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1.5 A brief history of path integrals

Path integrals yield a third approach to quantum physics, in addi-
tion to Heisenberg’s operator approach and Schrédinger’s wave function
approach. They are due to Feynman [45], who in the 1940s developed
an approach Dirac had briefly considered in 1932 [44]. In this section
we discuss the motivations which led Dirac and Feynman to associate
path integrals (with 4/A times the action in the exponent) with quantum
mechanics. In mathematics Wiener had already studied path integrals in
the 1920s but these path integrals contained (—1) times the free action for
a point particle in the exponent. Wiener’s path integrals were Euclidean
path integrals which are mathematically well defined but Feynman’s path
integrals do not have a similarly solid mathematical foundation. Never-
theless, path integrals have been successfully used in almost all branches
of physics: particle physics, atomic and nuclear physics, optics and statis-
tical mechanics [21].

In many applications one uses path integrals for perturbation theory, in
particular for semiclassical approximations, and in these cases there are no
serious mathematical problems. In other applications one uses Euclidean
path integrals, and in these cases they coincide with Wiener’s path inte-
grals. However, for the nonperturbative evaluations of path integrals in
Minkowski space a completely rigorous mathematical foundation is lack-
ing. The problems increase in dimensions higher than four [52]. Feynman
was well aware of these problems, but the physical ideas which stem from
path integrals are so convincing that he (and other researchers) considered
this not to be worrisome.

QOur brief history begins with Dirac who in 1932 wrote an article in a
USSR physics journal [44] in which he tried to find a description of quan-
tum mechanics which was based on the Lagrangian instead of the Hamil-
tonian approach. Dirac was making a trip with Heisenberg around the
world, and took the trans-Siberian railway to arrive in Moscow. In those
days all work in quantum mechanics (including the work on quantum field
theory) started with the Schrédinger equation or operator methods, and in
both of these the Hamiltonian played a central role. For quantum mechan-
ics this was fine, but for relativistic field theories an approach based on
the Hamiltonian had the drawback that manifest Lorentz invariance was
lost (although for QED it had been shown that physical results were
nevertheless relativistically invariant). Dirac considered the transition
element

1

(z"?atZle:tl) = K(ic?:tﬂrl,tl) = (582]6_&&{12_“)“7}1) (1'36)

(for time-independent H), and asked whether one could find an expres-
sion for this matrix element in which the action was used instead of
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the Hamiltonian. (The notation (z2,?2|%1,%1) is due to Dirac who called
this element a transformation function. Feynman introduced the notation
K (z9,t2|T1,t1) because he used it as the kernel in an integral equation
which solved the Schrédinger equation.) Dirac knew that in classical
mechanics the time evolution of a system could be written as a canoni-
cal transformation, with Hamilton’s principal function S(z,t2|z1,t;) as
the generating functional [53]. This function S(zo,t2|z1,%1) is the classi-
cal action evaluated along the classical path that begins at the point z;
at time ¢; and ends at the point x5 at time t5. In his 1932 article Dirac
wrote that (zs,%2|z1,t1) corresponds to exp £8(za,t2|z1,%1). He used
the words “corresponds to” to express that at the quantum level there
were presumably corrections so that the exact result for (xo,t2|z1,t;)
was different from exp £ S(z, ta|z1,t1). Although Dirac wrote these ideas
down in 1932, they were largely ignored until Feynman started his studies
on the role of the action in quantum mechanics.

Towards the end of the 1930s Feynman started studying how to for-
mulate an approach to quantum mechanics based on the action. (Here
we follow the biography of Feynman by Mehra [54].) The reason he tack-
led this problem was that with Wheeler he had developed a theory of
quantum electrodynamics from which the electromagnetic field had been
eliminated. In this way they hoped to avoid the problems of the self-
acceleration and infinite self-energy of an electron which are due to the
interactions of an electron with the electromagnetic field and which Lie-
nard, Wiechert, Abraham and Lorentz had tried in vain to solve. The
resulting “Wheeler-Feynman theory” arrived at a description of the inter-
actions between two electrons in which no reference was made to any field.
It is a so-called action-at-a-distance theory. These theories were nonlocal
in space and time. (In modern terminology one might say that the fields
A, had been integrated out from the path integral by completing squares.)
Fokker and Tetrode had found a classical action for such a system, given
by [54]

dS( ) dS( )
dz?.. dx?.
1) ™ (2)
—5 ; (1) () //(5 [(wﬁ) - a’,“a)) ] ds( ) dS{ }'r]pg dS(,,) dS(J)
LFa¥)

Here the sum over (i) denotes a sum over different electrons. So, two
electrons only interact when the relativistic four-distance vanishes, and
by taking ¢ # j in the second sum, the problem of infinite self—energy

was eliminated. Integration of the second term over —(—ds&) = dz? (i) yielded

dafy) d:c() 1
()[ Tuv|  dsg) (1.37)
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an expression of the form [ A, j# where A, are one-half times the sum of the
retarded and advanced Liénard-Wiechert potentials, generated by the j-th
charged particle and acting on the i-th charged particle. Wheeler and
Feynman set out to quantize this system, but Feynman noticed that a Hamil-
tonian treatment was hopelessly complicated.!? Thus Feynman was looking
for an approach to quantum mechanics in which he could avoid the
Hamiltonian. The natural object to use was the action.

At this moment in time, an interesting discussion helped him further.
A physicist from Europe, Herbert Jehle, who was visiting Princeton, men-
tioned to Feynman (spring 1941) that Dirac had already (in 1932) studied
the problem of how to use the action in quantum mechanics. Together
they looked up Dirac’s paper, and of course Feynman was puzzled by the
ambiguous phrase “corresponds to” in it. He asked Jehle whether Dirac
meant that they were equal or not. Jehle did not know, and Feynman
decided to take a very simple example and to check. He considered the
case where to — t; = € was very small, and wrote the time evolution of the
Schrédinger wave function ¥(x, t) as follows:

Y(z,t+¢€) = %/exp [%eL(m,t + €y, t)} W(y,t) dy. (1.38)

With L=%mzi'2-—V(m) one obtains, as we now know very well, the
Schrodinger equation, provided the constant A is given by

N :(27rihe)1/2 (1.39)

m

(the combination dy/N is nowadays often called the Feynman mea-
sure). Thus, as Dirac correctly guessed, (zo,2|T1,t1) was analogous to
exp(%eL) for small € = to — t1; however, they were not equal but rather
proportional.

There is an amusing continuation of this story [54]. In the fall of 1946
Dirac was giving a lecture at Princeton, and Feynman was asked to intro-
duce Dirac and comment on his lecture afterwards. Feynman decided to
simplify Dirac’s rather technical lecture for the benefit of the audience,
but senior physicists such as Bohr and Weisskopf did not much appreci-
ate this watering down of the work of the great Dirac by the young and
relatively unknown Feynman. Afterwards people were discussing Dirac’s
lecture and Feynman who (in his own words) felt a bit let down hap-

9By expanding expressions such as 1/(8% + 67 — m?) in a power series in 8;, and using
Ostrogradsky’s approach to a canonical formulation of systems with higher-order &;
derivatives, one can give a Hamiltonian treatment, but one must introduce infinitely
many new fields B, C, ... of the form &;:A = B,6;B = C,.... All of these new fields
are, of course, equivalent to the oscillators of the original electromagnetic field.
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pened to look out of the window and saw Dirac lying on his back on a
lawn and looking at the sky. So Feynman went outside and sitting down
near Dirac asked him whether he could ask him a question concerning
his 1932 paper. Dirac consented. Feynman said “Did you know that the
two functions do not just ‘correspond to’ each other, but are actually pro-
portional?” Dirac said “Oh, that’s interesting”. And that was the total
reaction that Feynman got from Dirac.

Feynman then asked himself how to treat the case where t — t1 is
not small. This Dirac had already discussed in his paper: by inserting a
complete set of z-eigenstates one obtains

(g, t| i, ti) = /(xfatflmN—lstN*l)(melatN—lle—%tNA2)
---(:1:1,t1|$i,fi) dxy_1---dz1. (1.40)

Taking t; — ;-1 small and using the fact that for small ¢; — ;-1 one
can use N~ exp £ (t; —tj-1)L for the transformation function, Feynman

arrived at

. N-1

7 dry_1-+-dzy
(zf, telzi, ti) = feXp[ﬁ Y (41 — t;)L(xj41, 413 Tjr 5) — N
i=0

(1.41)

At this point Feynman recognized that one obtains the action in the
exponent and that by first summing over j and then integrating over T
one is summing over paths. Hence (zr, t¢|zi, ti) is equal to a sum over all
paths of exp(%S) with each path beginning at z;, t; and ending at xz, tf.

Of course, only one of these paths is the classical path, but by sum-
ming over all other paths (arbitrary paths not satisfying the classical
equation of motion) quantum mechanical corrections are introduced. The
tremendous result was that all quantum corrections were included if one
summed the action over all paths. Dirac had entertained the possibility
that in addition to summing over paths one would have to replace the
action S by a generalization which contained terms with higher powers
in h.

Reviewing this development more than half a century later, when path
integrals have largely superseded operators methods and the Schrodinger
equation for relativistic field theories, one notices how close Dirac came to
the solution of using the action in quantum mechanics, and how different
Feynman’s approach was to solving the problem. Dirac anticipated that
the action had to play a role, and by inserting a complete set of states
he did obtain (1.41). However, he did not pursue the observation that
the sum of terms in (1.41) is the action because he anticipated for large
to—t; & more complicated expression. Feynman, on the other hand, started
by working out a few simple examples, curious to see whether Dirac was
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correct that the complete result would need a more complicated expression
than the action, and in this way found that the truth lies in between:
Dirac’s transformation functions (Feynman’s transition kernel K) is equal

to the exponent of the action up to a constant. This constant diverges as
¢ tends to zero, but for N — oo the result for K (and other quantities) is
finite.

Feynman initially believed that in his path integral approach to quan-
tum mechanics ordering ambiguities of the p and x operators of the oper-
ator approach would be absent (as he wrote in his PhD thesis of May
1942). However, later in his fundamental 1948 paper in Review of Mod-
ern Physics [45], he realized that the same ambiguities would be present.
For our work the existence of these ambiguities is very important and we
shall discuss in great detail how to fix them. Schrédinger [55] had already
noticed that ordering ambiguities occur if one tries to promote a classical
function F'(z,p) to an operator ﬁ(:i‘, D). Furthermore, one can in principle
add further terms that are linear and of higher order in % to such opera-
tors F. These are further ambiguities which have to be fixed before one
can make definite predictions.

Feynman evaluated the kernels K (z;41,%41|24,%;) for small t;41 — ¢;
by inserting complete sets of momentum eigenstates [p;) in addition
to position eigenstates [z;). In this way he constructed phase-space
path integrals. We shall follow the same approach for the nonlinear
sigma models we consider. It has been claimed in [21] that “...phase
space path integrals have more troubles than merely missing details. On
this basis they should have been left out [from the book]...”. We have
instead arrived at a different conclusion: they are well defined and can
be used to derive the usual configuration-space path integrals from the
operatorial approach by adding integrations over intermediate momenta.
A continuous source of confusion is the notation Dz(t) Dp(t) for these
phase-space path integrals. Many authors, who attribute more meaning
to this symbol than dz; - - - dx y_1 dp; - - - dpn, assume that this measure is
invariant under canonical transformations, and apply the powerful meth-
ods developed in classical mechanics for the Liouville measure. However,
the measure Dz(t) Dp(t) in path integrals is not invariant under canonical
transformations of the = and the p because there is one more p integration
then z integration in [] dz; [] dp;.

Another source of confusion for phase-space path integrals arises if one
tries to interpret them as integrals over paths around classical solutions
in phase space. Consider Feynman’s expression

K(zj,t5lzjo1,t-1) = (gjle nH OG-0z )

=/ %<wﬂe‘%i’“"‘”‘”lpj>(pjlefl)- (1.42)




32 1 Introduction to path integrals

For (a:jle"%H(tf“tﬂ'—ljle_l) one can substitute exp[£S(z;, t;]z;-1,tj-1)];
where in S one uses the classical path from z;, t; to z;-1, t;—1. In a similar
way some authors have tried to give meaning to (z;le" ~t-1|p;) by
considering a classical path in phase space. However, several proposals
have been shown to be inconsistent or impractical [21]. We shall not try
to interpret the transition elements in phase space in terms of classical
paths, but only do what we are supposed to do: integrate over p; and z;.

Yet another source of confusion has to do with path integrals over
fermions for which one needs Grassmann numbers and Berezin integration

[56]
fdea:o, /d@ﬁ:l. (1.43)

Some authors claim that the notion of anticommuting classical fields
makes no sense and that only quantized fermionic fields are consistent.
However, the notion of Grassmann variables is completely consistent if
one uses it only at the intermediate stages to construct, for example,
fermionic coherent states: all one does is make use of mathematical iden-
tities. One begins with fermionic harmonic oscillator operators ¥ and !
and constructs coherent bra and kets states |n) and (7| in Hilbert space.
In applications traces are taken over these coherent states using Berezin
rules for the integrations over 7 and 7. One ends up with physical results
which are independent of the Grassmann variables, and since all inter-
mediary steps are mathematical identities [19], defined by Berezin [56],
at no point are there any conceptual problems in the treatment of path
integrals for fermions.



