
QFT HW4 SOLUTIONS

PHY 610 QFT, Spring 2015

HW4 Solutions

1. 6.1 We are to explicitly evaluate the Feynman propagator in position space (6.34), which in our

metric convention is

DF (x, 0) =

∫
d4k

(2π)4
−i

k2 +m2 − iε
e−ikx.

Let us first perform the k0 integral. (The following discussion is essentially identical to that of

Schwartz, p. 76, but going backwards.) Writing the denominator as−k20 +~k2 +m2− iε = −(k0 +√
~k2 +m2 − iε)(k0−

√
~k2 +m2 − iε), we see that there are two simple poles at±

√
~k2 +m2 − iε,

one with positive real part and displaced slightly below the real axis, and one with negative real

part displaced slightly above the real axis (see fig 6.1, p. 76). We wish to use the residue theorem

of complex analysis to perform this integral. For x0 > 0, the exponential factor e−ikx becomes

small when k0 has large imaginary part, so we can close the integral in the upper half plane. This

means we pick up the residue of the pole at k0 = −
√
~k2 +m2 − iε. Conversely, for x0 < 0, we

have to close the ingral in the lower half plane, picking up the residue of the other pole (as well

as a minus sign for a clockwise contour). Thus

DF (x, 0) =

∫
d3k

(2π)3

θ(x0)i
ie−i

~k~x−ix0
√
k2+m2−iε

−2
√
~k2 +m2 − iε

+ θ(−x0)(−i) ie
−i~k~x+ix0

√
~k2+m2−iε

2
√
~k2 +m2 − iε


=

∫
d3k

(2π)3
e−i

~k~x−i|x0|
√
~k2+m2−iε

2
√
~k2 +m2 − iε

.

In 3+1 dimensions, the angular integral can be performed easily, since there is conveniently a

sin θ in the measure to go with the e−ikr cos θ in the integrand:

DF (x, 0) =

∫ ∞
0

k2 dk
1

8π2

∫ 1

−1
d cos θ

e−ikx cos θ−i|x0|
√
~k2+m2−iε√

~k2 +m2 − iε

=

∫ ∞
0

dk
k2e−i|x

0|
√
~k2+m2−iε

4π2
√
~k2 +m2 − iε

sin(kx)

kx
.

This expression is actually a Bessel function. (Bessel functions are solutions to Laplace’s equa-

tion.) One way to see this is to invoke Lorentz invariance to simplify the integral. For timelike

separations x, rotate to a frame where xµ = (x0, 0), so that the sin(kx)/kx factor in the integrand

becomes unity. Then,

DF (x, 0) =

∫ ∞
0

dk
k2e−i|x

0|
√
~k2+m2−iε

4π2
√
~k2 +m2 − iε

=
m2

4π2

∫ ∞−iε
1−iε

dy
√
y2 − 1 + iε e−im|x

0|y

=
im

8π |x0|
H

(1)
1 (m

∣∣x0∣∣), (timelike)
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where on the second line we have changed variables to y =
√
k2 +m2 − iε/m, and on the last

line we have used the following integral representation for the Hankel function H(1)
ν ,1

H(1)
ν = −i 2(−a/2)ν

π1/2Γ(ν + 1/2)

∫ ∞−iε
1

e−iat(t2 − 1)ν−1/2 dt, <(ν) > 1/2, a > 0.

Meanwhile, for spacelike separations x, rotate to a frame where xµ = (0, ~x), then

DF (x, 0) =

∫ ∞
0

dk
k sin(kx)

4π2x
√
~k2 +m2 − iε

=
m

4π2x
K1(mx), (spacelike)

where we have used another integral representation of the modified Hankel function Kν(a) =

iν+1(π/2)H
(1)
ν (ia). Note that K1 is simply H1 at imaginary arguments (up to some constant

factors), so this spacelike case could have been obtained from the timelike case by analytic con-

tinuation.

Finally, for lightlike x, notice that, writing 2i sin(kx) = eikx − e−ikx, the numerator of the inte-

grand consists of the exponentials e−iω~k|x0|±ikx, which, since xµxµ = 0, approaches 1 as
∣∣∣~k∣∣∣→∞.

Therefore, at large k, the integrand is of order 1, so DF (x, 0) diverges. Since this is an ultraviolet

divergence, we can compute it in the massless limit (ie. consider the region withm/k � 1). Then

DF (x, 0)|m=0 =
−i

8π2x

∫ ∞
0

dk (e−ik(|x
0|−x) − e−ik(|x

0|+x))

=
−i
8πx

(δ(x−
∣∣x0∣∣− δ(x+

∣∣x0∣∣))
=
−i
4π
δ(xµxµ). (lightlike)

Putting this all together, and restoring Lorentz invariance, the final result for the Feynman prop-

agator is

DF (x, 0) = θ(−x2)
im

8π
√
−x2

H
(1)
1 (m

√
−x2) + θ(x2)

m

4π2
√
x2
K1(m

√
x2) +

−i
4π
δ(x2).

In the timelike region, H(1)
1 is an outgoing wave, while in the spacelike region, K1 is exponen-

tially decaying.2 This is indeed what we expect for a solution to the wave equation.

In the m2 → 0 limit, using the Bessel function asymptotics K1(z) = 1/z + O[z], H(1)
1 (z) =

−2i/πz +O[z], or by computing the integral form of DF directly, we obtain the conformal prop-

agator

DF (x, 0) =
1

4π2x2
+
−i
4π
δ(x2) =

1

4π2(x2 + iε)
,

where the useful identity 1/(a+ iε) = p. v. 1/a− iπδ(a) of distributions has been used.

1Bessel functions satisfy a wealth of identities. For more information, see eg. Arfken and Weber’s Mathematical Methods for

Physicists.
2A useful mnemonic for the asymptotic behaviors of the Bessel functions is that J behaves like cos, N like sin, H(1) = J + iN like

eiz and H(2) = J − iN like e−iz . Then K(z) ∼ H(1)(iz) is exponentially damped and I(z) ∼ H(2)(iz) grows exponentially.
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6.2 The advanced and retarded propagators are (6.27)

D±(x, 0) =

∫
d3k

(2π)3
1

2ωk
e−i

~k~xe±iωkx
0

θ(∓x0).

To write them as d4k integrals, we want to write the integrand, e±iωkx
0

θ(∓x0)/2ωk, as a dk0

integral, as we did for the Feynman propagator above. The integral

− 1

2πi

∫
eik0x

0

dk0
k20 − ω2

k

,

has two poles at ±ωk. We have to specify which way the contour goes round the poles, in order

that we use complex analysis to compute the integral. In the Feynman propagator, we chose a

contour that went below the pole at −ωk and above the pole at ωk (see fig 6.1). For positive x0,

we close the integral in the upper half plane, and the residue of the pole at −ωk gave us exactly

−θ(x0)
1

2πi

∫
eik0x

0

dk0
k20 − ω2

k + iε
= θ(x0)

e−iωkx
0

2ωk
,

which is what we desire. A similar argument holds for the advanced propagator, so

D±(x, 0) =

∫
d4k

(2π)4
−ie−ikx

k2 +m2 − iε
θ(∓x0) = θ(∓x0)DF (x, 0).

Note that D±(x, 0) are not Lorentz invariant. (In particular, they are not inverses of the Klein-

Gordon operator, and so they should really not be called “propagators”.)

Remark

Most other sources usually define the advanced and retarded Green functions to be the expecta-

tion value of the commutator,

D̃±(x, y) := θ(∓(x0 − y0))〈0|[φ0(x), φ0(y)]|0〉.

In this case, the integrand will contain both θ(∓x0)(e±iωkx
0

+ e∓iωkx
0

)/2ωk terms, which arise

as the residue of both poles at ±ωk. Then, there is a simpler way of writing the d4k integral, by

placing the contour below (resp. above) both poles for the retarded (advanced) propagator. This

may be achieved by displacing k0 7→ k0 − iε (k0 7→ k0 + iε), so

D̃±(x, y) =

∫
d4k

(2π)4
−ie−ikx

−(k0 ± iε)2 + ~k2 +m2
.

(Exercise: check that this indeed yields the desired expression!) There is no need for an explicit θ

term, so this definition of the advanced and retarded Green functions is indeed Lorentz invariant.

2. The idea is to compare two methods of computing the commutator [ϕ(x), ϕ̇(y)]; using canonical quan-

tization and the Lehmann-Källén exact propagator. It is straightforward to show that, using canonical

quantization, we have at equal times

Zϕ[ϕ(x), ϕ̇(y)] = [ϕ(x),Π(y)] = iδ3(x− y).
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Meanwhile, take the y0 derivatives of (13.12), (13.13) to obtain, at equal times,

〈0|ϕ(x)ϕ̇(y)|0〉 =

∫
d3k

(2π)32
√
~k2 +m2

i

√
~k2 +m2eik(x−y) +

∫ ∞
4m2

ρ(s)ds

∫
d3k

(2π)32
√
~k2 + s

i

√
~k2 + seik(x−y)

=
i

2
δ3(x− y)

(
1 +

∫ ∞
4m2

ρ(s) ds

)
.

Hence

〈0|[ϕ(x), ϕ̇(y)]|0〉 = iδ3(x− y)

(
1 +

∫ ∞
4m2

ρ(s) ds

)
,

and comparing the two expressions, we conclude that

Zϕ =

(
1 +

∫ ∞
4m2

ρ(s) ds

)−1
.

The Lehmann-Källén exact propagator yields an easy way to compute the wavefunction normaliza-

tion.

3. 1.2 We are to verify that the first and second quantized formulations of nonrelativistic quantum

mechanics are equivalent. Let us compute H|ψ, t〉 in second quantized language. First, consider

the single particle terms H1 =
∫
d3x a†(x)(−∇2/2m+ U(x))a(x). We use the (anti)commutation

relations to move a(x) past the a†s in |ψ, t〉, yielding n delta functions at each of the positions.

Each delta function δ3(x−xj) kills the
∫
d3x integral, setting x to xj . (For the spatial derivatives,

partially integrate twice, yielding∇2
xδ

3(x−xj) = δ3(x−xj)∇2
xj

.) Finally, we can move the a†(x)

from the front to the jth position. Note that the number of a†s we have to anticommute the a†(x)

and a(x)s through are the same, so this holds for both bosons and fermions. Thus

H1|ψ, t〉 =

n∑
j=1

∫
d3x

∏
d3xj (−)j+1a†(x)

(
− 1

2m
∇2 + U(x)

)
δ3(x− xj)

ψ(x1, . . . ,xn; t)a†(x1) . . .���
a†(xj) . . . a†(xn)|0〉

=

n∑
j=1

(
1

2m
∇2

xj
+ U(xj)

)
ψ(x1, . . . ,xn; t)a†(x1) . . . a†(xn)|0〉.

Similarly, for the two particle termH2 = 1/2
∫
d3x V (x−y)a†(x)a†(y)a(y)a(x), (anti)commuting

the as past the a†s yields delta functions setting x and y to any pair of positions xj ,xk, with j 6= k,

and the a†(x), a†(y) then take the original spots, with the same number of (anti)commutations

required. (Notice that this is only true for this specific order, a†(x)a†(y)a(y)a(x)!) Each pair (j, k)

is counted twice, so the result is

H2|ψ, t〉 =

∫ ∏
d3xj

n∑
j<k

V (xj − xk)ψ(x1, . . . ,xn; t)a†(x1) . . . a†(xn)|0〉.

Therefore

H|ψ, t〉 =

∫ ∏
d3xjH̃ψ(x1, . . . ,xn; t)a†(x1) . . . a†(xn)|0〉,

where H̃ is the first quantized hamiltonian. It is clear from this equation that the Schrödinger

equations in the first and second quantized pictures are equivalent.
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1.3 Notice that N, a† and a satisfy the harmonic oscillator algebra, [N, a†(x)} = a†(x), [N, a(x)} =

−a(x).3 Therefore, N simply counts the number of particles, which is to say, given a chain with

n creation operators a†s and m annihilation operators as, [N, a†aaa†a . . .] = [N, a†]aaa†a . . . +

a†[N, a]aa†a . . . + . . . = (n − m)a†aaa†a . . .. (Note that N is a bosonic operator even if a is

fermionic.) Since H is particle number conserving (its terms have equal numbers of as and a†s),

it follows that [N,H] = 0.

3[A,B} denotes the graded bracket, which is the anticommutator if A and B are fermionic, and the commutator otherwise.

Page 5 of 5


