thus the ground state may be 
presented as a magnetic liquid or as a conducting liquid if we consider the Hamiltonian 
(2). 

Of course, this interpretation is preliminary and naive. For more detailed under
standing of the model it is necessary to calculate the excitation spectrum and it will 
be the subject of a subsequent investigation. 

Part of this work was performed during the short stay of the author at the University 
of Maryland, USA. He would like to thank Professor M E Fisher for the invitation 
and his hospitality during the visit. In addition, the author is grateful to the Scientific 
Council on High Temperature Superconductivity (USSR) for financial support under 
grant no. 344. 
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Abstract A new integrable model of a strongly correlated electronic system is formulated 
as a model of hole superconductivity. The model is solved by using the Bethe ansatz. 
The critical exponents describing the decrease of correlation functions on long distances 
are derived. The behaviour of these correlations indicates that Cooper pairs of holes are 
formed in the repulsive region of the model. This conclusion is also confirmed by the 
calculation of the conductivity and the effective transport mass. In the attractive region, 
the model is a highly conducting system in which the current carriers with small effective 
mass are 'light fermions'. 

1. Introduction 

The discovery of high-temperature superconductivity [1] has greatly stimulated the 
interest in low-dimensional electronic systems with strong correlations. Among the 
relevant models the one-dimensional Hubbard [2] and the (supersymmetric) t-J 
models [3-7] are special since they can be treated exactly in terms of the Bethe 
ansatz. As exact results are highly desirable, particularly for low-dimensional systems 
in the strong correlation regime, these models have been extensively studied. The 
physical motivation for considering the Hubbard and the t-J model is the fact that 
the motion of electrons is strongly influenced by the on-site Coulomb repulsion and 
by the spin fluctuations through antiferromagnetic coupling, respectively. 

Another approach to high-temperature superconductivity proposed by Hirsch [8,9] 
makes it possible to formulate a new integrable model of strongly correlated systems. 
According to [9] the charge carriers of high-temperature superconductors are holes. 
The kinetic energy of hole hopping between nearest-neighbour sites depends on the 
occupation of these sites. In such a model the repulsive Coulomb interaction for 
electrons leads to an attractive interaction for holes which is strongest at low densities 
of holes. 

In the following we shall consider a simplified version of Hirsch's model on 
a one-dimensional chain of even length L, closed periodically. It is given by the 

* Work performed within the research program of the Sonderforschungsbereich 341, Koln-Aachen-Jiilich. 
t Permanent address: The Kazan Physico-Technical Institute of the Russian Academy of Sciences, 
Kazan 420029, Russia. 
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Hamiltonian 

L 

; = 1 < T = ± 1 

with interaction parameter t, where cJ0. is the annihilation operator for an electron 
with spin a at site j and n ; > = c^c^. For comparison we present the Hamiltonian 
H of the original Hirsch model [9] 

L 
R = ~ 2 X) (Ci"»Ci+l» + cj f+l*Ci»)[1+ £*(n>+(l+*)/2,-«7 + nj+(l-<r)/2,-j]-

j = l c r = ± l 

(2) 

Obviously our Hamiltonian (1) only contains half of the interaction terms of H. The 
advantage of model (1) is that it is solvable by the Bethe ansatz whereas model (2) is 
not, as a direct calculation shows that its 5-matrix does not satisfy the Yang-Baxter 
equations [10,11]. These are satisfied for H only in the continuum limit, i.e. in the 
limit of low or high densities of particles. The last case is the most important one 
from the physical point of view, because here the existence of hole pairs of Cooper 
type can be expected. A direct comparison of the 5-matrices of Hamiltonians (1) 
and (2) shows that the continuum versions of both models coincide. Therefore it can 
be expected that both models have identical critical properties. Nevertheless a proof 
of this claim, based for instance on the renormalization group approach, is highly 
desirable. 

In any case, model (1) keeps the main idea of Hirsch's approach to 
superconductivity, namely the modulation of the hopping process by the presence of 
other particles as the main reason for superconductivity. Hamiltonian (1) includes the 
simplest form of terms describing such processes. The various arguments to support 
the possibility that such terms could overwhelm the direct Coulomb repulsion and 
may lead to superconductivity have been given in [8,9]. This is reason enough to study 
the superconducting properties of model (1). In [12] another model for interacting 
fermions including correlated hopping terms was constructed. The ground state of 
this system can be given explicitly in any dimension, in one dimension the system is 
integrable. The model of [12] and (1) are related, the latter one however enjoys a 
simpler physical interpretation. 

In [13] one of the authors has shown that model (1) is solvable by using the 
Bethe ansatz. The relevant equations have been derived and the ground-state energy 
has been calculated. In the present paper we shall mainly consider the correlation 
functions of the model in order to investigate the possibility of superconductivity. 

As a model for electrons the interaction term in (1) should be negative, Le. t < 0, 
corresponding to Coulomb repulsion. If, according to [9] this leads to an attraction 
of holes, this fact must be seen in the behaviour of the hole correlation functions. 
The corresponding Hamiltonian for holes is obtained from (1) by a particle-hole 
transformation U together with a sublattice rotation [14], namely c?a => (-l) Jc J ( T . 
Multiplying also with a suitable scale factor, (1 + *)-1> m e resulting hole Hamiltonian 
H(t') 

H{t') = {l + t)-xUH{t)U-1 ' ' = - 7 ^ 7 P) 
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is then of the same form as (1). Now, however, the ^'-interaction is positive. As 
a consequence we shall study model (1) with attractive interaction, i.e. with t > 0, 
regarding its correlation functions as hole correlation functions of the repulsive model. 

2. The Bethe ansatz 

The Bethe ansatz for the model has been formulated in [13], from which we quote the 
relevant equations. The energy eigenstates are characterized by sets of wave numbers 
kj for the particles and additional parameters Aa. Each of the latter ones is related 
to a particle with down spin. The Bethe ansatz wave numbers fc; and Aa satisfy a 
set of nonlinear equations derived in [13] 

M 

/ 3 = 1 

TV M 

J2 © (Aa - kj; \ ) - £ 0(AO - A^; 77) = 2TT Ja 

with the phase shift function 

©(A:; 77) = 2 tan -1 (coth 77 tan ± fc) - re < 0 < ir (5) 

and the interaction parameter 77 = ln(l + t). Furthermore A'' is the total number of 
particles, M is the number of particles with down spin, and 7; and Ja are integers or 
half-odd integers depending on the parities of N and M. The energy and momentum 
of the corresponding state are given by 

N 

E = -^22coskj + nN 
3 = 1 

/ x (6) 

AT - / JV M \ 

where, from now on, the chemical potential fi has been added to control the particle 
number. 

Equations (4) and (6) hold regardless of the sign of 77, nevertheless the structure 
of the solutions is very different for r\ < 0 and 77 > 0. In [13] the model was 
considered for 77 < 0. Here we treat (4) for positive 77 in the symmetric case when 
there are equally many particles with spin up and spin down (M = N/2). The 
eigenstates consist of a certain number of singlet bound pairs and a certain number 
of free particles. The bound pairs are characterized by pairs of complex wavenumbers 

(4) 

a = l,...,M 

kt = Aa± i7?- (7) 
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In the ground state we only have pairs. Using (7) the above equations are reduced 
to the following set of equations after some simple algebra 

M 

2LAa=27rJo + £ 0 ( A a - A / 3 ; ' ? ) 
0=1 

M 

E = ^ e „ ( A a ) e0(A) = 2M-4coshr?cosA (8) 

M 

P = 2 £ A a . 

The ground state is characterized by the following values of Ja 

J°a = cx-(M + l)/2 ( a = l , 2 , . . . , M ) . (9) 

Deviations from this distribution of Ja describe gapless excitations of particle-hole 
type. In the thermodynamic limit L —• oo, M —> oo for fixed ratio M/ L the values of 
AQ fill an interval [-A0, A0] uniformly with density CT(A). From (8) we then obtain 
the integral equation for the distribution function a(A) 

(10) 

(11) 

27r<r( A) + / ° ©'( A - A; v)<r( A) dA = 2 
J - A 0 

with the subsidiary condition 

Mo 
/ <7(A)dA = p 

©'(A, r,) = 
sinh 2ri 

cosh 277 - cos A 

' - A o 

where 2p = 2M/L is the density of the hole liquid. For fixed chemical potential the 
parameter A0 must be chosen to minimize the ground-state energy, given by 

E0/L= J °e0(A)<T(A)dA 

./-Ao 

1 /*A° 
= - / e(A)dA (12) 

where in die second representation the dressed energy e(A) has been used which is 
the solution of the integral equation 

<A) + J - / ° 0'(A - A; 7j)e(A) dA = e0(A) (13) 
2 7 r ^ - A 0 

such that e(±A0) = 0 which is the minimization condition. The solution of (13) also 
defines the energy of particle-hole excitations. The momentum of such an excitation 
is given by 

P(A) = 2A - / ° 0(A - A; r,)a(A) dA. (14) 
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The only other type of excitation consists of broken pairs. The breaking-up of one 
bound pair leads to die creation of two free particles. The energies and momenta of 
these particles are obtained from (4) and (6), for instance in die case when there are 
M - 1 bound pairs and two particles with real momenta k12. The energy of each 
free particle with momentum k is given by 

ef(fc) = M-2cos fc - - ? - / ° 0 ' ( A - f c ; J ) e ( A ) d A . (15) 
2TT 7_Ao \ 2 / 

We content ourselves with pointing out diat this excitation has a gap at k = 0. A 
detailed study of this type of excitations for a more general model will be presented 
in [15]. 

In order to study the ground-state correlations of die model, we use two different 
approaches. First, following [16,17], we calculate the critical exponents and determine 
the long-distance behaviour of the two-point correlation functions. Secondly, we 
investigate the conductivity of the model as a function of the particle density. 
This approach is based on the calculation of the ground-state energy under twisted 
boundary conditions [18,19]. 

3. Critical exponents of the correlation functions 

To obtain the critical exponents of the correlation functions we use the predictions 
of conformal field dieory [20,21]. According to this theory mere is a one-to-one 
correspondence between die conformal dimensions of the scaling operators and the 
finite-size corrections to the energy of the excited states of die critical Hamiltonian. 
Our model is critical since the gapless excitations have a linear dispersion law in 
the vicinity of die Fermi points. The excitations corresponding to the breaking-up 
of bound pairs have a gap as mentioned before. These excitations do not affect the 
critical properties and die finite-size corrections. The finite-size corrections to the 
gapless excitations (11) can be calculated in a straightforward way [22,23]. Omitting 
the details of the calculation, we only present the results. 

We denote the change of the number of bound pairs as A M and die number of 
pairs moved from die left to the right Fermi point as d. The 1/L-corrections to the 
low-energy excitations are then 

^ = ^ T O + >«^! + "+ + "-) (16) 

where f(A0) is die dressed charge [24] at die Fermi surface, die dressed charge 
function £(A) being defined through the modified integral equation (9) 

« A ) + =?- / V ( A - A ; » » ) « A ) d A = l (17) 

such diat £ = 7TCT in the present case. v¥ is die Fermi velocity 

e>(A0) «A£ 
F 27ra(A0) 2£(A0)

 k 
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j 0 Figure 1. Depiction of the exponent ft of the 
pair correlation function for different values of the 
interaction parameter r; = 0.1, 0.5, 1, 10. 

The non-negative integers TV* are quantum numbers of the simple particle-hole 
excitations. The momentum associated with these excitations is 

P = 2k?d + — (dAM + N+ - N~) 
Li 

fcF = T T ^ . (19) 

lb read off the conformal dimensions A ± from these expressions one has to compare 
(16) and (19) with the predictions of conformal field theory [25,26]. Then we have 

2 

A x = 
1 / A M 

±£(A0)d +N (20) 
2 V2£(A0) 

We notice that in contrast to the repulsive case [27] this formula is valid for integer d 
without selection rule for fermions, since in the present case it corresponds to bound 
pairs. It is a reason why we consider the particle correlation function of the model 
with an attractive interaction as a hole correlation function in the repulsive case. 

Now we consider the long-distance behaviour of correlation functions. The 
asymptotic form of the density correlation function is given by 

(p(r)p(O)) ~ p2 + Axr-2 + A2r~Q cos(2fcFr). (21) 

The non-oscillating part arises from the lowest particle-hole excitations. The relevant 
excitation for the 2fcF oscillation term is (AM,d,N±) = (0,1,0). We thus find the 
critical exponent 

a = 2(A+ + A_) = 2[£(A0)]2. (22) 

The excitations relevant for the correlation function of singlet pairs are specified 
by (AM, d, TV*) = (1,0,0). We then obtain the asymptotic behaviour of this 
correlation 

Gp(r) = (c+c+c 0 i c 0 T >~Sr- ' J (23) 

where 

P = 
1 

= a (24) 
2[«A0)]2 

The exponent /3 is plotted in figure 1 for some values of the interaction parameter JJ 
by numerically solving equations (10), (11) or (17), respectively, from which f (A0) is 
determined. 
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Let us discuss the results. In one-dimensional systems we have no 
superconductivity in the literal sense. However, the power-decay of the singlet pair 
correlation (23) indicates the existence of singlet pairs provided that the exponent 
j3 of this correlation is smaller than that of the density-density correlation a [16]. 
In this case the correlation of singlet pairs overwhelms the density correlation, and 
we can say that the particles are confined in pairs. From figure 1 we see that such 
behaviour always exists for particle concentrations p ^ pc. The critical concentration 
pc is denned by /3(pc) = 1 and varies monotonically from 1/2 to 2-sfl = 0.5858... 
with increasing interaction rj. 

We remark that these results for the model with attractive interaction can be 
applied to the model with repulsive interaction by a particle-hole transformation. 
Therefore we have Cooper type singlet pairs of holes in the model of repulsive 
electrons. 

4. Conductivity and effective transport mass 

In order to substantiate the physical picture given above we now study the conductivity 
and the effective transport masses which can be calculated following the ideas of 
[18,19]. To this end we change the periodic boundary condition leading to (8) by a 
twisted one with twisting angle <p. In this case instead of (8) we obtain 

M 

2LA a =2 7 r / a +2< f ? + £ 0 ( A Q - A / 3 ; 7 7 ) . (25) 
/ 3 = 1 

Physically the additional phase ip can be obtained by enclosing a magnetic flux in 
the ring on which the electrons can move. For small tp this leads to a change in the 
ground-state energy 

AE0 = Dcip
2/L (26) 

where Dc is the charge stiffness. The conductivity of the system is directly 
proportional to Dc [18,19]. In order to see the correlation effects clearly it is useful 
to introduce the effective transport mass m defined by the relation 

^ = # (27) 

where JD" = £sin(7rp) is the charge stiffness of the non-interacting system and me 

is the electron mass. On the other hand this change in the boundary conditions 
corresponds to the finite-size correction (16) for A M = 0, d = ip/ir and we have 
for the charge stiffness of the Hamiltonian (1) with attractive interactions (t > 0) 

D> = -vTe(A0) = -«'(A0)€(A0) (28) 
IV TV 
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Figure 2. Dependence of charge stiffness Df and Figure 3. Depiction of charge stiffness Df and 
effective transport mass m > on p for different effective transport mass m< after rescaling using 
interactions »j = 0.1, 0.5, 1, 2. Note that p is (29). Note that in this repulsive case p is the 
the density of particles in the attractive model. density of holes. 

and with repulsive interactions (t < 0) 

D< = e~"Dc> = - ^ ( A ^ e - " . (29) 
TV 

The result (29) can also be obtained by using results of [27] where the repulsive model 
has been investigated directly. In figures 2 and 3 we present the conductivity and 
effective transport mass as a function of the particle concentration for the Hamiltonian 
(1) with attractive and repulsive interactions, respectively. 

We begin with the discussion of the conductivity of the repulsive model. From 
figure 3 it is clear that the conductivity in the high-density limit vanishes linearly as 
the concentration decreases (£>< ~ 1 - p). This is simply due to the decrease of 
the carrier density just as for the non-interacting case. It indicates that in this region 
the current carriers are the free electrons of the repulsive model. It is noteworthy 
that in the low-density limit the effective mass is enhanced by a factor of two. This 
behaviour and our previous findings for the correlation functions can be interpreted 
as the formation of hole pairs due to an attractive force between holes. 

In the high-density limit of the attractive model we also observe a linear decrease 
D> ~ 1 — p (figure 2). In this case the free particles which carry the current 
are holes. For all densities p and interactions 77 the effective masses are reduced 
in comparison to the non-interacting case. Furthermore the masses decrease with 
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increasing interaction parameter t (m> / m e ~ <_1). As the effective mass of the 
current carriers become very small, one may call them 'light fermions'. 
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We present a new model describing strongly correlated electrons on a general (/-dimensional lattice. It 

is an extended Hubbard model and it contains the t-J model as a special case. The model naturally de
scribes local electron pairs, which can move coherently at arbitrary momentum. By using an impairing 
mechanism we can construct eigenstates of the Hamiltonian with off-diagonal long-range order. In the 
attractive case the exact ground state is superconducting in any number of dimensions. On a one-
dimensional lattice, the model is exactly solvable by Bethe ansatz. 

PACS numbers: 7l.20.Ad, 75.IO.Jm 

The study of strongly correlated electrons on a lattice is 
an important tool in theoretical condensed-matter physics 
in general, and in the study of high-7V superconductivity 
in particular. Two well-studied models are the Hubbard 
model and the t-J model. On a one-dimensional lattice 
these models are both exactly solvable by Bethe ansatz. 
In this Letter we propose a new model, which is again 
solvable in one dimension, and which combines and ex
tends some of the interesting features of the Hubbard 
model and the t -J model. 

Electrons on a lattice are described by operators Cj,„, 
y — I , . . . ,L, <r~|, J, where L is the total number of lat
tice sites. These are canonical Fermi operators with an-
ticommutation relations given by fc/,B,c/,,} —SijSa,T. The 
state |0> (the Fock vacuum) satisfies c,-,o|0>— 0. At a 
given lattice site i there are four possible electronic states: 

|0>. |tW,|0>, 
(1) 

uWilo>. im-c,V,io>. 
By rti,„—Cj,„Ci,a we denote the number operator for elec
trons with spin a on site i and we write »/~>»i,t+/»u. 
The spin operators S ™Zf-iSy, 5 f , and S2, 

Sj-clcj.i, Sj-cJACj,h SJ-Hnj.i-nj.1), (2) 

form an SU(2) algebra and they commute with the Ham-
iltonians that we consider below. (We shall always give 

local expressions 0 , for symmetry generators, implying 
that the global ones are obtained as 0 — Zf-10/.) 

The Hubbard model Hamiltonian can be written as 

//Hubbard E X (cUck,a + clBCj,a) 

+ t / 2 > , . | - T ) ( « , U - 7 ) , (3) 

where the first summation runs over all nearest-neighbor 
pairs (jk). It contains kinetic (hopping) terms for the 
electrons and an on-site interaction term for electron 
pairs. An interesting feature (on a bipartite periodic lat
tice) is the so-called n-pairing symmetry [l,2j, which in
volves operators r///, r/Jy, and n& which form another 
SU(2) algebra, and which commute with the Hamiltoni
an (3). Using this symmetry one can, starting from an 
eigenstate \f) of the Hamiltonian, create a new eigen-
state IJH\V\ which contains an additional local electron 
pair of momentum it. The spin SU(2) algebra (2) and 
the n-pairing SU(2) algebras together form an SO(4) 
symmetry algebra. In one dimension, the Hubbard model 
is solvable by Bethe ansatz [3]. 

In the t-J model, there is a kinematical constraint 
which forbids the occurrence of two electrons on the 
same lattice site. On this restricted Hilbert space the 
t-J Hamiltonian (with / - I , 7 - 2 ) acts as H'J 

--!<,*>//,<;/, with 

r 

H'ji- Z (Qj.oQk,«+ QLQj,a)~2iS)Si + 1 (S/S* +SjSt)-}(l-«r«*)-{«y«*l, 

where we defined 

Qj.\ "(I -nj.Ocj.u QJA - ( I -n,,t)cy,i, (5) 

and the operators S], Sj, and Sj are as in (2). The t-J 
model (4) is supersymmetric and the spin SU(2) symme
try algebra gets enlarged to the superalgebra SU(l|2) 
[4,5] (see [6] for the description and classification of the 
classical Lie superalgebras). The generators of this sym
metry algebra are 5, S\ Sz, Q\, Q\, 0 J , (?/, and 
T~2L—YJf—\nj. In one dimension the supersymmetric 

(4) 

t-J model (4) is exactly solvable by Bethe ansatz [7-9]. 
Before we present the Hamiltonian of the new model, 

we give some motivation, which is based on what we 
know about the materials that exhibit high-7V supercon
ductivity. It has been found that the electrons in these 
materials form "Cooper pairs," which are spin singlets, 
and that these pairs are much smaller than in the tradi
tional superconductors. As a limiting case one can con
sider models which have electron pairs of size zero, i.e., 
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pairs that are localized on single lattice sites. We will 
call such localized electron pairs localons. 

In the t-J model localons are ruled out by the kinemat
ics I constraint on the space of states, and in the Hubbard 
model only local pairs of momentum n exist. Below we 
shall see that in our new model localons can move 
coherently with arbitrary momentum. Apart from these 
local pairs, the new model may also have bound states 
that are finite-size electron pairs. 

Let us now present the Hamiltonian of the new model 

on a general ^-dimensional lattice. We write it as 

//-//°-K/E («,.,- !)(«;,,-!) 
l L 

+fi 2 tij+h X ("y.t ~nj.O » 
j - \ y - i 

where H° is given by 

(j,k) are nearest neighbors, with 

(6) 

(7) 

H°k~ck,\cj,\(l -n,, |- /n,i)+c,,tc*, t(l -«y, |-n*,j) + c*,ic/,|(l -fly.t -n*, t) + cy,icu(l ~»j,\~"k,0 

+ T (nj - 1 )(/»* - 1 )+Cj,tc>,ic*,1c*,t+cy,|Cy,tQ,tc*,| - j Oiy,t -nj,\){nk,\ -n*, |) 

~Cj.\Cj,\Ck,\Ck,\ -Cj,\Cj,\Ck_lCk,\ + (nh\ - J )(/!;,( - I ) + («*, | - T )(nk,i ~j). (8) 

This Hamiltonian contains kinetic terms and interaction 
terms that combine those of the Hubbard and of the t-J 
model. The second term in (6) is the on-site Hubbard in
teraction term (notice that it also gets a contribution 
from H°). The third and fourth terms in (6) introduce a 
chemical potential fi and a magnetic field h. Roughly 
speaking, the new model can be viewed as a modified 
Hubbard model with additional nearest-neighbor interac
tions similar to those in the t-J model. 

The Hamiltonian H° is invariant under spin-reflection 
c/,t«-»c,-,| and under particle-hole replacement c/,„—•Cj,a. 
In addition to the spin SU(2) generators (2), the follow
ing operators commute with H°. 

t]-pairing SU(2).—The generators are /}, nt, and n2: 

ty-c/.K/,!' fH-clch, nr 
i » 4- i-2 « / + T (9) 

Together with the spin SU(2) algebra (2), this gives an 
SO(4) algebra which is similar to the one for the Hub
bard model. This symmetry makes it possible to general
ize the //-pairing mechanism, which was developed for the 
Hubbard model in [2], to the new model. 

Supersymmetries.—There are eight supersymmetries 
in total: Qt, Q\, Q\, and Q\ given in (5) and the opera
tors Q„ and g j : 

Qj.\""y.lO.t. QjA~"j.tcj,\- (10) 

These generators, together with the operator Zf - i l 
(which is constant and equal to L), form the superalge
bra SU(2|2). [Like SU(4), this algebra has fifteen gen
erators, eight of which are fermionic. In the fundamental 
representation, the generators can be represented as 4 x 4 
supermatrices with vanishing supertrace [6].] 

The symmetries of the Hamiltonian H° can be made 
manifest as follows. We first add one more generator to 
the symmetry algebra, which is 

y - i 
*,-(n;.t - f ) ( « ; . » - T ) , lH°,X]-0. 

(11) 

This extends the superalgebra SU(2|2) to U(2|2). We 
denote the generators of this algebra by Ja, where 
a~l,2,... ,16. We now introduce an invariant, nonde-
generate two-index tensor, denoted by Kafi, which is the 
inverse of Kap—slrOaJp) (str denotes supertrace), where 
the Ja are 4x4 supermatrices in the fundamental repre
sentation. Using this, we can cast H^k in a group-
theoretical form, as follows: 

Hfj, - E Kal,Jj.Jk,i, (12) 

" S (QLQk.a+Qk.aQj.a-Qj.aQk.a-QlaQj.a) 
<T-t . l 

+ (llljlli + r\}l)k + tjjtjl) 

-(2SjSi+s]sk+SjSl)+Xj+Xk. (13) 

It is easily checked that this expression agrees with the 
formula for Hf_k in (8). The expression (12) immediately 
makes it clear that H° commutes with all sixteen genera
tors of U(2|2). 

We would like to stress that the appearance of the 
algebra U(2|2) in the model is not too surprising: On 
each lattice site there are four electronic states (1), two 
of which are fermionic. The supergroup U(2|2) is the 
group of all unitary rotations of these four states into one 
another. Our Hamiltonian H° has been chosen such that 
it commutes with the entire algebra U(2|2) and is there
fore very natural. The analogous construction for U(l|2) 
leads to the t-J Hamiltonian (4), and for U(2) it leads to 
the spin- f XXX Heisenberg model. 

The spectrum of the Hamiltonian H° is symmetric 
around zero. This follows from the discrete symmetry 
cj,i —cy.i, for which / / ° ~ -H°. 

There is a further aspect of H° that deserves to be 
mentioned: The terms Hfk act as graded permutations 
of the electron states (1) at sites j and k. By "graded" 
we mean that there is an extra minus sign if the two 
states that are permuted are both (fermionic) single-

2961 
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electron states. For example, 

Hfalx |0> - c / . , |0>, HfelicLx |0> - -cyV*.t l0> 

(14) 

In this respect, the new model generalizes the spin-y 
XXX model and the / -J model (4). The nearest-neighbor 
Hamiltonians of these models have a similar interpreta
tion as graded permutations of the basic states, which are 
{|t>,|!>l for the spin-1 XXX model and {|0>,| f>,| ]>| for 
the l-J model. Lattice Hamiltonians that act like (grad
ed) permutations were first considered by Sutherland in 
[8]. 

We define the number operators N\,N\ (the number of 
single electrons with given spin) and TV/ (the number of 
localons) by 

L L L 

Wi + /V;-£"y.t. /Vj + W/-£«y.l. Wf-En/,i«/,i, 
y - i j - \ j - \ 

(15) 

and we write Nr ~7V| + /Vj for the total number of single 
electrons. The fact that H° is a permutation makes it 
clear that these number operators commute with H°, so 
that H° can be diagonalized within a sector with given 
numbers N\, TV j, and Ni. This implies that the terms 
proportional to U, /J, and h in (6), which break the sym
metry U(2|2), will not affect the solvability of the model 
in one dimension. 

In the sectors without localons H° reduces to the l-J 
Hamiltonian (4). (This is clear from the fact that they 
both act as permutations.) The new model reduces to the 
spin- T XXX model in the sector with only vacancies and 
localons, and similarly in the (half-filled) sector with one 
single electron on each site. 

Let us now briefly discuss some physical aspects of the 
new model. We first remark that we can always (for gen
eral lattices in an arbitrary number of dimensions) con
struct a number of exact eigenstates of the Hamiltonian 
which show off-diagonal long-range order (ODLRO), 
which is characteristic for superconductivity [10]. For 
this we follow the construction which was developed for 
the Hubbard model by Yang in 12]. The state ¥yv 
~(ij*)/v|0) is an eigenstate of the Hamiltonian with ener
gy E—2ftN+UL/4 — M, where M is the total number of 
nearest-neighbor links (jk) in the lattice. Following [2], 
we compute the following off-diagonal matrix element 
(k*l) of the reduced density matrix pi. 

«* , l)(*.t)|pj|(/, t )(/,])> • <0|i?'yguc/.K/.K/.l(lt)iVl0) 
(Oln'VnO) 

N(L-N) 
Z.Q.-1) ' 

(16) 

The fact that this off-diagonal matrix element is constant 
for large distances \j — k\ establishes the property of 
ODLRO for the states ¥*. 

An important observation is that for the attractive case 
( l / < 0 ) with zero magnetic field (h— 0), the ground 
state in the sector with an even number 27V of electrons is 
precisely the state VN ~(nt)/v|0>. It can be rigorously 
shown that within each of these sectors (positive density 
corresponds to negative ft) this ground state is unique. 
We may thus conclude that in the attractive case our new 
model exhibits superconductivity. 

The local electron pairs that participate in the n pair
ing have momentum zero. However, the model also ad
mits localons that move with arbitrary momentum. This 
follows from the fact that Hf^ acts as a permutation of 
the electronic states (I) on neighboring sites: Because of 
this localons cannot decay and move coherently. On a d-
dimensional square lattice (with lattice spacing a) the 
wave function XgexpG'x-lOf^ic^j |0>, which describes a 
single localon of momentum k over the bare vacuum, is 
an exact eigenfunction of the Hamiltonian (6) of energy 

E"2d-2% cos(.kma) + UL/4 + 2fi-M. (17) 

Multilocalon wave functions, as well as wave functions 
with single electrons, exist but cannot easily be written 
down for higher-dimensional lattices. However, in one 
dimension the model is exactly solvable by Bethe ansatz 
(BA), and we can obtain explicit expressions for general 
eigenstates of the Hamiltonian. We think that it is 
worthwhile to study this exact solution, and that this will 
lead to a better understanding of the higher-dimensional 
model as well. 

We will here briefly summarize the results of the exact 
solution in one dimension; the details are deferred to a 
separate publication [II]. The exact solution starts from 
the observation that the Hamiltonian is a graded permu
tation (14) of four states, of which two are fermionic and 
two are bosonic. The BA analysis for Hamiltonians 
which are graded permutations was first considered by 
Sutherland in [8]; see also [12]. The method of solution 
is the algebraic version of the "nested Bethe ansatz" [13] 
(for an introduction to the algebraic BA, see [14]). Each 
step of the nesting involves the introduction of a set of 
spectral parameters, which are in our case \Jy JL*(I), and 
X/(2), where j - \ , . . . ,(Nt+N,), * - ! , . . . , J V „ and / 
-],...,Ni. 

For each choice of a set of rapidities we can construct 
an eigenstate of the Hamiltonian H° in the sector 
specified by N/, Nr, and TV j, with energy E° given by 

N.+I*l 
E°- Z \H\}+i)-L. 

y'~' 
(18) 

The boundary conditions for these eigenstates lead to 
the following set of Bethe equations for the rapidities Xj, 
JlRandxP: 
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A.y-i/2 
Xj+i/2 

-h-i/2 
L N. + Nl-i _ ! ,_ .• N, i d ) 

_ 1-T "-J AJ ' TT _2*| 
/ i , Xy-Xy + 'V - I XjP-Xy+l/2 
/"J 

"ff'xT-y+//2 ^ xP-xP+i/2 . . 

f< x,(.2)-x,(2)+/ 
Mx/ 2 ) -x / 2 ) - , - * 
/v/ 

"• xjP-x/^+,72 
.x^-x/"-/^ n 

These equations, together with the expression (18) for the 
energy, guarantee that we shall be able to describe explic
itly the ground state of our model for arbitrary density of 
electrons, coupling constant U, and magnetic field h [II] . 
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B . M O D E L S W I T H L O N G - R A N G E I N T E R A C T I O N 

Another rather recent development in the study of one-dimensional systems 

of strongly correlated electrons is the emergence of models with long-range inter

actions. Prompted by the work of F. D. M. Haldane187-188 and B. S. Shastry1 8 9 

on spin-chains, various authors investigated Hubbard and t-J models with modified 

kinetic energy terms. The hopping matrix elements tij are taken to be proportional 

to e.g. 1/sin2-frij), where rij is the distance between sites i and j and L is the 

length of the lattice. These models might be of relevance in the theory of fractional 

statistics and the Quantum Hall Effect190. The method of solution is different from 

the nested Bethe Ansatz used to solve electronic models with local interaction. For 

this reason we include below several reprints on the more fundamental issues of how 

to solve models with long-range interactions. 

The history of exact studies of one dimensional models with long-range interac

tions goes back to the classic works of B. Su ther land 1 9 1 - 1 9 9 and F. Ca logero 2 0 0 - 2 0 5 . 

In their papers the quantum mechanical iV-body problem was studied for various 

kinds of potentials. It was known in Refs. 203, 206, 207 that for certain potentials 

one can find an infinite number of conservation laws by means of the Lax method, 

and the problem becomes integrable. In [repr.lll.B.l - III.B.2] B. Sutherland showed 

the ground state wave function to be of product form, and gave a general method for 

determining the spectrum of quantum many-body problems. The method for deter

mining the spectrum is called Asymptotic Bethe Ansatz, and has been reviewed in 

Refs. 208, 197. It was first applied to lattice models with long range interaction by 

F . D. M. Haldane187-188-209 and B. S. Shastry1 8 9 '2 1 0 . Both authors studied antifer-

romagnetic Heisenberg models with long-range exchange, and succeeded in deriving 

the excitation spectrum. There are also many recent works on this subject (e.g. 

Refs. 211-225). In Ref. 226 N. Kawakami and S.-K. Yang evaluated the conformal 

dimensions of Bose and (spinless) Fermi systems with long-range 1/r2 interaction. 

Following F. D. M. Haldane's and B. S. Shastry's work various authors 

investigated electronic models with long-range interactions. Y. Kuramoto and 

H. Yokoyama investigated a supersymmetric t-J model with a long-range hop

ping term 2 2 7 [repr.l 1I.B.3J They showed that eigenstates of the hamiltonian can 

be found by Gutzwiller wave functions, and computed spin and charge suscepti

bilities and the specific heat coefficient by means of the Luttinger-liquid approach. 

They showed that in the high-density limit the model exhibits a Mott-Hubbard 

gap and reduces to the antiferromagnetic Heisenberg chain with long-range hop

ping studied in Refs. 187, 189. N. Kawakami investigated the Kuramoto-Yokoyama 

model2 2 8 [repr.lll.B.4], the SU(N) generalization of the Haldane-Shastry model, and 

generalisations of the supersymmetric t-J model with one species of boson and m 
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species of fermions229'221 by means of the Asymptotic Bethe Ansatz. He computed 
the excitation spectrum and discussed conformal properties of low-lying excitations. 

F. Gebhard and A. E. Riickenstein studied the spectrum and the thermody
namics of a Hubbard model with long-range hopping230. Their approach is quite 
different from the Asymptotic Bethe Ansatz, but makes use of a conjecture con
cerning a transformation of the hamiltonian. They found that the model exhibits a 
metal-insulator (Mott) transition at half-filling if the value of the Hubbard coupling 
U is equal to the bandwidth W. 
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Quantum Many-Body Problem in One Dimension: Ground State* 
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We investigate the ground state of a system of either fermions or bosons interacting in one dimension 
by a 2-body potential V(r) =glrt. In the thermodynamic limit, we determine the ground state energy 
and pair correlation function. 

INTRODUCTION 
We wish to investigate the properties of a 1-

dimensional TV-body system interacting by the 2-body 
potential V(r) = g/r*. In particular, we shall be con
cerned in this paper with the ground state in the 
thermodynamic limit: JV-* oo and volume Z,-> oo, 
with the density d = NIL kept finite. The discussion 
shall be divided into sections as follows: Section I dis

cusses the history and peculiarities of the g/r2 poten
tial; Sec. II derives the ground state wavefunction for 
an TV-body system contained in a weak harmonic well; 
Sec. I l l identifies the square of this wavefunction as 
identical with a probability distribution function 
familiar in the theory of random matrices, enabling 
many properties to be determined immediately by 
correspondence. 
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I. HISTORY AND PECULIARITIES OF THE 
glr2 POTENTIAL 

Several recent papers have been concerned with 
systems of particles interacting in one dimension by a 
two-body potential V(r) = g/r2. One line of investiga
tion proceeds from Dyson's work1 on phase transitions 
of classical systems in one dimension, which indicates 
that systems with attractive potentials falling off slower 
than 1/r2 have phase transitions, while attractive 
potentials falling off faster than 1/r2 do not. Thus one 
is particularly interested in whether an attractive 1/r2 

potential has a phase transition. As this paper deals 
only with the zero temperature problem, it throws no 
light on the occurrence of phase transitions; finite 
temperature properties are to be discussed in a later 
paper. Dyson's work is recalled to emphasize that 
gjr2 in one dimension is a particularly interesting 
choice. 

Second, Calogero,2 treating the corresponding 
quantum system, solved exactly the 3-body problem 
and iV-body ground state problem in both free space 
and with mutual harmonic interactions. Calogero's 
work does not allow one to determine the behavior of 
the gjr2 system in the thermodynamic limit. However, 
our ground state wavefunction is very similar to that 
of Calogero; the difference in this investigation and 
Calogero's is best described as one of viewpoint. It is 
this shift in viewpoint which allows us to proceed 
further than Calogero, to discuss the particle density, 
pair correlation function, and ground state energy at 
finite density. 

The potential gjr2 is very singular at the origin 
and requires some care to make physical sense. 
Classically, the attractive potential is too strong at the 
origin, requiring, for instance, a finite hard core to 
prevent "fall to the origin." However, for the quantum 
system, the zero-point motion acts to keep the particle 
from the origin, so that no cutoff is required, provided 
that the potential is not too attractive. Thus, for the 
2-body Hamiltonian 

„ a8 a2 , g m 
dx* dy2 + (X-y)2' W 

we are led to the restriction g ^ — J. This point is 
discussed by Landau and Lifshitz3 and is reproduced 
as an appendix at the end of this paper. Within this 
range of g, there are no bound states. The unnormal-
ized solutions for the 2-body Hamiltonian of Eq. (1) 
are 

V± - e^rh^kr) 
~eiKRri±a, r - * 0 , 
~ eiKR cos (fcr — \TT =F \TTO), r -*• oo, 

with 
a = «1 + 2g)i ^ 0, 

x = R - r, k>0, 

y = R + r, r ^ 0. 

Ja(x) is a Bessel function. From the considerations of 
Landau and Lifshitz and the Appendix, we select the 
unique solution y> = y>+ corresponding to the upper 
sign in Eq. (2). The wavefunction for r < 0 is given by 

y ( - k l ) = ±y(|r|), (3) 

E = $(** + f?) (2) 

corresponding to bosons or fermions, respectively. De
fining a new parameter A = £ + a = £[1 + 0 + 2g)*], 
we see that the "physically reasonable" solutions are 
^ ^ i- However, as explained in the Appendix, one 
can also treat free bosons by including the "unreason
able" solutions J > A > 0, corresponding to the 
lower sign in Eq. (2). With this understanding, in the 
expressions which follow, we may take A to range 
from 0 to +00. 

n. THE GROUND STATE WAVEFUNCTION 
IN A HARMONIC WELL 

We shall now consider the ground state of a system 
governed by the following Hamiltonian: 

N 32 x-1 c N 

"=-2jT! + L — ^ + ̂ 1*1 (4) i-i dXi t<l (xt — Xj) i-i 

The last term is an external potential to contain the 
system, replacing the usual box of volume L. Since 
we will be concerned with the limit N—>- oo, we will 
let o) -*• 0 in order to produce a finite density of the 
system in the interior. 

We write the wavefunction y> as y = <j><p. We verify 
that the choice 

* = IT \x< - x,\\ (5) 

<p = exp l - Jwj j ;* 2 ) ' (6) 

A 2-A = £g or 1=1 +a, (7) 

is a solution, with 

E = mN[\ + X(N - 1)]. (8) 

Since, for each ordering of particles, y> is nodeless, 
it is the ground state. This is very much like Calogero's 
ground state wavefunction; however, our Hamiltonian 
contains an external harmonic well instead of mutual 
harmonic interactions. 

First, let the kinetic term of the Hamiltonian act 
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on y>: 

" ? ^ 
= -2M*2 -VI 

1 
< i (Xi - x,y 

-Will —)*-+*% (» 
i y< *o x, — Xj! oXi t ax\ 

Thus, choosing X according to Eq. (7), we eliminate 
the mutual interaction term. We may rewrite the 
second term of Eq. (9) to give 

V 9 ^ M T 1 (d d \ -2TI - n2 h — r~ )<P 
i OXi i<iXi—Xj\OXi OXj! 

(gxi\<P = E<p. (10) 

constant C is given by 

xini + wrNnm + m- as) 
3 = 1 

This conjecture is verified for /? = 1,2, 4. 
The particle density is given by 

Now 

dxi 
—a>Xi(p, 

+ a>d 

dxi 

a(y) = Nl---\y?dy2-- • dyN, 

— 00 

normalized so that 

f+00 
a(y) dy = N. 

J—CO 

TT-^IN - / ) i , y2 < 2N, 

One finds7 

a(y) = 
0, y2 > 2JV. 

(16) 

(17) 

(18) 

a)]<p. This is true for all /S's. The density of x's, normalized 
in the same way, is 

Substituting into Eq. (10), we verify the eigenvalue 
equation with E as in Eq. (8). 

Let us rewrite xp in terms of the variables 

• >2 V 2\* 

then 
yf = (to/A)**,; (11) 

i /2Nw a > w x2 

, , , .Ax x2)' 
d(x) = { ( 1 9 ) 

0, x2 > 

2NX 

CO 

2NX 

10 

with 

y> = C* exp ( - P 2 y?) IT l>> - J ' / , (12) W e P l o t rfW i n F ig- J ' c o m par ing it with the corre-
\ ' / *<i sponding density for the d-function interaction problem 

( \ of Lieb and Liniaer.8 Denoting the density at x = 0 

- t f Z r i l l l l * - . * ' / . (13) by d, we find 
* ' S < ' d = -n-1(2Na>IX)i (20) 0 = 2A = 1 + (1 + 2g)i. 

C is a normalization constant, so that 

• ' - J ••• /<*• 

(14) 

cr1 dy^y2. 

III. INTERPRETATION OF tp2 

It is at this point that we recognize the expression 
in Eq. (13) to be identical to the joint probability 
density function for the eigenvalues of matrices from a 
Gaussian ensemble. Choosing /? equal to 1,2, and 4 
corresponds to orthogonal, unitary, and symplectic 
ensembles, respectively. In our case, the most attrac
tive situation, g = —$, corresponds to /S = 1; free 
fermions corresponds to /S = 2. 

We may immediately go to the literature46 and 
find the normalization constant C and the 1- and 2-
particle correlation functions. 

V ^ N 

FIG. 1. Particle density d(x), for X = i in a well to = TT'IW, is 
shown by the solid curve. For comparison, the density of a boson 

_ . . . . . . , , ., . ., .. . system, interacting by V(r) — 2&(r) in one dimension at the same 
First, it IS conjectured" that the normalization chemical potential in the same well, is shown by the dashed curve. 
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G(r 

1.0 

FIG. 2. The pair correlation 
function is shown for the three 
values /? = 1, 2, 4 ; we have 
taken d = 1. 

0.5 -

1 

/ / / / / / / / 

- / / / 
/ / fP=4 /M 

\ \ \ 

\ \ \ 

• \ 

1 

, ' ' ' " 

• 
+* 

0.5 1.0 

r 

1.5 2.0 

or properties at zero temperature. Considering pressure 
a) = Tr2d2lj2N. (20') P as a function of temperature T, fugacity Z, and 

coupling constant 1, we find that P must be of the 
Thus, we see that, for fixed d, letting N-*• oo means foTm 

that u> — 0 as TV-1. p = r | / , ( z > A) 
We may extract from Eq. (19) the ground state 

energy for a system at density d in the more con- Thus the energy density is given by 
ventional box of volume L, instead of a harmonic 
well. The energy density must be intensive and have 
dimensions L~3; thus the only choice is 

(25) 

EjL = d3e{K), (21) 

L~ dT \T) 

= iT*p(Z, X) = \P. (26) 

, , , , . ,. . e ... ,. The equation of state at T= 0 is therefore found to be 
where e(X) is a dimensionless function of the coupling ^ 

P = i2d3A27T2. (27) constant. The chemical potential is then 

p = 3rf2c(A). (22) ^ r e n o w c o n s ider the pair correlation function G(r). 
_ . . , , . . . , ,. ., , . , Since the density factors out trivially, we take d = 1 
Placing this system in a harmonic well, the chemical , . „ . J _ _ / ' 

. . , in the following equations. Then G(r) —> 1 as r -*• oo, 

li = Zd%x)e{X) + co2x2 

or 
f[(/t - co2x2)/3e(A)]i, x2 < ft/co2, 

and we write 

and 
G(r) = 1 - Y(r) 

d{x) = 
0, 

(23) b(k) -r 
J—CO 

drY(r)e2 

X2 > [ijcO2. 

Comparing Eq. (23) with the previous equation (19), T h e n w e find t h e following: 
we find (a) F o r P = 2> 

e(X) = P V , 

E/L = fcPAV. (24) 
^ _ n - |fc|, \k\ < l , 

Likewise, we may determine the thermodynamic " w |o, |fe| >̂ 1. 

Y(r) = [s(r)f = [(sin «•)/»!•]• 

b(k) = 

(28) 

(29) 

(30) 

(31) 
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0 . 5 -

-0.5 

FIG. 3. The negative Fourier transform of the pair correlation 
function is shown for the same three values of /?; again d — 1. 

(b) F o r 9 , 3 = 1, 

Y(r) = (JTs(Z) d z ) ^ ) + [S(r)f, (32) 

( l - 2 | f c | + | * | l n ( l + 2 | f c | ) , |*| £ 1 , 

(c) For /? = 4, it is conjectured10 that 

fc(/c) = 

(33) 

Y(r) = [s(2r)f - (J>-)m ™ 
b(k) 

_ / l - l | k | + i|fc|ln[|(|fc|-l)|], 1*1 £2, 
(0, 1*1 > 2. 

(35) 

These are the only cases for which the pair correlation 
function can be evaluated. We notice the system 
becomes more nearly ordered on a lattice as /? in
creases or, equivalently, as the interaction becomes 
more repulsive. Figures 2 and 3 show G(r) and b(k) 
for these three values of /?. 

APPENDIX 

We wish to cut off the g/r2 potential for r < b, 
replacing it by a less singular potential. Then, letting 
b -». 0, we hope for a unique limiting solution ip. Two 
unbiased choices for the potential V when r < b are: 

(i) V = gjb2, r < b—flattening out the singularity; 
(ii) V = + oo, r < b—a hard core. 

The solution for r ^ b will be 

y>± are defined in Eq. (2). We take kb to be small, and 
assume V = cljbz, r < b, with c real or imaginary. 
This includes both cases (i) and (ii). 

We match logarithmic derivatives at b, obtaining 
the equation 

T = 

with 

(j + a)baka + A(j - a)b-"k-a 

kaba + Ab-"k-a 

ctanh(c) , bosons, 
T = 

c coth (c), fermions. 

(A2) 

(A3) 

T is simply a number, equal to (g% tanh (g*), 
gi coth (§•*)) for cutoff (i) and (+00,4-00) for 
cutoff (ii). Solving for A, we obtain 

A = -
+ a~ T b2ak2a. 

\ - a - T 
(A4) 

Thus if g >̂ \, a > 0 real, then, as 6 ->• 0, A —* 0, 
with the exception of the case 

T=i-a. (A5) 

= V+ + Arp_ (Al) 

This is a resonance condition and is not fulfilled for 
cutoffs (i) and (ii). 

For g < J, a is pure imaginary, and A does not 
approach a limit. Upon closer examination, one sees 
that there is no lowest energy eigenstate for the 
Hamiltonian in this case. 

There is some precedent11 for using the solutions 
y>_, although as we have seen, this is surely artificial. 
For instance, one wishes to have two independent 
solutions in the scattering of nonidentical particles 
by a g\rz potential. We take the viewpoint that the 
mathematical equations are easily extended to the 
"unphysical" ^-solutions with no extra effort; thus 
these cases are included in this paper. 

* Work supported in part by National Science Foundation Grant 
GP 13632. 
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We continue our investigation of a system of either fermions or bosons interacting in one dimension 
by a 2-body potential V(r) = gjr2. We first present an approximation for the eigenstates of a general 1-
dimensional quantum many-body system. We then apply this approximation to the g/r2 potential, allow
ing complete determination of the thermodynamic properties. Finally, comparing the results with those 
properties known exactly, we conjecture that the approximation is, in fact, exact for the gjr2 potential. 

INTRODUCTION 

This paper continues an investigation of the 
properties of a 1-dimensional quantum JV-body system 
interacting by the 2-body potential V(r) = gjr2. As 
before, we shall be concerned with the thermodynamic 
limit: JV—>- oo and volume L -* oo, with density d = 
N/L kept finite. The first paper1 treated the ground 
state exactly; this paper will develop an approximation 
for the excited states, and hence the thermodynamics. 
Thus, the first section of the present paper introduces 
this approximation, while the second section applies 
it to the gjr2 potential. Finally, the third section com
pares the results with those properties known exactly: 
zero temperature thermodynamics, second and third 
virial coefficients, and the limit of zero interaction. 
It is found that in all cases our approximation 
reproduces the exact results. Thus we are finally 
led to conjecture that the approximation is, in fact, 
exact for the gjr2 potential. 

I. APPROXIMATE EIGENVALUES OF A 
1-DIMENSIONAL AT-BODY SYSTEM 

We now present an approximation for the energy 
eigenvalues and thermodynamics of a system of N 
fermions or bosons interacting in one dimension. 
Later we shall apply the method specifically to the 
gjr2 potential, but we expect it to apply much more 
generally in one dimension whenever a potential has 
a phase shift and no bound states. This restriction to 
potentials with no bound states results because the 
approximation uses an asymptotic wavefunction 
which neglects diffraction effects from the simultaneous 
interaction of three or more particles. The results will 
then depend on the 2-body Hamiltonian through the 
exact 2-body phase shift. The scheme is interesting, 
for it gives the thermodynamics in an approximate 
but closed form, in contrast to a systematic series 
expansion. On the other hand, it is difficult to esti
mate the error. The approximation is modeled on the 
exact solution of the 1-dimensional (5-function boson 
problem.2,3 

Consider the 2-body problem governed by a 
Hamiltonian: 

H = - h - h + F(|Xi -Xa|)-
ox\ ax\ 

For x1 « x2, the asymptotic wavefunction is 

(1) 

V>(xi, x2) = e J(kixi+k2X2) B«<*1- (2) 

We assume that kx > k2. Then S(k) = — exp [—i6(k)] 
is the S matrix and 6(k) is the 2-body phase shift; d(k) 
is odd in k. For bosons or fermions, respectively, we 
have 

V (*1 » X2) = ±y> (*! « X2). 

The energy is given by E = k\ + k\. In the center of 
mass coordinates [Eq. (1.2)], the asymptotic wave-
function becomes 

if = {2ji)eiKRsm [kr - J0(k)]. (3) 

For later reference, we list 6(k) for the following 
examples: 

d function, V{r) = 2cd(r): 6(k) = - 2 tan-1 (kjc), 

(4a) 

hard rod, v(r) = +oo, r < b: 6{k) = kb, (4b) 

V(r) = glr2: 6(k) = (-nk\2 |*|)[(1 + 2g)i - 1], (4c) 

free fermions: 6(k) = 0, (4d) 

free bosons: 6(k) = — k-nj\k\. (4e) 

Our basic approximation will be to assume that the 
asymptotic JV-body wavefunction is that given by 
2-body scattering alone. Therefore, there is no 
diffraction, and momenta are exchanged in pairs. The 
asymptotic wavefunction for the region xt « x2 « 
• • • « xN is a sum of AH terms corresponding to the 
AH permutations P of the A^Ar's, kx > k2 > • • • > kN: 

V = 1 A(p) exP (' 2 kpjX,). (5) 

The coefficients A (P) are related by 2-body scatterings: 

A(- • • k', k • • -)M(- ' • k, k' • • •) = -ie(k-k') (6) 

251 
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For other orderings of the particles, we simply use 
either Fermi or Bose statistics. This wavefunction is of 
the form known as Bethe's ansatz.4 

We are now ready to apply periodic boundary 
conditions to the wavefunction, determining a unique 
set of k's for each quantum state. The energy is given 
by 

£ = 2fe?. (7) 

For a ring of circumference L, we find the following 
equation for the k's: 

We have 

( - l ^ e x p (i 2 0 ( k ' - fc)V 

Upon taking the logarithm, we obtain 

kL = 2nl(k) + 2 6(fc - k'). 

(8) 

(9) 

The I(k)'s are either integers or half odd integers 
which come from log (±1)/27T and, in fact, serve as 
quantum numbers for the problem. They may be 
taken as free fermion k vectors. Thus, for example, 
the ground state is given by the I(k)'s densely packed 
about zero. 

We now adopt Yang and Yang's derivation for the 
thermodynamics of the ^-function Bose gas,3 without 
rederiving. The pressure is given as a function of 
temperature T and chemical potential fi by 

PQ*. T) = f-
2TT 

e(k) depends upon fi and T and satisfies the integral 
equation 

e(fc) = -fi + k2 + — \dk'B'(k - k') 
Z7T J— oo 

x In (1 + e-
tik')/T), (11) 

with d'(k) = dd(k)/dk, 6(k) being the 2-body phase 
shift. As usual, the density d is given by 

dP 

f 
%f— c 

dk In (1 + e-eM/T). (10) 

d = 
dfi 

(12) 

We now consider simple examples. 

(a) ^-function potential: As our approximation is 
modeled on this problem, substituting the phase shift 
(4a) into the above equations gives the exact equations 
of Yang and Yang. 

(b) Hard rod of radius b: The phase shift is given 
by (4b). Equation (9) for the k's is 

kL{\ - db) = 2nl(k) - bK, (13) 

(14) 

Thus the k's for K = 0 are like free fermions in a 
volume reduced by the hard cores. 

T_ 

2TT f 
e(fc) = -fi + k2 + bP, 

fi- bP - k\l 
dk\n 1 + exp f^); 

(15) 

(16) 

If we write P0(/n, T) as the pressure for free fermions, 
then P(fi, T) = P0(fi - bP, T). We may invert to 
find fi(P) = ji0(P) + bP. Differentiating with respect 
to P gives the specific volume v = \\d, 

v(P, T) = v0(P, T) + b. (17) 

This clearly shows that the effect of the potential is 
only to create an excluded volume, and the system 
otherwise behaves as a system of free fermions. These 
results are exact. 

II. APPLICATION OF THE APPROXIMATION 
TO THE glr2 POTENTIAL 

We now apply the approximation of the previous 
section to the g/r2 potential. Using the phase shift of 
Eq. (4c), we find the kernel of the integral equation 
(11) to be 

B\k) = 27ryd(k), (18) 

with the following definitions: 

a = i ( l + 2g)K k = a + i, y = a - \ . (19) 

Thus the integral equation simply reduces to the 
transcendental equation 

e = -p + k2 + Ty In (1 + e~e/T). (20) 

Before proceeding with the finite T results, let us 
first investigate the ground state and low lying 
excitations. 

A. Ground State 

In the case of the ground state, we have the k's 
distributed with a density p(k), 

2TTP(k) = 
1 — 2nyp{k), 

.0, 
1*1 <*(>, 
1*1 >*0, 

(21) 

where k0 is a Fermi momentum determined by 

p(k) dk = d. (22) 
J—fco 

The ground state energy density EJL = u0 is given by 

f *0 
"o = p{k)k2 dk. 

These equations are easily solved to yield 

p(k) = 1/2TTA, 

d = kg/nX, 

u0 = fcjJ/377-A = J T T W . 

(23) 

(21') 

(22') 

(23') 
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Differentiating u9 with respect to d gives the chemical 
potential 

fl = {TrXdf. (24) 

We recall that these T = 0 results agree with the 
exact results of Paper I. 

B. Excitations near the Ground State 

Excitations near the ground state are finite numbers 
of hole-particle pairs obtained by taking particles 
from states k„ below the Fermi surface to states k'a 

above the Fermi surface. Then the energy and momen
tum are given by 

We easily find 

Eo = I HK) - e(fc.)], 

P = I tp(fci) - p(K)l 

ue-k^ix + ki, |/c|<fc„ 

(25) 

U2, \k\ > k0 

p(k) 

(26a) 

(26b) 
W, \k\ < k0, 
\k-k0 + k0IX, \k\>k0. 

Defining p0 = k0jX = ird, we find the dispersion curve 
e(p) of the excitations to be 

«P)> (27) (*[p2 + yptl \p\<Po, 

\[P + YPoY> \P\>PO-

Note that the derivative is continuous across p0 and 
equal to 2Xp0 — 2k0. 

C. Thermodynamics 

Let us now return to Eq. (20). In terms of the 
following quantities, 

Z = fugacity = e — JilT 

Ze" (28) 

(29) 

(ii) 1 > A > 0, two branch cuts extending to 
infinity from the following two branch points: 

Z0 = e± 

(1 - 4a 

/l - 2aY 

'•Al+2a) 

= e±i,x—L_/na (31b) 
{-Xyf\ Xj ' 

The location of these branch points in the complex Z 
plane as a function of X is shown in Fig. 1. X = 0 is 
the case of free bosons. We therefore conclude from 
the above that there are no singularities on the posi
tive real Z axis for X > 0 and hence no phase tran
sitions in these models. 

D. Power Series Expansion for P 

We wish to find a power series expansion for P 
in Z of the form 

LU!HZnBn. (32) 

1 2 \Tr] T!=1 

We first invert Eq. (29) to give 

CO 

w = lnt = ZanCn. (33) 

Then we perform the k integration on Eq. (30) to give 

Bn = CJni, (34) 

independent of T. Therefore, the energy per volume 
u is given by the expression u = | P , as found in Eq. 
(1.26). 

a = exp [(fi - fcz)/T] 

I = ew = 1 + e~e/T, 

Eq. (20) becomes 

a = lx - V = 2eaw sinh Jw, 

with pressure given by 

P = — dkln I = — dk w(k). (30) 
2TT J—00 27r J—00 

Writing P as a function of Z, T, and a, we note the 
symmetry P(T, -Z, -a) = P(T, Z, a). Further, P 
as a function of Z has the following singularities: 

(i) X > 1, a branch cut along the negative real axis 
beginning at the branch point 

(4a2 - 1)* 

/2a — 1\° 1 (yf 
-A 1 = T I — I ; (31a) FIG. 1. Solid curve indicates location of branch points of pressure 
i\2a + 1/ (Xyy\X) in the complex Z plane as a function of A = i[l + 0 + 2g)*]. 
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n(y + 1) 

B„ = 

n\ 

3 

\{ny)\ 

- l ) n + 1 
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Upon inverting Eq. (29), we find the coefficients HI. COMPARISON OF RESULTS WITH KNOWN 
in the expansion of Eq. (33) to be THERMODYNAMIC PROPERTIES 

( _ l ) n + 1 In this final section, we shall test the approximation 
C" = ~, ("y + WnY + 2) • • • ("y + " - !) of the first section as applied to the g/r2 potential in 

. ^„4-i r , , M . the second section. As has been remarked, this 
( — Dn+1 \n(v + 1 ) 1 ' v 1 \_y_r_ /JJ p j ^ potential presents a unique opportunity to test, since 

the 3-body problem is separable and hence exactly 
soluble. This enables us to calculate the third virial 

n(y + 1)]! , , „ coefficient, or equivalently the third coefficient B3 

n*(y _). 1) n\ (ny)\ ' m the fugacity expansion of Eq. (32). 
and the radius of convergence of the power series of Preliminary to evaluating B3 exactly, let us first 
Ea (32) is modify Calogero's solution5 for the 3-body Hamil-

R = \yyil\, (37) t o n i a n 

in agreement with Eq. (31). For Z > R, P is given by H = -J,—2+ J, + w2 £ x2 . (43) 
the analytic continuation of the power series of Eq. i=i3x, <<3=I(XJ — x,) <=i 
(32). We first transform to the variables 

E. Classical Limit 
-K = K*i + x2 + x3), 

x = 2~i(x1 — x2)> 

y = 6-*(Xi. + x2 - 2x3), (44) 

r2 = x2 + y2, 

tan cf> = xjy. 

The classical limit exists only for the repulsive case, 
for which Eq. (32) becomes 

~ = ~ ( — f t (—4)[-Z(k)*]". 08) 
T \27Tg/«=i\n!nV 

This expression as a function of Z has a branch cut 
along the negative real axis beginning at The Schrodinger equation becomes 

Z0=-(\le)(2lg)i. (39) „ . „ _ , / ^_ i A , » » M, 

F. Special Cases 

/ 52 1 3 , , M, \ 

\ or r or r' J 
(45) 

1 32 

We may now consider as examples the special cases HR = \- 3co2R2, (46) 
investigated in Paper I, with j3 = 1, 2, 4. These may 3 oR 
all be expressed in closed form. _ _32_ , g / 1 . 1 

(a) /S = 2, g = 0, y = 0: £ = 1 + a, * d<£2 2\sin2 sin2 (</> + §77) 

(47) 

Thus the problem is separable. 
This is the familiar expression for free fermions in Only the operator HR of Eq. (46) differs from 
one dimension. Calogero's problem. We seek a solution y> = 

(b) /? = 1, g = - i , y = -i: y>4>(.^)Vr(r)VR(R)- F i r s t we solve M^ = mip^ to find 

In I = w = 2 sinh"1 Ja, n(n) = ( s i n 3 ( ^ ( c o s <f>), 

P ^ ^ T d k sinh"1 (iZe-k*,T), (41) m = [3(n + X)}\ n = 0, 1, 2, • • • . ( 4 8 ) 

C* is a Gegenbauer polynomial. We then solve for 

d = 7T-1 \ dk(l + 4Z-2e2"2,T)-i. (41') W finding 

( c ) 0 = 4 ,£ = 4 , y = l : £„ , = 2a>[2n + 1 + 3(Z-+A)], n = 0, 1, 2, • • • . 
f - £ = a or £ = *[1 + (1 + 4a)*], (49) 

— = (277)-1 dfeln [|(1 + 4Ze_* ITy + f], (42) Li i s a Laguerre polynomial. Finally, the center of 
T J—x mass equation (46) has a solution 

d = " " l l ^ Ze~k'/T[1 + ^^ # = e~W Hm K3ffl)*«]. (so) 
+ (1 + 4Ze-*a / I ,) i]-1. (42') £m = 2co(m + J), m = 0, 1, 2, • • • . 

file:///_y_r_
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Hm is a Hermite polynomial. The total energy E is 
given by 

= 2o>[3/ + In + m + f ] + 6coy. (51) 

The first term in this expression is simply the free 
fermion expression, while the last term displaces the 
entire free fermion spectrum by (xoy. This is a 
surprisingly simple result. Generally, Calogero made 
a conjecture, equivalent to the conjecture in our case, 
that for any N, the spectrum is that of free fermions 
in a harmonic well m displaced by ywN(N — 1). This 
is verified for N < 3. 

We now wish to compare these exact results with 
the calculation of the previous section. We do this by 
directly calculating a fugacity expansion for a gjr2 

system in a macroscopic harmonic well. At the same 
time, we may easily place the system of Sec. 2 in the 
same harmonic well, so that we may compare the first 
three coefficients in the fugacity expansion. 

Let us write the grand canonical ensemble as 

Q(Z, co, T) = en 

CO 

= I Z ^ J ) . (52) 
N-l 

£2 is an extensive variable. We find the coefficients of 
a fugacity expansion 

00 

Cl = ar1ZB'n(T)Z\ (53) 
K = l 

by the usual derivation of cluster expansions, to be 

B[ = lim coQx, 
£O->0 

B'2 = lim w[Q2 - Q\j2], (54) 
co-»0 

B3 = lim co[Qs - QXQ2 + iQ»], etc. 
to-»0 

If qN denotes the partition function for the free 
fermions in a harmonic well co, then Calogero's 
conjecture gives 

On the other hand, the expression of Eq. (32) allows 
us to calculate O as 

Qi 
_ „-pmyN{N-l) 

IN- (55) 

This is correct for N < 3. Using the expressions for 
qN, we find it an easy task to evaluate B[, B'2, and B'3 

from Eq. (54). We leave this task for the reader, 
quoting the values 

B[ = \T, Bl = tT(2y + l), 

B'3 = AT(3y + l)(3y + 2). 

J -X i 

=i(i)'|B„z.r 
l\TT/ n=l J-t 

_T_ ~BnZ
n 

dx 

2a> «=i n 
(56) 

(54') 

where Bn is given by Eq. (36). 
Comparing Eq. (54') and (56), we see that they are 

the same; our approximation gives the exact second 
and third virial coefficients. 

In all instances where exact results exist, our 
approximation agrees. We collect these cases: 

(i) free fermions or bosons when g = 0; 
(ii) second and third virial coefficients; 

(iii) zero temperature thermodynamics. 

The last two points indicate agreement in opposite 
regimes. We are thus led to the following. 

Conjecture: All results of the second section are 
exact. 

It is very likely, although not proven, that Calogero's 
conjecture implies our conjecture through Eqs. (53) 
and (56); the converse cannot be true. However, it is 
believed that the approach of this paper reveals the 
physical basis of the conjecture to be the absence of 
diffraction effects in many-body scattering. 

We include as an appendix another amusing in
stance where an approximation applied to the g/r2 

potential yields the exact solution. 

APPENDIX 

In this appendix, we wish to present a very simple 
example where again an approximation applied to 
the g/r2 potential problem yields an exact result. 
The example, being a 1-body problem, has little to 
do with the more complicated many-body problem, 
yet it gives insight into the peculiarities of the g/r2 

potential and supports the conjecture made in this 
paper. 

We consider a single particle interacting with a 1-
dimensional rigid lattice of g/r2 potentials; the lattice 
constant is b. However, we first present an approxi
mation, reminiscent of the approximation in the text 
of the paper, valid for any potential in one dimension 
which has a phase shift. This approximation is well 
known in solid state physics. 
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Let the Schrodinger equation be 

d 

with 
(-ih+™)*-E* 

U(x) = 2 V(x ~ nb). 

(Al) 

(A2) 

V(x) is the potential between one lattice point and the 
particle; we assume it to be symmetrical. U(x) is 
periodic with period b. 

We now divide the lattice into equal cells, the nth 
being (n — \)b to (n + \)b. Let b be so large that there 
is no overlap of potentials. We write the solution in 
the nth cell as 

y,(x) = yi- '^flfcx) + y>in)<j>{n\kx). (A3) 

<f>[n)(kx) is a solution in the nth cell corresponding to 
a plane wave of momentum k, incident from the right 
on a scatterer at the origin, with amplitude chosen to 
make the amplitude of the outgoing wave on the left 
unity. </>in)(kx) is the time reversal of <f>[n)(kx). We 
may then define a transfer matrix M, acting on the 
vector 

V»(B> = (y[n\ y>in)), so that My/n ) = ipin+1). (A4) 

In terms of the transmission and reflection amplitudes 
Tand R, we find 

M = 
eiikIT 

RjT 

R*jT* 

e-ikbIT* 
(A5) 

We shall parametrize the transmission amplitude by 

T = exp [id(k)] cos 0(fc). (A6) 

To obtain a band structure, we require the solution 
to be periodic after N sites. This in turn requires 

= / , and, with det M = 1, we find 

Tr M = 2 cos (Inn/N), n = 1, 2, • • • , N, 

cos (bk - <5)/cos 6 = cos (2nnlN). (A7) 

M« 

or 

We solve this transcendental equation for k as a 
function of n and a band index, and calculate the 
energy by 

E = ik2. (A8) 

Our approximation consists of assuming Eqs. (A7) 
and (A8) to hold for all b. Obviously, for the 6-
function potential, our results will be exact since 
point interactions cannot overlap. 

We next apply the previous approximation to the 
gjr2 potential, when 0 ^ g > —J. First, we see that 

Eq. (A2) gives 
00 

U(x) = g 2 (x - nb)-* 
n=—<x> 

= gTT-V2 sin"2 (7rx/fc). (A9) 

The resulting differential Eq. (Al) is identical with 
Eq. (47) of the text; this band problem has been 
solved exactly by Scarf.6 We shall use Scarf's matching 
condition through the singular potential, where the 
most singular solution y>_ is taken symmetrical and 
the least singular solution y>+ is taken antisymmetrical. 
As discussed in Paper I, this is an artificial choice, yet 
necessary for a nontrivial band problem. We easily 
find the transmission and reflection amplitudes to be 

T = sin (TTO), R= - i cos (TO). (A10) 

They are independent of k. Equation (A7) gives 

cos (kb) = sin (na) cos (27rn/iV) 
or 

, cos - 1 [sin (TTQ) COS (iTrn/N)] 
k — - . (Al l ) 

b 
Thus the allowed bands of k values are of equal width 
and equally spaced. The energy is given by Eq. (A8) 
to be 

E = {cos"1 [sin (TTA) cos (27rn/JV)]}2 

lb 
Upon comparing this result with Scarf's exact solu
tion, we find them to be identical for all b, whether {he 
potentials overlap or not. Thus, once again, an 
approximation applied to the g/r2 potential, where it 
would clearly seem to be inappropriate, has in fact 
yielded exact results. 

Addendum: After this paper was submitted, two 
preprints have appeared which may be used to supply 
a proof of our final conjecture. In the first preprint, 
F. Calogero7 proves his own conjecture, our Eq. (55). 
One may then easily evaluate the grand canonical 
ensemble of Eqs. (52) and (53) by saddle point methods, 
as done by C. Marchioro and E. Presutti8 in the second 
preprint. The result is then seen to be identical to our 
Eq. (56); actually it is easiest to compare the average 
number of particles Â  = 30/3 In Z. 

* Work supported'in part by National Science Foundation Grant 
GP 13632. 
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The Gutzwiller wave function is shown to be the exact solution of a supersymmetric t-J-type model. 
The model realizes a Fermi-liquid state in one dimension with a discontinuity in the momentum distribu
tion. Analytic results are obtained for spin and charge susceptibilities, and the specific-heat coefficient 
with the help of the Luttinger-liquid theory. In the high-density limit the model exhibits a Mott-
Hubbard gap and reduces to an antiferromagnetic spin chain with long-range exchange solved by Hal-
dane and Shastry. 

PACS numbers: 7l.30.+h, 05.30.-d, 74.65.+n, 75.IO.Jm 

Exactly soluble one-dimensional fermion models such 
as the Tomonaga-Luttinger model [1], the Hubbard mod
el [2,3], and the supersymmetric t-J model [4-7] show 
power-law singularities in the momentum distribution. 
This feature is in marked contrast to the discontinuity at 
the Fermi surface in Fermi liquids. In this Letter we 
present an interacting-fermion model that is exactly solu
ble and shows a discontinuity in the momentum distribu
tion. This model is the first example that realizes a 
Fermi-liquid state with spin j in one dimension. The 
model includes in the high-density limit the antiferromag
netic Heisenberg chain with long-range exchange which 
has been solved by Haldane [8] and Shastry [9]. We 
show that the Gutzwiller wave function is the exact solu
tion of the model. The resultant Fermi-liquid state is 
identified as a free Luttinger liquid [ l ] . With this iden
tification we obtain analytic results for most fundamental 
thermodynamic quantities such as the charge susceptibili
ty, the spin susceptibility, and the low-temperature spe
cific heat. The charge susceptibility indicates the pres
ence of a Mott-Hubbard gap. 

The t-J-type Hamiltonian is given by 

•»=Pl, \tiJ'Zc!,oCj0 + Jij(Si-Sj- i-n,-n,-)]?>, 
i"j L <• J 

where T is the projection operator to exclude the double 
occupation at each site. Other notations are standard 
ones. We treat a finite system and impose the periodic 
boundary condition. Namely, we work with a ring of 
length A' in units of the lattice spacing. We choose A' 
even and require 

tij=Jij=tD(xi-Xj)~1, 

with D(xi-Xj)=(N/nh\nMxi-Xj)/N] and / > 0. In 
the macroscopic limit — / reduces to the nearest-neighbor 
transfer. 

The Gutzwiller state |G> is related to the free Fermi 
sea \F) by |G>=P|F>. Following Ref. [10] we choose 
the fully polarized state |A|> of A electrons as the refer
ence state and represent |C) as 

i o - z *c(w,w) n cW/t n 
ixUyi i e Til j eTil 

•j\ 
\N\). 

Here be} denotes the set of coordinates for M down-spin 
electrons and \y} denotes that of Q holes. Thus we have 
N — 2M + Q. In order to remove the degeneracy we 
choose M odd. The amplitude Vc(lx},{y}) is given, 
apart from a normalization factor, by 

¥ c ( M . W ) =exp [ - in f E*.+Z yt 11° D(xa-xp)
2 II D(yi-ym)TlD(xa-y,). (1) 

This * c ( M , ( j ' } ) is a generalization of wave functions 
treated by Sutherland [11], who considered in the contin
uum space both a boson system and a fermion one, but 
not their mixtures. Under exchange of coordinates, holes 
behave as fermions and down-spin electrons behave as 
hard-core bosons which are called spin bosons hereafter. 
We note that the hard-core repulsion between holes and 
spin bosons leads to antisymmetry of f c (f*h M ) under 
exchange of xa and >>/. In this representation the system 
of spin bosons and holes has a total momentum of 
— K(M + Q), which in fact is compensated by that of up 
spins constituting the vacuum. 

The singlet nature of |G> appears as [10] 

r 

5>c(M,W)-o, 
1338 

where Xi is the first coordinate in u l . In applying the 
transfer operator in Ti to \G) we consider the up-spin 
part T\ and the down-spin one T[ separately. T\ 
changes {y} in ¥ c ( W , { y } ) but leaves ix) intact. On the 
other hand, T\ causes exchange between pairs of xa and 
yi and is harder to treat. A crucial simplification occurs 
since T\\G) is still a singlet. This follows because Eq. (2) 
is valid for any [y] and thus after application of T\ the 
summation over x\ still gives zero for the wave function. 
By a rotation in spin space which does not change the 
singlet state, we can transform T\ into T\ and prove the 
equality T]\G) = Ti\G). 

(2) Let us rewrite the Hamiltonian in terms of the spin-

boson operator bit where b?b,—itil2-Sj, and the hole 
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operator A, defined by n,• — 1 — h?hi. Using the singlet 
property described above we obtain 

"H\G)-'P'Ltlj{2h}hj + b?bj + mimj- %ninj)\G), (3) 

with m, =bjbj. We represent the transfer operator for 
holes in Eq. (3) as Ty, and that for spin bosons as T/,. Let 
¥ * c ( l * h W ) denote the coordinate representation of 
Tb\G), and VhG({x},{y}) that of Th\G). The ratio * A 0 / 
*c at (M.fy}) is given by 

**e/*e - / Z ' i -nN/2DM ! I I 1 B$ IlF& , (4) 

where z -'exp(2m/N) and 

fii^-1 - [ ( l - z " ) Z a
2 + (l - z -')Zf]nza-Zt)

2, (5) 

FJ,"' -cos(mi/N)+s\n(m/N)coteai. (6) 

with Za=exp(2OT'x„/Ar) and &ai=x(xa—yt)/N. We use 
Greek indices for spin bosons and Latin ones for holes. 
The first term in B„f and that in F^ do not have coordi
nates of particles. With this in mind we expand Eq. (4) 
by the use of Eqs. (5) and (6) and classify terms accord
ing to the number of particles involved. Then we find 
that all terms with more than three particles vanish after 
summation over n. A similar observation has been made 
in Refs. [8] and [9] in the absence of holes. 

For trhG (W, {y} ) /* G (M, W ) we obtain 

¥*C/¥C = 2 / ? Z -"NnD{n) - 2 £ n ^ ' l M " ' • (7) 
n ~ l I m a 

Here again terms with more than three particles vanish. 
The three-body terms in Eqs. (4) and (7) consist of four 
types depending on the number of spin bosons involved. 
In the case of three spin bosons the three-body terms 
combine to a constant owing to the identity 

COt0a^COt0<,, + COt0prCOt0()o-|-COt0,<ICOt9f/3= — 1 . 

Similar reduction occurs in the case of three holes and 
that of two spin bosons and one hole. 

In the case of two holes and one spin boson the three-
body terms do not combine to a constant because of 
different numerical factors. However, by using the sing
let property of VG we can transform the residual three-
body term into 

£ 2 cot0o,cot0Ol 
a l*m 

i * G " \Q(Q-\KQ-2-3N) 
o 

+ X sin" 20/, * c . 

The details of the algebra will be reported elsewhere. 
We have thus seen that the sum of Eqs. (4) and (7) 

reduces to a constant plus two-body terms. The two-body 
terms turn out to be just equal to minus the interaction 
part in Eq. (3). This means that the Gutzwiller wave 

function \G) is an eigenstate of "H. The eigenvalue E is 
given in terms of ne "2M/N by 

£ _ ne(n?-3ne + 4) \-2nell 
(8) Nnll 12 NL 

By the nature of the method of solution it is hard to ex
clude the possibility of lower-energy states other than 
\G). Nevertheless there is strong evidence in favor of |G> 
being the ground state of the system. First, in the dilute 
limit, E given by Eq. (8) tends to that of the free Fermi 
sea. Thus if * c is not the ground state for finite ne, a 
phase change should occur as the density is increased. 
This, however, is unlikely in view of the known properties 
of related models such as the Hubbard and supersym-
metric t-J models. Second, in the high-density limit 
ne = \, E agrees with the result of Refs. [8] and [9] with 
due account of the — n,-«;/4 term in fi. In this limit Hal-
dane [8] has confirmed by exact diagonalization up to 
twelve sites that * c is indeed the ground state. 

The charge susceptibility Xc in the macroscopic limit is 
derived from Eq. (8) as 

1 d2(E/N) n1 -ne) 

Xc dn? 2 

The divergence of Xc as ne approaches 1 is consistent with 
the formation of the Mott-Hubbard gap, as in the Hub
bard model [21 and the / - / model [7]. Let us compare Xc 
with the susceptibility Xc0) in the free model with the 
single-particle energy 

e(A:)=;r/{|A:|(l-|A:|/2;r)-;r(l-/V-2)/3} 

for momentum k. The long range of fy makes its Fourier 
transform (ik) dependent on the size of the system. We 
obtain l/^<0)=^2/(l -ne/2)/2. The ratio 

- _ Xc 1 ~ne/2 
Xc

 v(o) = 

Xc 
1 — ne 

(9) 

is a measure of the many-body effect. Interestingly the 
right-hand side of Eq. (9) agrees with the inverse of the 
discontinuity in the momentum distribution obtained by 
the Gutzwiller approximation for models with infinite 
repulsion. 

We now show that the exact solution is consistent with 
the Luttinger-liquid theory [ l ] . For this purpose we shift 
for each spin a the momentum distribution in the Slater 
determinant of |C) by KJJN, with Ja an even integer. 
Let us first consider the case where only the charge-
current excitations are involved: J\ =J'j. Upon applica
tion of transfer operators in Eq. (3) to the shifted wave 
function, terms with more than three particles vanish as 
long as |7tl ̂  M+ 1, and the resultant state is shown to 
be an exact solution. We introduce the charge velocity vc 

by VC=2/KXC which reduces to the Fermi velocity in the 
noninteracting case. The increment of energy from that 
of Eq. (8) is calculated to be nvcJ?l2N, where the charge 
current Jc is defined [12] by U\+J\)lJ2. This result 

1339 
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shows that vc agrees with the charge-current velocity. 
The agreement leads to identification of the Fermi-liquid 
state \G) as a free Luttinger liquid [1]. Then the ratio of 
Eq. (9) also represents the enhancement factor of the 
effective mass for the charge current. 

We next consider the case 7j =27| . In this case both 
charge and spin excitations are involved. The resultant 
wave function is obtained by replacing in Eq. (1) the 
momentum —n of each particle by —x(\+K/N), with 
K=J^. Although the state with K^O is not a singlet, 
close inspection shows that the transfer operator 7"j has 
the same effect as that of T\. Therefore the same 
effective Hamiltonian as in Eq. (3) can be used. With 
the condition that | / | — 7 j | < 2 , terms with more than 
three particles vanish upon application of transfer opera
tors in Eq. (3) and the shifted state is shown to be an 
eigenstate. The condition for the exact solution is rather 
strict in this case. We notice that this is a sufficient con
dition and suggest that the necessary condition is weaker. 

The increment of energy for the case J\*=2J\ is calcu
lated to be K2n2t(\ —3nj4)/N. By introducing the spin 
current [12] Js

 =U\ — /j)/V2 and identifying the 
coefficient of J}, we obtain the spin-current velocity vs as 

vs=xt, 

which is independent of ne. Using the property of the 
free Luttinger liquid we can derive the spin susceptibility 
Xs from vs: Xs=2/xvs. At n, — l the result is consistent 
with that of Refs. [8] and [9] derived from the increment 
of the energy against changing the number M of spin bo
sons. We note that Xs is smaller than the noninteracting 
one Xs0) (""Zc0)f- Namely, we have the ratio 

X,=*/* i0 ) = I-",/2. 

The reduction of the homogeneous susceptibility is also 
present in the supersymmetric t-J model [7] and is due to 
the antiferromagnetic correlation. 

The results for Xc and Xs are consistent with corre
lation-function exponents [13,14] for the Gutzwiller wave 
function, where no anomalous dimensions appear for ei
ther spin or charge. Namely, we have the exponents 
Kp=Ka = \ in the notation of Ref. [12]. We can derive 
the low-temperature specific heat with the aid of the for
mula obtained by the conformal field theory [3,7]. The 
specific-heat coefficient y normalized by the noninteract
ing one is given by 

. Xc+Xs _(l-n„/2)2 

7 2 = \-ne ' 

The many-body effect appears only at Oin}), in contrast 
to XcXs and the discontinuity (1 — ne)

l/2 of the momen
tum distribution [13] where the effect appears at 0(ne). 
We note that y diverges as ne approaches unity. The ori
gin of divergence is the divergent density of states for 
charge excitations at the edge of the Mott-Hubbard gap 
[7]. Note that Xc vanishes at exactly ne = 1, and we ob

tain xJf=2 as in the half-filled case of the Hubbard 
model. 

A peculiar feature of the present model is that the 
finite-size correction in Eq. (8) contains a nonuniversal 
contribution in addition to the universal one related to 
iV + i'.v, which is described by the conformal field theory 
[3,7]. This peculiarity comes from the size dependence in 
e(k). Furthermore, the finite-size correction in Eq. (8) 
does not vanish in the dilute limit. This is not a problem 
since the exact solution in the form of Eq. (1) is valid 
only for odd M, which means that ne has the minimum 
2/N. In fact, with ne=2/N the energy is reduced to 
2e(k=0), which is indeed exact as can be checked by 
solving the two-electron problem. 

The reduction to the free fermion state in the dilute 
limit suggests a close relation to the supersymmetric t-J 
model [7]. In the latter model Yokoyama and Ogata 
[15] have observed by a numerical study that the 
Gutzwiller wave function is an excellent approximation 
not only for the ground-state energy but for structure fac
tors and the momentum distribution at any density. 
However, a discrepancy appears in the exponent for 
correlation functions. It has been recognized [8,9] that in 
contrast to the Heisenberg model the long-range ex
change model does not contain marginally irrelevant log
arithmic corrections and represents the fixed-point model 
for the singlet spin liquid. The absence of logarithmic 
corrections holds for any density in the present supersym
metric model as can be seen in the explicit solutions for 
the correlation function for the Gutzwiller wave function 
[13,14]. In this sense the long-range supersymmetric 
model is regarded as a fixed-point model for Fermi 
liquids. 

With slight modification of parameters in ft the 
Fermi-liquid fixed point in one dimension should flow to
ward a Luttinger liquid with no discontinuity in the 
momentum distribution. The nature of the stable state 
depends sensitively on the direction of modification. If, 
for example, the parameters are such that the spin-dimer 
state is realized [8] in the high-density limit, introduction 
of holes may lead to a superconducting state. On the oth
er hand, with perturbations such as interchain interac
tions which increase the dimensionality of the system, the 
Fermi-liquid fixed point should be greatly stabilized. The 
present model seems to be a useful reference model to 
study phase diagrams in the parameter space. 

In conclusion, we emphasize that the simplicity of the 
Gutzwiller wave functions, suitably generalized to de
scribe excited states as well, gives us a unique opportunity 
to study the behavior of the supersymmetric model 
without being restricted to the asymptotic regime. It has 
been pointed out in the high-density limit that there are 
enormous degeneracies in the excitation spectrum [8]. 
These degeneracies are called supermultiplets and inter
preted in terms of "free spinons" [8]. In a preliminary 
study we have found in the two-electron system, which 
represents a dilute limit, that many singlet and triplet ex-

1340 
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cited states are degenerate. Thus the present model poses 
further intriguing problems, such as whether the super-
multiplet structures are present at any density, and what 
is the physical meaning of the degeneracy. 

We thank N. Kawakami for useful discussions on Lut-
tinger liquids, and T. Watanabe for helpful comments on 
the manuscript. 
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An asymptotic Bethe-ansatz solution is obtained for the one-dimensional t-J model with the 1/r2 

long-range exchange and transfer, for which the ground-state wave function was obtained exactly by 
Kuramoto and Yokoyama. The present approach makes it possible to study analytically the energy 
spectrum as well as bulk quantities. The calculated quantities reproduce the exact results known 
for low-temperature properties and correlation functions. This solution represents an application of 
the asymptotic Bethe ansatz to correlated electron systems. 

Almost 20 years ago Sutherland proposed the asymp
totic Bethe-ansatz (ABA) method, which may be exactly 
applicable to some one-dimensional (ID) quantum sys
tems with long-range interactions.1 '2 The essence of his 
idea is that even when one cannot seek for a Bethe-ansatz 
(BA) solution due to the long-range nature of the in
teractions, there may exist some quantum systems in 
which the wave function is written down like the BA: 
i/> = T,pA(Q\ P)exp(iEjkpjXQj) in the asymptotic re
gion Q = (XQI < XQ2 <. • • < XQN), where Q (P) ex
presses one of N\ permutations for the coordinate (mo
mentum) configurations. A typical example is the ID 
boson system with inverse-square (1 / r 2 ) long-range inter
actions for which the ground-state wave function is given 
by the product of two-body functions (Jastrow-type wave 
function). Sutherland has shown that the ABA solution 
constructs the exact spectrum for this system.1,2 ABA-
type equations have also been obtained microscopically 
by Haldane for the spin systems with inverse-square ex
change interactions (Haldane-Shastry model3 '4) and the 
full excitation spectrum has been investigated precisely.5 

Furthermore the critical exponents for correlation func
tions have been studied with the help of conformal field 
theory.5,6 In spite of this great success, it remains open 
whether this method can be generalized to the electron 
systems, v/hich possess internal symmetry due to the spin 
degrees of freedom. 

Quite recently Kuramoto and Yokoyama have found 
the exact ground-state wave function for the ID t-J 
model with long-range exchange and transfer, which is 
an extension of the Haldane-Shastry model to electron 
systems.7 Though they have successfully investigated 
ground-state and low-temperature properties, it remains 
difficult to study systematically the energy spectrum as 
well as the thermodynamics. It is noted that various cor
relation functions can be calculated following the work on 
the Gutzwiller wave function.8 Motivated by their work, 
in this paper I generalize Sutherland's ABA method to 
electron systems and obtain the ABA solution of the 
above-mentioned t-J model with long-range interactions. 

I consider the ID t-J type model:7 

H = - ^2 tijc\aCja + Y^ Jij ( s i • S J - 4 « ' " J J . (!) 
i<3," i<j 

where both of the transfer and the exchange are assumed 
to be of inverse-square long-range type: 

: (^2J/N2){sm[iT{xi - - I ' " ' " " 2 
l » j — J%> i)/N]Y 

with J > 0, which are chosen to satisfy periodic boundary 
conditions on TV lattice sites. Here the double occupation 
of every site is strictly forbidden due to the strong elec
tron correlation. Kuramoto and Yokoyama have shown 
that the ground-state wave function of this Hamiltonian 
is given exactly by the Gutzwiller projected wave func
tion, i.e., by the product of two-body functions.7 This 
characteristic aspect of the wave function is very cru
cial to apply ABA because it strongly suggests that the 
many-body S matrix may be decomposed into two-body 
S matrices as in the case for the Sutherland model1 and 
the Haldane-Shastry model.3,4 Henceforth I will set J = 1 
for simplicity. 

In order to outline the strategy, I begin with the half-
filling case.3,4 Taking the fully polarized up-spin state as 
the vacuum state,9 consider the scattering of two spin 
waves with the momenta p,- and pj. The resultant S ma
trix is easily found as Sij — — exp[—i0(pi — Pj)] with the 
phase shift function 9(p) = jrsgn(p).5 In ABA the many-
body S matrix is assumed to be decomposed into two-
body S matrices in the asymptotic region. Strictly speak
ing, the asymptotic region cannot be realized for a lattice 
system with high densities of particles. The idea of ABA 
still works, however, if the many-body 5 matrix for the 
particle moving from one end of the chain to the other can 
be decomposed into two-body matrices self-consistently. 
If this is assumed to be the case, one obtains the ABA 
equation under the periodic boundary conditions in ID 
systems with N sites: pjN = 2njj + Ef 0(pj — pi) with Jj 
being an integer or a half integer, which coincides with 
that obtained by Haldane microscopically.5 

Upon doping holes, the charge excitation provides new 
scattering channels. Therefore one has to deal with the 
Schrodinger equation with the mixture of down spins 

45 7525 ©1992 The American Physical Society 
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and holes in the background of up-spin electrons.7,9 Con
sider the two-body scattering in the metallic phase. It is 
quite instructive to observe the nature of the Gutzwiller 
function for two particles:7 ipa <x f(xa ~ x/3)i where 
f(x) = (N2/ir2)sin2{*x/N) for two down-spin electrons 
and f(x) = (N/ir)sm(irx/N) otherwise. As under
stood from this wave function in the asymptotic region 
(\xp — xa\ ^> 1), two down spins are scattered similarly 
as in the half-filling case; hence the resultant S matrix 
is given by S;;- = — exp[— i8(pi — Pj)]. Furthermore the 
scattering between holes takes place as if they are spinless 
free fermions. This is also the case for the down spin and 
the hole. In these cases the S matrix is simply given by 
Sjj = — 1. Therefore if the wave function for the excited 
states may be written down in the asymptotic region as 

i> = J2p MQ\P)exP{i^jPPjxQj)> Yang's operator Y(j 
defined by 

yij^^a,xp;pi,pj) = A(xa,xg;pj,pi) 

exp(iPj N) = H F(qa - Pj) f j F(Pj - Pl), 

j = l,2,...,Nh+Nh (4) 

N^ + N, 

I I F(9c,-Pj) = h Of = 1 , 2 , ,Nh (5) 

where N^ (N^) is the number of holes (down-spins) and 
F(x) = limn-^o(x —it))/(x + ir)). By taking the logarithm 
(4) and (5) reduce to the transcendental equations, 

Nh+Ni 

PjN = 2TTJJ - J2 9{Pj - q a ) + Yl 6 ^ i ~ *") ' (6) 

N„ + N , 
(Ref. 10) should satisfy Y°^- = - exp[—i6(pi-pj)] for two V^ g/ —p) = 2irl 
( i / i n r n _ c n i n c a n d V . " — 1 / - \ fVior\*r io* i T ^ n o c ^ r ^ c u l f . a ar*s -• i down-spins and Yi -1 otherwise. These results are 

(7) 
J'=I 

simplified by introducing the permutation operator Pap, 
which interchanges the coordinates xa and Xp. Notice 
that when this operator acts on the Gutzwiller wave func
tion it takes the following eigenvalues: Pap = 1 (a = /? = 
down spins), Pap — — 1 (a = f) = holes), and Pap = — 1 
(a,/? = down spin and hole).7,9 Consequently, Y"j is 
written down simply in terms of the permutation opera
tor Pafj , 

Y,a; aff • lim (Pi -Pj)PaP + irt 
Pi - Pj - ir} 

(2) 

Note that Yy corresponds to the two-body 5 matrix. 

It is easily confirmed that Y"- satisfies the factorization 
equation, 

Y^Yf^f Y *ik 'jk ' (3) 

which has the same form as the ordinary Yang-Baxter 
relation in BA.10 I refer to this as the asymptotic Yang-
Baxter relation. Now consider the many-body scattering. 
It may be quite legitimate to assume that ABA is valid 
for the present system, based on the observation that 
the ground-state wave function consists of the product 
of two-body functions.7 In this case it is supposed that 
the many-body 5 matrix for the particle moving from 
one end of the chain to the other is decomposed into 
two-body 5 matrices. On applying periodic boundary 
conditions one thus encounters the problem familiar in 
BA of diagonalizing the product of the Y? operators 
such as rj,- PijYjj1.10 Fortunately the diagonalization can 
be performed self-consistently with the help of (3), fol
lowing the method developed in the nested BA.10 For the 
present case it is convenient to make use of the technique 
applied to the mixture of bosons and fermions.11 By in
troducing the pseudomomentum for the charge degree of 
freedom, qa, I finally get the generalized ABA equations 

with 6(x) = 7rsgn(;r), where Jj (Ia) is an integer or half 
integer characterizing the spin (charge) excitations. The 
total energy is expressed simply in the noninteracting 
formula,3,4,7 because all the interaction effects are incor
porated into pj through phase shifts: 

JVk+JV, 

E = x2(l-N-*)Nh/B+ J2 Pibi • 2 T T ) / 4 . 

J'=I 

Formulas (6) and (7) are the generalized ABA equations. 
I begin with ground-state properties. The density func

tion p,(p) [/?<:(<?)] f° r * n e s P m (charge) pseudomomentum 
is introduced in the thermodynamic limit. For later con
venience the origin of the pseudomomenta is shifted as 
(p — 7r) —> p and {q — IT) —> q. In this notation the 
pseudomomenta for the ground state distribute symmet
rically around the origin. From (6) and (7) the density 
functions are obtained as p,(p) = 1/(2TT) for \p\ < Q, 
ps{p) = 1/(4TT) for Q < \p\ < B, and pc(q) = 1/(2TT) for 

\q\ < Q. A careful treatment of the limit rj —> 0 by the 
Wiener-Hopf method gives the values at Fermi points as 
p;{±B) = l/(4\/27r) and pc(±Q) = l/(2v /2?r), which are 
responsible for low-energy elementary excitations. The 
cutoff parameters (Q < B) are determined by the hole 
concentration n/, = N^/N and the magnetization s2 = 
(AT - Nh - 2Ni)/(1N). One finds nh = f?qPc(q)dq = 

Q/vimds, = 1(1 + nh) - ffB p,(p)dp = (TT - B ) / ( » . 
Note that Q — 0 corresponds to half filling, B = IT to the 
singlet state, and Q = B to the fully spin-polarized state. 
It is easy to calculate bulk quantities with these den
sity functions. All the ground-state quantities agree with 
those calculated directly by using the Gutzwiller ground-
state function.7 For example, from the second derivative 
of the ground-state energy with respect to the hole con-

centration, ( d 2 / 3 n 2 ) l C W ~ *2)P.dP + T I-n Pcdq], 
one obtains the compressibility \c = 4|V rih\ vhich 
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exhibits a divergence behavior near half filling due to the 
metal-insulator transition. Futhermore, it is easy to ob
tain the magnetization in the present formalism: sz = 
i - v / 1 / 4 - H/x2 for magnetic fields H <T2(1- n\)/A. 

Now I evaluate the finite-size corrections to the excita
tion spectrum in order to study the low-energy behavior 
of correlation functions. Let us introduce basic quantum 
numbers that specify the low-energy charge and spin ex
citations: Nc (TV,) labels the change of the hole (down-
spin) number, and Dc (Ds) denotes the number of charge 
(spin) excitations that carry the Akp (2kp) momentum 
transfer, where kp = 7r(l — n^). Besides these basic 
numbers, non-negative integers TV* (JV*) stand for sim
ple particle-hole-type excitations of the charge (spin) sec
tors. The elementary excitation energy AE is classified 
in terms of these quantum numbers as 

momentum distribution is assumed to be written down 
around the Fermi point as 

AE: (8) 

where vs = 7r(l — 2SZ)/2 and vc = TTiih/2 are the spin and 
charge velocites, and x, (x'c) is the scaling dimension for 
the spin (charge) sector given by 

1 
N,--

Nc + \^S + N+ + N; 

-N2
C+2[DC + -DA +N+ + N, 

(9) 

(10) 

The quantum numbers satisfy the selection rule D, — 
Afc/2modl and Dc = (N, + yVc)/2modl owing to the 
antisymmetric nature of the electron wave function. Ac
cording to conformal field theory,12,13 the formula for 
scaling dimensions verifies that both of the charge and 
spin sectors are described by c = 1 conformal theories, 
which implies that the low-energy behavior is classified 
as the Luttinger liquid.14 Luttinger liquid properties of 
this model have been already discussed briefly in Ref. 7. 

Based on a standard technique in conformal field 
theory,13 all the critical exponents for the correlation 
functions can be read from (9) and (10). Now I eval
uate correlation exponents and compare them with ex
act results for the Gutzwiller wave function.8 I follow 
the method adopted in the Hubbard model15 and sub
sequently applied to the t-J model.16 For example, con
sider the long-distance behavior of the spin-correlation 
function: < Sz(r)Sz(0) > ~ < SZ > 2 +r~a- cos(2kFr). 
By choosing the quantum numbers as (Nct NS,DC, D,) = 
(0,0,0,1) one finds the 2kp spin-density wave exponent 
as = 2xs + 2xc = 2. Similarly other exponents are 
readily obtained: 2kp charge-density wave (CDW) ex
ponent a's = 2 by (NC,NS,DC, D,) - (0,0,0,1), 4kF 

CDW exponent ac - 4 by (NC,N,, Dc, D3) = (0,0,1,0), 
and singlet and triplet pairing exponents (3, — /?< = 2 
by (NC,N„DC,D1) = ( 2 , 1 , 1 / 2 , - 1 ) and (2,2,0,0). No-
tice that all these values, which are characteristic of the 
noninteracting free-electron systems,17 coincide with the 
exact results for the Gutzwiller wave function.8 Among 
others, it is quite instructive to observe the critical ex
ponent for the momentum distribution function. If the 

rik — rikF — const|<i — kpf sgn(k — kp), (11) 

the critical exponent 8 is calculated as 6 = 2xr_ + 2x, — 1 — 
0 by (NC,NS,DC,DS) = (1 ,1 ,0 ,1/2) . Furthermore, it is 
deduced from (6) and (7) that there is no logarithmic cor
rection to the correlation function. It is thus concluded 
that 9 — 0 implies the existence of a discontinuity at the 
Fermi point in the momentum distribution, as has been 
pointed out in Ref. 7 with the Gutzwiller wave function.8 

The present model is assigned as a specific example of the 
Luttinger liquid, which has a noninteracting fixed point.7 

Finally let us briefly discuss finite-temperature prop
erties. If one applies a standard technique in BA method 
straightforwardly,18 the following expression for the free 
energy may be deduced at thermal equilibrium: 

f(T) = -p-2--%- ^ logll + e x p i - e ^ / T ] } ^ , 

(12) 

where the pseudoenergy functions es(p) and ec(q) are 
given by 

*.(P) - e0(p) + H- Tlog{l + exp[-e c(p)/T]} 

- rT log{H-exp[ -e s (p ) /T ]} , (13) 

<c(«) = y +li ~ f - r i o g { l + e x p [ - £ , ( 9 ) / n } . ( I 4 ) 

and to(p) = (p2 — i ' 2 ) /4 . By comparing this expres
sion with the exact result for half filling,5 one notices 
that there is a discrepancy in two expressions and that 
(12) does not give a correct answer. Hence, an ordinary 
procedure for thermodynamics in BA cannot be applied 
straightforwardly to the present case. This shortage may 
be due to the missing states in ABA equations, as al
ready pointed out for half-filling case.5 In order to ob
tain the full thermodynamics, therefore, the idea of su-
permultiplet proposed by Haldane5 should be necessarily 
introduced. Unfortunately I have not found such an ele
gant way to construct the supermultiplet for the present 
model, though it is to be clarified in a future study. Nev
ertheless it is seen that low-temperature properties of the 
system can be described correctly by (12)—(14). In fact, 
the low-temperature expansion of the free energy gives 
the specific-heat coefficient j = (TT/3)(1/VS-{-1/VC), which 
agrees exactly with the result obtained in Ref. 7 based on 
the Luttinger-liquid theory introduced by Haldane.14,19 

In summary, I have derived the generalized ABA solu
tion for the ID t-J model with the long-range exchange 
and transfer. This method is a generalization of Suther
land's idea to electron systems, which has enabled sys
tematic studies of energy spectrum as well as bulk quan
tities. It is suspected that the generalized ABA may 
provide the exact spectrum of the present system, al
though the rigorous proof has not been obtained yet. An 
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in te res t ing p r o b l e m in t h e fu tu re is t o clarify t h e super -
mul t ip le t s t r u c t u r e of the exc i ta t ion s p e c t r u m 5 in order 
t o o b t a i n t h e full t h e r m o d y n a m i c s . F u r t h e r m o r e , A B A 
conjec ture is t o b e confirmed from t h e microscopic po in t 
of view. 
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